CHEMICAL THERMODYNAMICS
Formula Sheet
MAXWELL RELATIONS

\[dU = Tds - Pdv \rightarrow \left(\frac{\partial T}{\partial V} \right)_s = -\left(\frac{\partial P}{\partial S} \right)_V \]

\[dA = -SdT - Pdv \rightarrow \left(\frac{\partial S}{\partial V} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V \]

\[dH = TdS + VdP \rightarrow \left(\frac{\partial T}{\partial P} \right)_s = \left(\frac{\partial V}{\partial S} \right)_P \]

\[dG = -SdT + VdP \rightarrow -\left(\frac{\partial S}{\partial P} \right)_T = \left(\frac{\partial V}{\partial T} \right)_P \]
THERMODYNAMIC VARIABLES

\[S = -\left(\frac{dA}{dT}\right)_V = -\left(\frac{dG}{dT}\right)_P \]

\[P = -\left(\frac{dU}{dV}\right)_S = -\left(\frac{dA}{dV}\right)_T \]

\[V = \left(\frac{dH}{dP}\right)_S = \left(\frac{dG}{dP}\right)_T \]

\[T = \left(\frac{dU}{dS}\right)_V = \left(\frac{dH}{dS}\right)_P \]

CRITERION OF SPONTANEITY

\[(dG)_{P,T} \leq 0\]
\[(dH)_{P,S} \leq 0 \text{ (not always)}\]
\[(dU)_{S,V} \leq 0\]
\[(dA)_{V,T} \leq 0\]

\[\Delta S \geq 0\]
\[\Delta S_{H,P} \geq 0\]
\[\Delta S_{U,V} \geq 0\]
FIRST LAW OF THERMODYNAMICS

Work of Compression/Expansion: \(W = -P \Delta V \)
Work done by the system= negative
Work done on the system= positive

\[\Delta U = Q + W \]

Heat capacity, \(c = \frac{\Delta q}{\Delta T} \)

\[\Delta U = nC_v\Delta T \]
\[\Delta H = nC_P\Delta T \]
\[\Delta H_2 - \Delta H_1 = nC_P(T_2 - T_1) \]

THERMODYNAMIC EQUATION OF STATE

1. \(\left(\frac{dU}{dV} \right)_T = T \left(\frac{dP}{dT} \right)_V - P \)
 First T. Equation of state
 - For ideal gas, \(\left(\frac{dU}{dV} \right)_T = 0 \)
 - For real gas, \(\left(\frac{dU}{dV} \right)_T = \frac{a}{V^2} \)

2. \(\left(\frac{dH}{dP} \right)_T = -T \left(\frac{dV}{dT} \right)_P + V \)
 Second T. Equation of state
 - For ideal gas, \(\left(\frac{dH}{dP} \right)_T = 0 \)
 - For real gas, \(\left(\frac{dH}{dP} \right)_T = \left(b - \frac{2a}{RT} \right) \)
RELATION BETWEEN C_P and C_V

$$C_P - C_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$$

For van der Waals gas: $C_P - C_V = R \left(1 + \frac{2a}{RTV} \right)$

TDS EQUATION

$$TdS = C_V dT + T \left(\frac{dP}{dT} \right)_V dV$$

So, $\Delta S = C_V \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1}$

$$TdS = C_p dT - T \left(\frac{dV}{dT} \right)_P dP$$

So, $\Delta S = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$
THERMODYNAMIC COEFFICIENTS

1. \(\alpha = \left(\frac{dV}{V} \right)_T \), so, \(\alpha = \frac{1}{T} \)

2. \(\beta = \left(\frac{-dV}{V} \right)_P \), so, \(\beta = \frac{1}{P} \)

3. \(\gamma = \left(\frac{dP}{P} \right)_T \), so, \(\gamma = \frac{1}{T} \)

REVERSIBLE ISOTHERMAL PROCESS OF IDEAL GAS

\[W = -2.303 \, nRT \log \frac{V_2}{V_1} \quad \text{or,} \quad W = -2.303 \, nRT \log \frac{P_1}{P_2} \]

IRREVERSIBLE ISOTHERMAL PROCESS OF IDEAL GAS

\[W = -nRT \left(1 - \frac{V_1}{V_2} \right) \]

- for isothermal process - \(W_{rev} > W_{irr} \)
REVERSIBLE ADIABATIC TRANSFORMATION OF IDEAL GAS

\[W = \frac{nR}{\gamma - 1} (T_2 - T_1) \]

\[W = \frac{1}{\gamma - 1} (P_2 V_2 - P_1 V_1) \]

And

\[P_1 V_1^{\gamma} = P_2 V_2^{\gamma} \]

\[T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1} \]

for monoatomic gas - \(\gamma = 1.66 \)

for diatomic gas - \(\gamma = 1.4 \)

for triatomic/polyatomic gas - \(\gamma = 1.33 \)

IRREVERSIBLE ADIABATIC TRANSFORMATION OF IDEAL GAS

\[nC_v(T_2 - T_1) = -nRT_2 \left(1 - \frac{V_1}{V_2} \right) \]
(−W) isochoric > (−W) isothermal > (−W) adiabatic > (−W) isochoric

\[
\left(\frac{dP}{dV}\right)_{\text{adiabatic}} = \gamma \left(\frac{dP}{dV}\right)_{\text{isothermal}} \quad \text{where} \quad \gamma = \frac{C_p}{C_v}
\]

enthalpy

\[\Delta H = U + PV \quad \text{and} \quad \Delta H = Q_p\]

for isobaric process \(\rightarrow \Delta U = Q + W\)

So, \(\Delta (U + PV) = Q_p\)

joule thomson effect

\[-\frac{1}{C_p} \left(\frac{\partial H}{\partial P}\right)_T = \left(\frac{dT}{dP}\right)_H\]

\[\text{So,} \quad \phi_{JT} = \left(\frac{\partial H}{\partial P}\right)_T \quad \text{and} \quad \mu_{JT} = \left(\frac{dT}{dP}\right)_H\]

inversion temperature

\[T_i = \frac{2a}{R_b} \quad \text{and} \quad T_i < T\]

carnot engine

\[W = -RT_h \ln \frac{V_2}{V_1} - RT_c \ln \frac{V_4}{V_3}\]

efficiency \(\eta = \frac{-W}{Q_h} = \frac{T_h - T_c}{T_h}\)

\[\eta_{\text{refrigerator}} = \frac{T_h}{T_h - T_c}\]
ENTROPY

\[\Delta S = \frac{\Delta Q}{T} \quad \text{J/K} \]

\[S = k \ln W \]

\[S = k \ln [W(\mathcal{U}) \Delta E] \]

NERNST HEAT THEOREM (III law of Thermodynamics)

\[\Delta S = 0 \]

\[\lim_{T \to 0} \]

Change in ENTROPY for REVERSIBLE PHASE TRANSFORMATION

\[\Delta S = \frac{\Delta Q}{T} = \frac{\Delta H_{\text{melting}}}{T} \]

\[\Delta S = \frac{\Delta H_{\text{vaporisation}}}{T} \]

\[\Delta S = \frac{\Delta H_{\text{sublimation}}}{T} \]
ENTROPY OF MIXING

\[T_f = \frac{n_1 C_{p1} T_1 + n_2 C_{p2} T_2}{n_1 C_{p1} + n_2 C_{p2}} \]

\[\Delta S_{\text{mix}} = -2.303 R \sum n_i \log x_i \]

GIBBS PARADOX

\[\Delta S_{\text{mix}} = 0 \quad \text{and} \quad \Delta H_{\text{mix}} = 0 \]

RESIDUAL ENTROPY

\[\Delta S = 0 \]

\[\ln T \to 0 \]

\[S = k \ln W \]
CLASSIUS CLAYPERON EQUATION

\[\Delta S = \frac{\Delta H}{T} = \left(\frac{dP}{dT} \right) = \frac{\Delta H}{T \Delta V} \]

\[\ln \frac{P_2}{P_1} = \frac{\Delta H}{nR} \left[\frac{1}{T_2} - \frac{1}{T_1} \right] \]

Dependence of G on P

\[\Delta G_2 - \Delta G_1 = \Delta V (P_2 - P_1) \]

\[\Delta G = nRT \ln \frac{P_2}{P_1} \]

For IDEAL GAS in ISOTHERMAL GAS

\[\Delta G = nRT \ln \frac{V_1}{V_2} \]
Gradeup CSIR-NET Super Subscription

Features:
1. Memory Based Test Series of the actual exam paper.
2. All the CSIR NET Test Series based on the latest pattern and the trend that is followed.
3. Detailed performance analysis based on All India Rank after the completion of the test.
4. Mock Test are available in Hindi & English
5. Available on Mobile and Desktop

Gradeup Super Subscription, Enroll Now