

GENERAL PAPER

Time Allowed: 3 Hours
Maximum Marks : 150
Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

1. This Question Booklet contains $\mathbf{1 5 0}$ questions in all.
2. All questions carry equal marks.
3. Altempt all questions.
4. Immediately after commencement of the examination, you should check up your Question Booklet and ensure that the Question Booklet Series is printed on the top right-hand corner of the Booklet. The Booklet contains 23 printed pages and no page or question is missing or unprinted or torn or repeated. If you find any defect in this Booklet, get it replaced immediately by a complete Booklet of the same series.
5. You must write your Roll Number in the space provided on the top of this page. Do not write anything else on the Question Booklet.
6. An OMR Answer Sheet will be supplied to you separatcly by the Invigilator to mark the answers. You must write your Name, Roll No. and other particulars on the first page of the OMR Answer Sheet provided, failing which your OMR Answer Sheet will not be evaluated.
7. You will encode your Roll Number and the Question Booklet Series A, B, C or D as it is printed on the top right-hand corner of this Question Booklet with Black/Blue ballpoint pen in the space provided on Page-2 of your OMR Answer Sheet. If you do not encode or fail to encode the correct series of your Question Booklet, your OMR Answer Sheet will not be evaluated correctly.
8. Questions and their responses are printed in English only in this Booklet. Each question comprises four responses-(A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your OMR Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the OMR Answer Sheet.
9. In the OMR Answer Sheet, there are four circles-(A), (B), (C) and (D) against each question. To answer the questions you are to mark with Black/Blue ballpoint pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the OMR Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. Any erasure or change is not allowed.
10. You should not remove or tear off any sheet from the Question Booklet. You are not allowed to take this Question Booklet and the OMR Answer Sheet out of the Examination Hall during the examination. After the examination has concluded, you must hand over your OMR Answer Sheet to the Invigilator. Thereafter, you are permitted to take away the Question Booklet with you.
11. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
12. When air passes through silica gel
(A) it absorbs water vapour molecules
(B) latent heat of condensation is released
(C) DBT of air increases (D) All of the above
13. Which of the following screw threads is stronger than other threads?
(A) Square threads
(B) Trapezoidal threads
(C) Buttress threads
(D) V threads
14. In Physics, the Nobel Prize, 2014 was awarded for the discovery of
(A) gravitational waves
(B) blue light LED
(B) neutrino oscillations
(D) MRI
15. In India, 15 th September is celebrated as
(A) Engincer's Day
(B) Scientist's Day
(C) Labour's Day
(D) Women's Day
16. Ministry of Science and Technology was formed in the year
4A)T 1950
(B) 1971
(C) 1985
(D) 1992
17. Who among the following scientists has made his contribution in the establishment of ISRO?
(A) A. P. J. Abdul Kalam
(B) C. V. Raman
(C) Vikram Sarabhai
(D) Aryabhatta
18. Dr. B. R. Ambedkar was independent India's first
(A) Textile Minister
(B) Law Minister
(C) HRD Minister
(D) Foreign Minister
19. Graphene is a
(A) one-dimensional material
(B) two-dimensional material
(C) three-dimensional material (D) All of the above
20. Bihar Diwas (Bihar Day) is observed every year on
(A) 25th March
(B) 22nd March
(C) 1st April
(D) 1st March
21. Sardar Sarovar Dam is located on
(A) Ganga river
(B) Narmada river
(C) Sutlej river
(D) Godavari river
22. The First Bharat Ratna Award was given in the year
(4) 1951
(B) 1952
(C) 1953
(D) 1954
23. Raxaul Airport is located in the State of
(A) Goa
(B) Maharashtra
(C) Bihar
(D) Uttarakhand
24. Which of the following weldings is used for welding vertical section in one pass?
(A) Electroslag welding
(B) Atomic hydrogen welding
(C) Laser-beam welding
(D) Electrogas welding
25. Rateau turbine belongs to the category of
(A) pressure-compounded turbine
(B) reaction turbine
(C) velocity-compounded turbine
(D) radial flow turbine
26. Gradually varied flow is
(A) steady uniform
(B) non-steady non-uniform
(C) non-steady uniform
(D) steady non-uniform
27. The temperature of normal human body is
(A) $38.6^{\circ} \mathrm{C}$
(B) $37^{\circ} \mathrm{C}$
(C) $37.6^{\circ} \mathrm{C}$
(D) $38^{\circ} \mathrm{C}$
28. Who was the founder of Aligarh Muslim University?
(A) Sir Syed Ahmad Khan
(B) Mohammad Ali Jinnah
(C) Abul Kalam Azad
(D) Ram Mohan Roy
29. Mr. Jagadish Chandra Bose is a famous scientist for the invention of
(A) Bose-Einstein statistics
(B) crescograph
(C) X-rays
(D) scattering of light
30. Albert Einstein was awarded the Nobel Prize for
(A) theory of relativity
(B) quantum optics
(C) photoelectric effect
(D) Bose-Einstein theory
31. Rana Pratap Sagar Dam is situated on
(A) Chambal river
(B) Yamuna river
(C) Narmada river
(D) Brahmaputra river
32. An instrument, that is used for the detection of earthquake, is
(A) barometer
(B) lactometer
(C) seismograph
(D) holograph
33. The Head Office of the Central Pollution Control Board (CPCB) is located in
(A) Mumbai
(B) Kolkata
(C) Patna
(D) None of the above
34. RDX is a chemical compound. How is it used?
(A) As a composition
(B) As a reactor
(f) As an explosive
(D) As a nuclear weapon
35. The planet Neptune was discovered by
(A) Galle
dB ${ }^{\text {P }}$ Galileo
(C) Kepler
(D) Newton
36. Resistance of which of the following is unaffected by temperature? .
(A) Manganin
(B) Constantan
(C) Nichrome
(D) All of the above

06/AE/CM/PT-2018/1-D
31. India's first mobile court was inaugurated in
19. Maharashtra
(B) Haryana
(C) Uttar Pradesh
(D) Rajasthan
32. In which year, railway finances were separated from the general finances of the Central Government?
(A) 1920
(B) 1972
(C) 1923
(D) 1924
33. Logarithm tables were invented by
(A) J. J. Thomson
< John Napier
(C) Paul Ehrlich

Fiv
A. G. Bell -
34. What is India's per capita emission of greenhouse gases (GHG)?
(A) 0.8 tonne of CO_{2}
(B) 1.0 tonne of CO_{2}
(C) 1.2 tonnes of. CO_{2}
(D) 1.5 tonnes of CO_{2}
35. A new study provided the first evidence that fatter people may be more affected by exposure to 2 (A) sunlight
(B) X-rays
(C) γ-rays
(D) ozone
36. Which of the following units is used for measuring the speed of processor?
(A) MPIS
(B) MISP
(C) MIPS
(D) MSIP
37. Nerves from the eyes and ears are connected to the
(A) cerebrum
(B) cerebellum
(C) medulla oblongata
(D) spinal cord
38. Rainbow Revolution is related to which sector of the economy?
(A) Small-scale industries
(B) Information technology services
(C) Overall development of agriculture sector
(D) Mining sector
39. Who among the following was the first economist to hold the Office of Secretary, Department of Economic Affairs in the Union Finance Ministry?
(A) Dr. I. G. Patel
(8) Dr. Manmohan Singh
(C) Rakesh Mohan
(D) Dr. M. S. Ahluwalia
40. Who is the author of Soul and Structure of Governance in India?
(A) V. K. Duggal
(B) Jairam Ramesh
(C) Dr. I. G. Patel
(D) Jagmohan
41. Light-emitting diode is an example of
(A) photonic devices
(B) mechanical devices
optoelectronic devices ${ }^{2}$
(D) sensing devices
42. The premature ignition of fuel is called
(A) engine knock
(B) autoignition
(18) detonation
(\$) All of the above
43. Skin stress is also called as (A) shear stress
(B) bending stress
(C) lateral stress
(D) temperature stress
44. National Science Day is celebrated on
(A) 26th December
(B) 26th January
(C) 28th February
(D) 5th September
45. Which of the following is not a part of venturimeter?
(A) Diverging part
(B) Converging part
(C) Working fluid
(D) Throat
46. What is the principle of the 'Johansson Mikrokator'?
(A) Button spinning on a loop of string
(B) Principle of interference
(C) Optical magnification
(D) Principle of transformer
47. At $0^{\circ} \mathrm{C}$, silicon behaves as a/an
(A) conductor
(B) insulator
(C) semiconductor
(D) superconductor
48. Temperature stress is a function of of
(A) coefficient of linear
expansiori
(B) change in temperature
(C) modulus of elasticity

49. Who has served as the 11 th President of India?
(A) Shri Pranab Mukherjec
(B) Shri K. R. Narayanan
(C) Shri A. P. J. Abdul Kalam
(D) Smt. Pratibha Patil
50. NASA was established in the year
(A) 1915
(B) 1950
(C) 1958 .
(D) 1985

06/AE/CM/PT-2018/1-D

51. Turbulent boundary layer thickness is proportional to
(A) $1 / x$
(B) $x^{1 / 5}$
(C) $x^{2 / 5}$
(D) $x^{4 / 5}$
52. The value of fraction factor for smooth pipes for Reynolds' number equal to 106 is approximately
(A) 0.0001
(B) 0.001
(C) 0.01 ,
(D) 0.1
53. The time constant of an $R-C$ circuit is one second. Then in one second the capacitor is charged to
(A) about 66%
(B) about 98%

(C) 100%
(D) None of the above
54. A linear circuit must obey (A) superposition theorem
(B) superposition theorem and Thevenin's theorem
(C) superposition, Thevenin's theorem and Norton's theorem
(D) superposition and Norton's theorem
55. In a parallel $R-L-C$ circuit, the values of R, L and C are 40 ohms, 2 henries and $1 / 2$ farad
respectively. The quality factor ohms, 2 henries and $1 / 2$ farad
respectively. The quality factor Q of the circuit will be
(A) $1 / 20$
(B) 20
(C) 40
(D) 80

56. A negative resistance is an element
(A) that can act only as a $\left(1^{x} \frac{2}{x}\right.$ source of active power
(B) that can act as a source of both active as well as reactive power
(C) that can act only as a source of reactive power
(D) that will store energy
57. In the Laplace transform

$$
\begin{aligned}
& F(s)=(s+2) / s(2 s+1) \\
& \text { the function } f(t) \text { as } t \rightarrow \infty \text { and } \\
& t \rightarrow 0 \text { respectively are }
\end{aligned}
$$

(A) 2, 0
(B)-0, 0.5
(C) $2,0.5$
(D) $0.5,2$
(D)
(A) source of active power

$\frac{1}{x}$

40

[P.T.O.
58. Increasing the value of the coupling capacitor C_{c} in a common-emitter amplifier affects its
(A) mid-band voltage gain
(B) f_{L} (lower cut-off frequency)
(C) f_{H} (higher cut-off frequency)
(D) f_{L} and f_{H} both
59. The base width of a junction transistor is chosen by design to be small so that
(A) the electric field becomes large
(B) the concentration gradient of injected carriers is small
(e) the recombination of injected minority carriers is reduced
(D) the majority carriers easily reach the collector
60. To increase the switching speed of a $\overline{p^{+} n}$ diode
(A) the n region width should be made larger
(B) the n region width should be made smaller
(C) the p region's bulk resistance should be larger
(D) None of the above is true
63. Transformer core is made of lamination to reduce
(A) eddy-current loss only
(B) hysteresis loss only
(C) both hysteresis and eddycurrent loss
(D) None of the above
64. When a two-winding transformer is connected as an autotransformer, its efficiency (fullload)
(A) remains the same
(B) increases
(8) decreases
(D) rises to 100%
65. Which of the following motors runs at constant speed at all loads?
(A) Synchronous motor
(B) Induction motor
(C) DC shunt motor
(D) DC series motor
66. Four-point starter is used for
(A) synchronous motor
(B) induction motor of large capacity
(C) DC shunt motor with wide range of speed
(D) DC series motor with heavy load
67. The electromechanical energy conversion is a/an
(A) irreversible process e -
(B) reversible process
(C) isothermal process
(D) None of the above
68. The synchronous speed of a 3 -phase induction motor having 12 poles and running on(50 Hz) supply is
(A) 1200 r.p.m.
(B) 1000 r.p.m.
(C) 800 r.p.m.
(D) 500 r.p.m.
 The minimum work required to divide a spherical drop of this
liquid of radius t into 8 equalto divide a spherical drop of this
liquid of radius t into 8 equalsized spherical drops is
(A) $\pi t^{2} \sigma$
(B) $2 \pi t^{2} \sigma$
(C) $4 \pi t^{2} \sigma$
(D) $8 \pi t^{2} \sigma$
70. A metal block of heat capacity $1 \mathrm{~J} / \mathrm{K}$ is cooled from 600 K to 300 K by placing it in a large heat reservoir at 300 K . The entropy change of the universe in this process is
(A) $-0.693 \mathrm{~J} / \mathrm{K}$
(B) $1 \mathrm{~J} / \mathrm{K}$
69. A liquid has surface tension σ.

(C) $-1.693 \mathrm{~J} / \mathrm{K}$
(D) $0.307 \mathrm{~J} / \mathrm{K}$
71. A frictionless piston slowly compresses a gas in an adiabatic cylinder. The entropy change will be
(A) greater than zero
(B) less than zero
(B) equal to zero
(D) None of the above
72. A heat engine operates between 500 K and 300 K . The minimum heat absorption from the source for every kilojoule of work is
(A) 1.5 kJ
(B) 1.7 kJ
\# 2.5 kJ
(D) 3 kJ
73. A refrigerator maintains a temperature of 270 K in a room at 300 K . If heat is removed from the interior at a rate of $900 \mathrm{~J} \mathrm{sec}^{-1}$ and the refrigerator operates at 50% of its maximum thermal efficiency, the power requirement is
(A) 100 W
(B) 150 W

Her 200 W
(D) 250 W

74. Liquid water at 1 atmosphere and $0^{\circ} \mathrm{C}$, freezes to ice, transferring heat to the surroundings, also at $0^{\circ} \mathrm{C}$. In this process
(A) the entropy of the water decreases, but that of the universe increases
(B) the entropy of water decreases, but that of the universe remains constant
(C) the entropy of the water as well as that of the universe increase
(D) the entropy of the water increases, but that of the universe decreases
Q.e75. $q-w$ is a
(A) path function
(B) state function
(C) path as well as state function
(D) None of the above
(where q is specific heat transfer and w is specific work done)
76. Amorphous glass is expected to have zero value of entropy at 0 K The statement is
(A) true
(B) false
(C) true if it is in the powder form
(D) None of the above
77. The efficiency of a reversible engine is maximum and depends only on the temperature of the source and the sink. The statement is
(A) correct
(B) wrong
(C) uncertain
(D) correct if it is irreversible process
78. Heat and work are examples of
(A) thermodynamic properties
(B) states of thermodynamic systems
(C) mode of energy transfer
(D) None of the above
79. For an ideal gas, compressibility factor should be
(A) 0
(B) 1
(C) -1
(D) close to 10
80. The method which follows deterministic approach is
(4$)^{\circ} \mathrm{CPM}$
(B) PERT
(C) both PERT and CPM
(D) None of the above
81. Direct cost of an activity
(A) increases with increase in duration
(B) decreases with increase in duration
(C) remains same
(D) Nothing can be said
82. Mean, median and the mode for the set of values- $10,9,8,10$, $12,9,9,10,11,14$ and 8 are
(A) $10,8,14$
(B) $10,9,9$
(C) $9,10,8$
(D) $11,9,8$

83. In case of PERT, if most pessimistic, optimistic and likely time are 10,2 and 8 days respectively, then the expected duration and variance are
(A) 8 and $4 / 3 \quad t_{m}=10$,
(B) $20 / 3$ and $16 / 9$
(f) 7.33 and $16 / 9$
(D) 7.67 and $20 / 3$

84. In case of cash-flow monitoring, it is recommended to draw
(A) histogram

(B) cumulative diagram-
(C) bar chart
(D) homograph
85. The total cost of a building is $₹ 3,00,000$. The depreciated cost of the building after 30 years, if the life span is 90 years and scrap value is $₹ 30,000$, will be (by declining balance method)
(A) $₹ 2,10,000$ TA $=\sqrt{2 ? G C N}$
(B) ₹ $1,39,504$
(C) ₹ $1,75,254$
(D) $₹ 2,50,000$

86. An owner has installed an air conditioner at the cost of $₹ 18,000$. If the life of the conditioner is 18 years, the coefficient of sinking fund (rate of interest is 5%) is
(A) 0.055
(C) 640
(D) 1.20
87. The average life of Class I timber is
(A) 60 months
(B) 90 months
(C) 120 months
(D) 150 months
88. A good stone should have water absorption less than
(A) 0.4
(B) 0.6
(C) 0.8
(D) 0.9
89. The minimum crushing strength of brick should be
(A) $35 \mathrm{~kg} / \mathrm{cm}^{2}$
(B) $50 \mathrm{~kg} / \mathrm{cm}^{2}$
(C) $15 \mathrm{~kg} / \mathrm{cm}^{2}$.
(D) $20 \mathrm{~kg} / \mathrm{cm}^{2}$
90. The proportion of cement mortar used for 1 and 2 storeyed structure is
(A) $1: 2$
(B) $1: 3$
(C) $1: 6$
(D) $1: 1: 2$
91. The ingredient which imparts hardness and colour to cement is
(A) alkali
(B) alumina
(C) magnesia
(D) sulphur
92. The compressive strength of the brick should not be less than
(A) 3.5 MPa
(B) 5 MPa
(C) 15 MPa
(D) 20 MPa
93. Which one of the following is responsible for red colour of brick?
(A) Iron oxide
(B) Magnesia
(C) Silica
(D) Alumina
94. Enamel paint is prepared by adding
(A) white lead or zinc
(B) alumina and zinc
(C) magnesia and alumina
(D) white lead and alumina
95. Pigments are added to
(A) give colour to paint
(B) reduce the cost of the paint
(C) hold the ingredients of the paint
(D) make the paint thinner
96. The base material of distemper is
(A) iron oxide
(B) lithopone
(C) chalk
(D) lime
97. In industrial building, hard wearing surface can be achieved by
(A) terrazzo flooring
(B) granolithic flooring
(C) mosaic flooring
(D) tiled flooring
98. Which one of the following is not true with respect to ribbed tiled floors?
(A) Light in weight
(B) Better soundproofing qualities
(C) Poor fire resistance
(D) Better thermal insulation
99. Plywood is identified by
(A) thickness
(B) volume
(C) area
(D) weight
100. It is required to produce a smallscale map of an area in a magnetic zone by directly plotting and checking the work in the field itself. Which one of the following surveys will be most appropriate for this purpose? \qquad
(A) Chain
(B) Theodolite
(G) Plane table
(D) Compass
101. The technique of plotting all the accessible stations with a single setup of plane table is called

(A) radiation

(B) intersection
(C) resection

箕 traversing
102. A 30 m chain is found to be 0.1 m short throughout the measurement. If the distance measured is recorded as 300 m , . then the actual distance will be
(A) 300.1 m
(B) 301.0 m
(C) 299 m

保 $\frac{310.0 \mathrm{~m}}{}$

[P.T.O.
103. Offsets are
(A) lateral measurements made with respect to main survey lines
(B) perpendicular erected from chain lines
(C) taken to avoid unnecessary walking between stations
(D) measurements which are not made at right angles to the chain line
106. An angle measuring instrument reading up to one-sixth of a degree on the main scale is equipped with a vernier having 19 main scale divisions divided into 20 parts. The correct least count for the instrument is
(4) 60 seconds

(B) 30 seconds
(C) 20 seconds
(D) 10 seconds

107. For a simple circular curve, which one of the following gives the correct relation between the radius R and degree of curve D, for 20 m arc length?
(A) $R=5729 \cdot 6 / D$
(B) $R=1718.9 / D$
(C) $R=1145 \cdot 9 / D$
(D) $R=572.9 / D$

104. If fore-bearing of a line is $S 49^{\circ} 52^{\prime} \mathrm{E}$, then the back bearing will be

108. The radius of curvature of an ideal transition curve should be
(A) inversely proportional to its length
(B) directly proportional to its length
(C) proportional to speed of vehicle
(D) proportional to superelevation

$n-n=1$

109. If the difference of height between two points is 1 m and the slope distance between them is 100 m , then the accuracy of slope correction determination could be 1 in 100000 provided the heights are measured with | (A) $\pm 0.1 \mathrm{~cm}$ | | |
| :--- | :--- | :--- |
| (B) $\pm 0.5 \mathrm{~cm}$ | $(x+1)$ | 100 | (C) $\pm 1.0 \mathrm{~cm}$ (D) $\pm 5.0 \mathrm{~cm}$

$$
x-1+x
$$

110. A and B are two traverse stations free from local attraction errors. If the true bearing of a line $A B$ is 89° and the magnetic declination at point A is 1° west, then the magnetic bearing of line $B A$ would be
(A) 88°
(B) 90°
(D) 270°

111. Which one of the following gives the correct distance between the lighthouse and a ship, when the lighthouse whose height is 100 m is visible just above the horizon from the ship?
(特 30.68 km
(B) 36.50 km
(C) 38.54 km
(D) 40.54 km
112. To find the RL of a roof slab of a building, staff readings were taken from a particular setup of the levelling instrument. The readings were 1.050 m with staff on the benchmark and 2.300 m with staff below the roof slab and held inverted. Taking the RL of the BM as $135 \cdot 150 \mathrm{~m}$, the RL of the roof slab will be
(A) 129.800
(B) 131.900
(C) 134.400
(D) 138.500
113. For the scale of plotting 1 in 400, the permissible error in centring of plane table is about
(A) 0.5 m
(B) 0.3 m
(C) 0.1 m
(D) 0.01 m

$$
\begin{aligned}
\frac{1}{400} & =\frac{1}{400} \\
& =01 \\
& =25
\end{aligned}
$$

114. Ceylon Ghat Tracer is used to measure.
(A) slope
(B) reduced levels
(C) distances
(D) depth of sea
115. BOD test is standardized at
(A) $10^{\circ} \mathrm{C}$ and 10 days
(B) $20^{\circ} \mathrm{C}$ and 5 days
(C) $37^{\circ} \mathrm{C}$ and 3 days
(D) $50^{\circ} \mathrm{C}$ and 2 days
[P.T.O.
116. Absolutely soft waters are required for
(A) drinking
(B) boilers
(C) washing with synthetic detergent soap
(D) prevention of corrosion in
pipe
117. Permanent hardness of water is because of
(A) CaHCO_{3}
(B) NaHCO_{3}
(C) MgHCO_{3}
(D) CaSO_{4}
118. Zeolite process is used
(A) for disinfection of water
(B) for colour removal from water
(e) for water softening
for turbidity removal
119. Blue baby disease results with
(A) high fluoride content in water
(B) high nitrate content in
(C) high chloride content in water
(D) high iron content in water
120. The major constituent which causes alkalinity in water is
(A) dissolved O_{2}
(B) dissolved NH_{3}
(e) dissolved CO_{2}
(D) All of the above
121. Sedimentation process is based on which of the following physical laws?
(A) Newton's third law
(B) Conservation of mass
(C) Stokes' law
(D) Conservation of energy
122. Fine sand is used as media in case of
(A) slow sand filter
(B) rapid sand filter
(C) pressure filter
(D) All of the above
123. Sullage is
(A) waste water from baths
(B) drainage from road
(C) industrial liquid waste
(D) All of the above
124. The end product of decomposed organic matter is
(A) CO_{2}
(B) $\mathrm{H}_{2} \mathrm{~S}$
(C) NO_{3}
(D) NH_{3}
125. Grit is
(A) inert matter of specific
gravity >2.65
(B) organic matter of specific gravity 1
(C) organic and inert matter combined
(D) colloidal matter of heavy specific gravity
126. Activated sludge process is a biological process involving
(A) aerobic + anaerobic bacteria
(B) aerobic bacteria + protozoa + algae
(C) anaerobic bacteria + fungi
(D) facultative bacteria + algae
127. Sludge digestion is
(A) disposal of sludge
(B) dilution of sludge
(C) stabilization of sludge
(D) removal of sludge from waste
128. Anaerobic sludge digestion mainly yields
(A) methane
(B) ammonia
(C) Both (A) and (B)
(b) None of the above
129. Self-purification of water body is mainly due to
(A) dissolved O_{2}
(B) dissolved NO_{3}
(C) Both (A) and (B)
(D) None of the above
130. When bleaching powder is added to water, its pH value
(A) increases
(B) decreases
(C) remains unaffected
(D) depends on characteristics of water
131. If the total hardness of water is greater than its alkalinity, the carbonate hardness will be equal to
(A) total alkalinity
(B) total hardness
(C) total hardness - total alkalinity
(D) non-carbonate hardness
132. A cantilever beam of rectangular cross-section is subjected to a point load at its free end. If width and depth of the beam section are doubled, then the deflection at free end of the beam will be reduced to
(A) 6.25%
(B) 15%
(C) 25.5%
(D) 29%
133. The ratio of maximum shear stress to average shear stress in a beam of rectangular cross-section is
(A) 3.0
(B) 2.5

(C) 2.0
(D) 1.5
134. In a symmetrical I-section beam, the bending stress will be
 maximum at
(A) the neutral axis
(B) the top and bottom of the beam section
(C) $\frac{1}{4}$ th depth from top and bottom of section
(D) the junction of flange and web
135. A circular shaft is subjected to a twisting moment M_{t} and bending moment M. The ratio of maximum stress developed due to bending moment and that due to twisting moment is equal to

(D) $\frac{M}{2 M_{t}}$
136. If a simply-supported beam of span L carries a moment force at its mid-span, then the shear force diagram will be
(A) triangular
(B) rectangular
(C) parabolic
(D) cubic parabolic
137. According to maximum shear stress criterion, yielding in material occurs when
(A) maximum shear stress = 2 yield stress
(B) maximum shear stress $=$ 0.5 yield stress
(C) maximum shear stress $=$ $\sqrt{ } 2$ yield stress
(D) maximum shear stress $=$ $\sqrt{\frac{2}{3}}$ yield stress

(A) 1
(B) 3
(C) 4
(D) 6
138. A frictionless pin joint transmits a
(A) force which passes through the pin
(B) torque about the pin -
(C) moment about the pin

LD. All of the above
139. A bar held between two rigid supports will be subjected to tensile stress if it is
(A) heated
(B) cooled
(C) heated or cooled
(D) heated beyond the melting point
140. A linear helical spring with spring constant K is cut into two equal halves. The spring constants of the individual halves will be
(A) $K / 2$
(B) $K / \sqrt{2}$
(C) $\sqrt{2} K$
(D) $2 K$
141. In a body, loaded under plane stress conditions, the number of independent stress components in order to completely specify the state of stress at a point is p
145. When a liquid rotates at constant angular velocity about a vertical axis as a rigid body, the pressure intensity
(4) decreases as the square of radial distance
(B) increases linearly as radial distance
(C) varies inversely as the elevation along any vertical line
(D) varies as square of radial distance
146. A small plastic boat loaded with nuts and bolts is floating in a bathtub. If the cargo is dumped into water, allowing the boat to float empty, the water level in the tub will
(A) rise
(B) fall
(f) remain same
(D) None of the above
147. Nusselt number is the ratio of
(A) temperature gradient of wall to that across the entire pipe
(B) temperature difference to the temperature gradient at the wall
(C) heat flux at the wall to that across the entire pipe
(D) None of the above

148. The momentum correction factor for laminar flow through a circular pipe is
(A) 1.67
(B) 3.0
(C) 0.85
(D) 1.33

149. The velocity distribution for laminar flow between two parallel plates
(A) is constant over the whole cross-section
(B) is zero at the boundary and increases linearly towards the centre line
(C) varies linearly across the section with a maximum at the centre line varies parabolically across the section with a maximum at the centre line
150. The growth of boundary layer is supported when (p is the pressure and x is the distance from the leading edge)
(A) $\frac{\partial p}{\partial x}$ is positive
(B) $\frac{\partial p}{\partial x}$ is zero
(C) $\frac{\partial p}{\partial x}$ is negative
(D) None of the above

