Triangles Formulae Download PDF

Triangle

Triangle is a polygon, which has three sides, three angles and three vertices.

Basic properties of a triangle:

1. Sum of all three angles of any triangle equals 180°.
2. The sum of the length of any two sides of a triangle is always greater than the length of the third side.
3. The side opposite to the largest angle of a triangle is the largest side.
4. The angle opposite to the largest side of a triangle is the largest angle.
5. The side opposite to the smallest angle of a triangle is the smallest side.
6. The angle opposite to the smallest side of a triangle is the smallest angle.
7. Any exterior angle of the triangle is equal to the sum of its interior opposite angles.

Types of triangles:

I. Based on the angle measurement:

1. Acute angle triangle:

A triangle that has all three angles less than 90° is an acute angle triangle.

2. Right angle triangle:

A triangle that has one angle that measures exactly 90° is a rightangle triangle.

Note:

a. The other two angles of a right-angle triangle are acute angles.
b. The side opposite to the right angle is the largest side of the triangle and is called the hypotenuse.

Angles:

- $\angle A=40^{\circ}$
- $\angle B=50^{\circ}$
- $\angle C=90^{\circ}$

Hypotenuse $=A B$

c. Pythagoras theorem:

In a right-angled triangle, the sum of squares of the perpendicular sides is equal to the square of the hypotenuse.
For example: In above right-angled triangle ACB,
$(A C)^{2}+(C B)^{2}=(A B)^{2}$
Vice versa, we can say that if a triangle satisfies the Pythagoras condition, then it is a right-angled triangle.

3. Obtuse Angle Triangle:

A triangle that has one angle that measures more than 90° is an obtuse angle triangle.

Angles:

- $\angle A=40^{\circ}$
- $\angle B=40^{\circ}$
- $\angle C=100^{\circ}$

I. Based on the length of the sides:

1. Scalene triangle:

A triangle that has all three sides of different lengths is a scalene triangle.

Note: Since all the three sides are of different lengths, the three angles will also be different.

Sides:

- $A B=6$ units
- $B C=5$ units
- $C A=7$ units

Relations:

- $A B \neq B C \neq C A$
- $\angle A \neq \angle B \neq \angle C$

Note: Since all the three sides are of different lengths, the three angles will also be different.

2. Isosceles triangle:

A triangle that has two sides of the same length and the third side of a different length is an isosceles triangle.

Isosceles triangle

Sides:

- $A B=7$ units
- $B C=4$ units
- $C A=7$ units

Relations:

- $A B=C A \neq B C$
- $\angle A \neq \angle B=\angle C$

Note: The angles opposite the equal sides measure the same.

3. Equilateral triangle:

A triangle which has all the three sides of the same length is an equilateral triangle.

Sides:

- $A B=6$ units
- $B C=6$ units
- $C A=6$ units

Relations:

- $A B=C A=B C$
- $\angle A=\angle B=\angle C$

Note: Since all the three sides are of the same length, all the three angles will also be equal and each interior angle of an equilateral triangle $=60^{\circ}$

Important lines in a triangle:

1. Median: A line joining the mid-point of a side with the opposite vertex is called a median.
2. Altitude: A perpendicular drawn from a vertex to the opposite side is called the altitude.
3. Perpendicular bisector: A line that bisects and also makes right angle with the same side of the triangle is called perpendicular bisector.
4. Angle bisector: A line that divides the angle at one of the vertices into two parts is called angular bisector.

Note:

a. All points on an angular bisector are equidistant from both arms of the angle.
b. All points on a perpendicular bisector of a line are equidistant from both ends of the line.
c. In an equilateral triangle, the perpendicular bisector, median, angle bisector and altitude (drawn from a vertex to a side) coincide.

Geometric centres:

1. Orthocentre:

The point of intersection of the three altitudes is the Orthocentre.

2. Centroid:

The point of intersection of the three medians is the centroid.

3. Circumcentre:

The three perpendicular bisectors of a triangle meet at a point called the Circumcentre. A circle drawn from this point with the circumradius would pass through all the vertices of the triangle.

4. Incentre:

The three angle bisectors of a triangle meet at a point called the incentre of a triangle. The incentre is equidistant from the three sides and a circle drawn from this point with the inradius would touch all the sides of the triangle.

Other properties of a triangle:

1. Apollonius theorem:

In a triangle $A B C$, if $A D$ is the median to side $B C$ then by Apollonius theorem,
$2 \times\left(A D^{2}+B D^{2}\right)=A C^{2}+A B^{2}$

2. Mid-Point Theorem:

The line joining the midpoint of any two sides in a triangle is parallel to the third side and is half the length of the third side. If X is the midpoint of CA and Y is the midpoint of $C B$ Then $X Y$ will be parallel to $A B$ and $X Y=1 / 2 \times A B$

3. Basic proportionality theorem:

If a line is drawn parallel to one side of a triangle which intersects the other two sides at two distinct points, then the line divides the two sides in the same ratio.

For example: In a triangle $A B C, D$ and E are the points lying on $A B$ and $B C$ respectively and $D E$ is parallel to $A C$ then
$\frac{A D}{D B}=\frac{C E}{B E}$

4. Interior Angular Bisector theorem:

In a triangle the angular bisector of an angle divides the side opposite to the angle, in the ratio of the remaining two sides.

For example: In a triangle $A B C$, if $A D$ is the angle bisector of angle A, then $A D$ divides the side $B C$ in the same ratio as the other two sides of the triangle. i.e.
$\frac{B D}{C D}=\frac{A B}{A C}$

5. Exterior Angular Bisector theorem:

The angular bisector of exterior angle of a triangle divides the opposite side externally in the ratio of the sides containing the angle.

For example: In a triangle $A B C$, if $A D$ is the angle bisector of exterior angle $C A B$ of a triangle i.e.
$\frac{B D}{C D}=\frac{A B}{A C}$

6. Equilateral triangle:

If P is the side of an equilateral triangle, then
a. Altitude $(h)=\frac{\sqrt{3}}{2} P$
b. Area $=\frac{\sqrt{3}}{2} \mathrm{P}^{2}$
c. Inradius $=\frac{h}{3}=\frac{1}{3} \times \frac{\sqrt{3}}{2} P=\frac{P}{2 \sqrt{3}}$
d. Circumradius $=\frac{2 h}{3}=\frac{2}{3} \times \frac{\sqrt{3}}{2} P=\frac{P}{\sqrt{3}}$
7. Area of an isosceles triangle $=\frac{a}{4} \sqrt{4 c-a^{2}}$
(where a, b and c are the length of the sides of $B C, A C$ and $A B$ respectively and $b=c$)

8. Similar triangles:

If two triangles are similar then their corresponding angles are equal and the corresponding sides will be in proportion.
For any two similar triangles:
a. Ratio of sides $=$ Ratio of medians $=$ Ratio of heights $=$ Ratio of circumradii $=$ Ratio of Angular bisectors
b. Ratio of areas $=$ Ratio of the square of the sides.
c. Tests of similarity: (AA / SSS / SAS)

9. Congruent triangles:

If two triangles are congruent then their corresponding angles and their corresponding sides are equal.

Tests of congruence: (SSS / SAS / AAS / ASA)

Area of a triangle:

a. Area $=1 / 2 \times$ base \times height
b. $A=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=(a+b+c) / 2$
c. $A=1 / 2 \times a b \times \operatorname{Sin} C$, where C is the angle formed between sides a and b
d. $A=\frac{a b c}{4 R}$, where $R=$ circumradius
e. $A=r \times s$, where $r=$ in-radius and $s=\frac{a+b+c}{2}$, where a, b and c are the lengths of the sides $B C, A C$ and $A B$.

gradeup

Gradeup Achievers' Corner

