A.E. N. Ex. 2018

921811 Paris-18-12-18

पुस्तिका में पृष्ठों की संख्या—16 No. of pages in Booklet -16 पुस्तिका में प्रश्नों की संख्या—100 No. of Questions in Booklet -100 Subject Code — 05

विषय / SUBJECT : Agricultural

Engineering

समय: 2.00 घण्टे Time: 2.00 Hours NEAP-81

PAPER-II

Question Paper Booklet No. प्रश्न-पत्र पुरितका संख्या 5000553

अधिकतम अंक : 200 Maximum Marks: 200

प्रश्न-पत्र पुरितका एवं उत्तर पत्रक के पेपर सील / पॉलिथीन वैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर ले कि उसके प्रश्न-पत्र पुरितका पर वहीं प्रश्न-पत्र पुरितका संख्या अंकित है जो उत्तर पत्रक पर अंकित है। इसमें कोई मिन्नता हो तो वीक्षक से दूसरा प्रश्न-पत्र प्राप्त कर ले। ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal/ polythene bag. In case they are different, a candidate must obtain another Question Paper from the Invigilator. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- 1. सभी प्रश्नों के उत्तर दीजिए।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए।
- एक से अधिक उत्तर, देनें की दशा में प्रश्न के उत्तर को गलत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमशः 1, 2, 3, 4 अंकित किया गया है। अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वॉइंट पेन से गहरा करना है।
- 6. OMR उत्तर पत्रक इस परीक्षा पुस्तिका के साथ रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्रक निकाल कर ध्यान से केवल नीले बॉल प्वॉइंट पेन से विवरण भरें। OMR उत्तर पत्रक पर प्रश्न-पत्र पुस्तिका संख्या ध्यानपूर्वक भरें।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा। (गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से है। किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा।)
- 8. मोबाइल फोन अथवा इलेक्ट्रॉनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है। यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है, तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेजी रूपान्तरों में से अंग्रेजी रूपान्तर मान्य होगा।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, उस अभ्यर्थी के विरुद्ध पुलिस में प्राथमिकी दर्ज कराते हुए विविध नियमों—प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्जित कर सकता है।

INSTRUCTIONS FOR CANDIDATES

- Answer all questions.
- All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- If more than one answers are marked, it would be treated as wrong answer.
- Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is kept with this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only. Please fill the Question Paper Booklet no. on the OMR Answer Sheet carefully.
- 7. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable materials with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए। Do not open this Test Booklet until you are asked to do so.

AGRICULTURAL ENGINEERING

1.	Levels and theodolites are usually equipped with two horizontal cross hairs which are called -
	(1) Horizontal cross hairs (2) Vertical cross hairs
	(3) Stadia hairs (4) Principal cross hairs
2.	The volume of earthwork in land levelling can be computed by -
	(1) Volumetric method (2) Prismoidal method
	(3) End-area method (4) Arithmetic mean method
3.	The ratio of the map distance to the corresponding distance of the ground is called as -
	(1) Scale (2) Unit fraction
1	(3) Plan factor (4) Representative factor
4.	Which method of survey is the most accurate?
**	(1) Plane table method (2) Grid method
	(3) Transit method (4) Chain survey method
5.	The accuracy of measurement in chain surveying does not depend upon -
	(1) Length of the offset (2) Scale of the plotting
	(3) Importance of the features (4) General layout of the chain lines
6.	An ideal vertical curve to join two gradients is -
	(1) Circular (2) Parabolic
	(3) Elliptical (4) Hyperbolic
7	. If a 30m chain diverges by a perpendicular distance 'd' from its correct alignment, the error in
	measured length is -
	(1) $d \times d/60 \text{ m}$ (2) $d \times d/30 \text{ m}$
	(3) $d \times d/40 \text{ m}$ (4) $d/30 \text{ m}$

0.	The	current sequence of water erosion is -		
	(1)	Splash, Sheet, Rill, Gully	(2)	Sheet, Gully, Rill, Splash
	(3)	Rill, Splash, Sheet, Gully	(4)	Gully, Splash, Sheet, Rill
9.	The t	hermal efficiency of diesel engine varies as	S -	
	(1)	28-32%	(2)	32-38%
	(3)	38-42%	(4)	42-52%
10.	The 1	ine which separates the catchment basin fro	m the	rest of the area is -
	(1)	Ridge line	(2)	Dam line
	(3)	Catchment line	(4)	Watershed line
11.	A co	mbination of contouring and crop rotation	on, in	which alternate rows are constructed
	perpe	ndicular to the direction of wind and water	flow,	to prevent soil erosion, is called -
	(1)	Strip cropping	(2)	Mulching
	(3)	Vegetated waterways	(4)	Terracing
12.	Water	gas is a mixture of -		
	(1)	CO ₂ and O ₂	(2)	O ₂ and H ₂
	(3)	H ₂ , N ₂ and O ₂	(4)	CO, N ₂ and H ₂
13.	What	will be the height of an overflow spillway	y secti	ion for a design discharge of 1500m ³ /s,
	given	that the upstream water surface level is at	eleva	tion of 240 m and the upstream channel
	floor i	is at 200 m; the spillway, having a vertical	face, i	s 50 m long.
	(1)	3.45 m	(2)	4.55 m
1	(3)	5.00 m	(4)	5.76 m
14.	Which	n of the following does not constitute 90% of	of dry	weight of any food?
	(1)	Carbohydrates	(2)	Fibres
	(3)	Proteins	(4)	Fats

15.	Heatin	g value of coal is approximately-		
	(1)	1000-2000 kcal/kg	(2)	2000-4000 kcal/kg
	(3)	5000-6500 kcal/kg	(4)	9000-10,500 kcal/kg
16.	In whi	ich decade wind-generated electricity wa	s first sol	d to the public?
	(1)	1940s	(2)	1960s
	(3)	1980s	(4)	2000s
17.	A met	ter suitable for total flow measurement is	_	
	(1)	Turbine flow meter	(2)	Venturimeter
	(3)	Rotameter	(4)	Orifice meter
18.	The V	Water Horse Power (WHP) for centrifuga	al water p	oump for given flow rate of 4500 liter/h
	and 1	0 m head added to the flow is -		
	(1)	14.26	(2)	16.26
	(3)	18.26	(4)	12.26
19.	Calcı	alate the discharge of reciprocating pum	p (single	cutting) if area of cylinder is 0.25 m ² ,
	lengt	h of stroke is 0.15m, number of cylinder	= 1 and s	speed of pump is 50 rpm.
	(1)	0.01125 m ³ /s	(2)	0.02125 m ³ /s
	(3)	$0.03125 \text{ m}^3/\text{s}$	(4)	0.04125 m ³ /s
20.	Pulve	erized coal is -		general Landita
	(1)	Coal free from ash	(2)	Non-smoking coal
	(3)	Coal which burns for long time	(4)	Coal broken into fine particles
21.	Most	t of the solar radiation received on earth's		
	(1)	0.2 to 0.4 microns	(2)	0.38 to 0.78 microns
	(3)	0 to 0.38 microns	(4)	0.5 to 0.8 microns
			8	(3) -

22.	A spillway has been designed for a head of 2.80 m with a length 200 m. The discharge			
	coeffi	cient is C = 049. The discharge for this hear	d will	be -
	(1)	2034 m ³ /s	(2)	2234 m ³ /s
	(3)	2434 m ³ /s	(4)	2634 m ³ /s
23.	In wh	ich collector air flows without any obstructi	ion -	The state of the s
	(1)	Porous absorber plate	(2)	Non-porous absorber plate
	(3)	Over-lapped glass absorber	(4)	Finned absorber
24.	Which	n types of biogas plant are fed and emptied	regula	urly?
	(1)	Batch type	(2)	Continuous type
,	(3)	Dome type	(4)	Drum type
25.	Reflec	cting mirrors used for harnessing solar energ	gy are	called -
	(1)	Mantle	(2)	Ponds
	(3)	Diffusers	(4)	Heliostats
26.	The M	fould Board Plough absorbs side forces mai	inly th	nrough the -
	(1)	Share	(2)	Mould board
	(3)			Frog
27.	The e	nergy sources which produce no net energy		
	(1)	Secondary energy sources	(2)	Primary energy sources
	(3)	Commercial energy sources	(4)	Non-commercial energy sources
28.	Heavy	smoking in an engine during operation ma		an again sana finn - 8%.
-0.		Man - John Cold Cold	1	Bracks Alexan Latin
	(1)	Rich mixture	(2)	Overloading
	(3)	Late injection	(4)	All of the above
29.	The v	oltage generated in spark plug at the time of	f sparl	cis-
	(1)	300-400 V	(2)	100-200 V
	(3)	1000-5000 V	(4)	20,000 V

30.	Disc a	ngle of standard disc plough varies between	1-	
	(1)	15-25°	(2)	25-35°
	(3)	35-42°	(4)	42-45°
31.	When	an incandescent light bulb is turned on, wh	nat pe	rcent of the electricity is converted into
	light e	energy?		
	(1)	10%	(2)	30%
	(3)	50%	(4)	70%
32.	What	percent of the average home's electric bill i	s for	lighting?
	(1)	About 10%	(2)	About 20%
	(3)	About 30%	(4)	About 40%
33.	Whic	h one of the following pair is not correctly r	natch	ed?
	(1)	Solidity - Wind Machine	(2)	Anaerobic digestion of Organic
				matter - Bio gas generation
	(3)	Destructive distillation - Charcoal	(4)	Complete Combustion - Producer
		Production		gas
34.	Whic	h one of the following statement is correct?		· · · · · · · · · · · · · · · · · · ·
	(1)	Surge irrigation is used along with center		The lateral carries water from pump
		pivot swing arm to provide more uniform		to mainline.
		irrigation.		246 6 V
	(3)	Organic matter percentage and soil	(4)	If water is applied to soil in excess of
		texture affect infiltration rate of water.		infiltration rate even runoff will not
				occur.
35.	From	the hydraulic efficiency point of view, the	most	efficient cross-section of an open channel
	is -			di .
	(1)	Parabolic	(2)	Trapezoidal
	(3)	Semi-circular	(4)	Rectangular

36.	wate	rshed is a -		
	(1)	Hydrological entity contributing runoff	(2)	Hydrological entity receiving runoff
		to a common point.		to a single point.
	(3)	Hydrological entity receiving runoff	(4)	Hydrological entity distributing
		from multi-inlet.		runoff from common inlet.
37.	The d	lepth of flow over a sharp crested rectangula	r wei	r should not be more than about -
	(1)	half the crest width	(2)	two-third of the crest width
	(3)	three-fourth of the crest width	(4)	the width of the weir
38.	The to	erm Tons of refrigeration is used in cold stor	rage u	unit to measure -
	(1)	mass of fruits held	(2)	mass of refrigerant
	(3)	mass of compressor	(4)	capacity of compressor
39.	Whic	h of the following instrument is used for me	asure	ment of specific heat?
	(1)	Micrometer	(2)	Calorimeter
	(3)	Thermometer	(4)	Current meter
40.	The ra	atio of force of inertia and friction force in a	flow	may be characterized by -
	(1)	Nusselt number	(2)	Reynolds number
	(3)	Rayleigh number	(4)	Peclet number
41.	The n	nass of water vapour per unit mass of dry air	is -	
	(1)	Specific humidity	(2)	Percentage humidity
	(3)	Relative humidity	(4)	Equilibrium relative humidity
42.	If the	number of microbes in a process has to be	reduc	eed from an initial load of 10 ⁶ to a final
	10^4 , the	he required thermal death time (D Value) wi	ll be	
	(1)	10D	(2)	4D
	(3)	5D	(4)	20D

43.	Water	horse power of centrifugal pump of 15 l	iters/se	ec capacity and 30m total head will be
	equal	to -		
	(1)	3.0	(2)	4.0
12	(3)	5.0	(4)	6.0
44.	Interce	eptor drain helps to control water logging b	оу -	
	(1)	Lowering the water table	(2)	Preventing subsoil water from reaching the area
	(3)	Allowing vertical drainage	(4)	Draining out excess water to the
45.	The a	ctual area irrigated in a year from an outlet	is -	natural drain
	(1)	Irrigation period	(2)	Intensity of irrigation
	10 18 50	Irrigation frequency	(4)	Irrigation efficiency
	(3)			
46.	The n	ninimum side slope of an earth channel for	polyet	thylene lining is -
	(1)	1.5:1	(2)	2:1
	(3)	2.5:1	(4)	3:1
47.	Whic	h type of cultivating tool is extensively use	ed for v	weed control?
	(1)	Furrower type	(2)	Sweep type
82	(3)	Slip nose type	(4)	Double point shovel type
48.	A wh	neel of an implement to maintain a uniform	depth	of working in soil is known as -
	(1)	Rear furrow wheel	(2)	
	(3)	Front furrow wheel	(4)	Gauge wheel
49.	For t	he farm area of 40 ha followed under single	e cropp	oing pattern, the suitable size of tractor is-
	(1)	10 to 20 HP	(2)	50 HP
	(3)	20 to 25 HP	(4)	35 HP
				THE PART OF THE PA

(Q)

50.	The ratio of total force output of the traction device in the direction of travel to the dynamic				
	weigh	nt on the traction device is called-			
	(1)	Rolling resistance	(2)	Coefficient of traction	
	(3)	Tractive efficiency	(4)	Coefficient of friction	
51.	When	the speed of a centrifugal pump is changed	l the h	nead varies as -	
	(1)	The speed	(2)	Square of the speed	
	(3)	Square root of the speed	(4)	Cube of the speed	,
52.	The C	Cetane rating of commercial diesel fuel is be	tweer	1-	
	(1)	1 to 30	(2)	60 to 90	
	(3)	30 to 60	(4)	90 to 120	
53.	Ditch	conduit formula is used for -			
	(1)	Sand bearing test	(2)	Size of tile drain	
	(3)	Grade of tile drain	(4)	Loads on drain pipes	
54.	Cavit	ation is formation of cavity in flow due to -			
	(1)	Negative pressure as a result of high	(2)	Positive pressure as a result of high	
		velocity		velocity	. 7
	(3)	Reduction in pressure as a result of high	(4)	None of the above	
		velocity of water			
55.	What	is the side draft of a tillage implement?			
	(1)	Horizontal component of pull, parallel to	(2)	Vertical component of pull	
		the line of motion			
	(3)	Horizontal component of pull,	(4)	Pull divided by the furrow cross	
		perpendicular to the line of motion		section area	
56.	An aq	uifer which is bounded by an impermeable	layer	at the bottom and semi-pervious layer at	* £
	the to	p is known as-			
	(1)	Artesian aquifer	(2)	Confined aquifer	
	(3)	Semi-confined aquifer	(4)	Unconfined aquifer	

57.	Cutter	bar is a component of -			
	(1)	Seed drill	(2)	Flail mower	
7	(3)	Vertical conveyor reaper	(4)	Hand hoe	
58.	A furr	ow cross-section in a country plough is	commonl	y -	
	(1)	Circular	(2)	Parabolic	
	(3)	Rectangular	(4)	Trapezoidal	
59.	Spike	d tooth type threshing cylinder are gene	erally used	l in -	
	(1)	Rice threshers	(2)	Wheat threshers	
	(3)	Maize threshers	(4)	Mustard threshers	
60.	The c	rank shaft and rear axle of tractor are at	tached at	an angle of -	
	(1)	30°	(2)	60°	
	(3)	90°	(4)	120°	
61.		Irainage density is -			
0.1	(1)	Length of streams per drainage	area (2)	Stream discharge per unit of	drainage
		within basin		area	
	(3)	Drainage area per unit stream length	(4)	Number of streams per unit	drainage
				area	
62.	Valu	e of Drainage coefficient for small drai	nage proje	ects is taken as -	
	(1)	10 to 15 mm/day	(2)	MODEL PROTECT PROTECTS	
	(3)	6 to 25 mm/day	(4)		V
63.	The	ratio of the partial pressure of moisture	e of the fo	ood to vapour pressure of the w	ater at the
		e temperature is called-			
	(1)	Moisture content	(2)	Water activity	
	(3)		(4)		
64.	Met	hane (CH ₄) content in producer gas obt	ained from	m biomass gasification is -	
	(1)		(2)		51
	(3)		(4)) 11-20%	in N
65.	3.3,	h solidity wind rotor works on -		A STATE OF THE STA	
	(1)	The Salar ways	(2) Lift force	(5)
	(3)	Both Lift and Drag force	(4) Gravity force	
				20 00	

66.	Calor	rific value of biogas (60% CH ₄) is -		
	(1)	5713 kcal/kg	(2)	4713 kcal/m ³
	(3)	4200 kcal/m ³	(4)	3713 kcal/m ³
67.	Whic	h one among these will be the most suitable	e dryei	for drying liquid foods?
	(1)	Dielectic dryer	(2)	Spin flash dryer
	(3)	Tunnel dryer	(4)	Trough dryer
68.	The c	rawler tractor havetype of bra	ıke.	
	(1)	Hydraulic	(2)	Internal expanding shoe
	(3)	Disc	(4)	External contracting shoe
69.	The p	roblem of "back logging" occurs in -		
	(1)	Belt conveyor	(2)	Screw conveyor
	(3)	Bucket elevator	(4)	Pneumatic conveyor
70.	The te	erm "mesh" refers to the number of opening	gs per	linear -
	(1)	Decimeter	(2)	Millimeter
	(3)	Centimeter	(4)	Inch
71.	The ty	ype of the induction motors having variable	speed	characteristics is -
	(1)	Split phase	(2)	Capacitor
•	(3)	Universal	(4)	Three phase
72.	Water	mist polishing machine is used for the mill	ling of	
	(1)	Wheat	(2)	Maize
. ,	(3)	Rice	(4)	Barley

73.	The s	pecifications of the wire for transmission	of ele	ctrical energy should be selected such
	that -			
	(1)	Low current flow and the resistance of	(2)	Low current flow and the resistance
		the cable is small		of the cable is high
	(3)	High current flow and the resistance of	(4)	High current flow and the resistance
		the cable is small		of the cable is high
74.	Which	h one is the most suitable method of drying	for fr	uit juice?
	(1)	Solar drying	(2)	Fluidized bed drying
	(3)	Tray drying	(4)	Spray drying
75.	Table	separators work on the basis of -		
	(1)	Size	(2)	Shape
	(3)	Specific gravity	(4)	Terminal velocity
76.	Whic	h of the erosion is extremely harmful for the	e land	?
	(1)	Raindrop erosion	(2)	Sheet erosion
	(3)	Rill erosion	(4)	Gully erosion
77.	The g	glazing which limits the radiation and conve	ection	heat losses is -
	(1)	Absorber plate	(2)	Selective surface
	(3)	Insulation	(4)	Transparent cover
78.	In a l	nydro-electric plant, spillways are used -		
	(1)	To discharge all surplus water .	(2)	To discharge surplus water on the
	-			downstream side of dam
	(3)	When water is not available in sufficient	(4)	None of the above
		quantity		(3)
				= 2

Œ

79.	Whic	ch one of the following pairs is not correctly	mate	hed?
	(1)	Well log – The practice of making a detailed record of the geologic formations penetrated by a borehole.	(2)	Propeller – A type of fan that transmits power by converting rotational motion into thrust.
	(3)	Turbine pump – Pump used for electricity generation	(4)	Sprinkler irrigation – Modern irrigation technique
80.	The c	commonly used square sizes for contouring is	S -	
	(1)	$10m \times 10m$ to $5m \times 5m$	(2)	$10m \times 10m$ to $15m \times 15m$
	(3)	$5m \times 5m$ to $20m \times 20m$	(4)	$5m \times 5m$ to $10m \times 15m$
81.	The le	ength of a line measured with 20m chain was	foun	d to be 500m. It was subsequently found
	that tl	ne chain was longer by 0.04m. What is the co	orrect	length of line?
	(1)	500 m	(2)	501 m
	(3)	502 m	(4)	503 m
82.	The e	quation for curve number is given as -		
	(1)	$CN = \frac{2540}{25.4 + S}$	(2)	$CN = \frac{25.4 + S}{2540}$
	(3)	$CN = \frac{2500}{25.0 + S}$	(4)	$CN = \frac{2540 + S}{25.4}$
83.	The m	nain function of crank shaft in an engine is -		
	(1)	To convert reciprocating motion into	(2)	To operate engine valves
		rotary motion		
	(3)	To operate fuel injection pump	(4)	To increase engine efficiency
84.	Value	of Betz's coefficient is -		
1.0	(1)	0.562	(2)	0.593
	(3)	0.621	(4)	0.657
05 1 9	(I)			

85.	The time of retardation in case of creep test is -					
	(1)	36.7% of the time for total strain	(2)	63.2% of the time for total strain		
	(3)	76.3% of the time for total strain	(4)	83.2% of the time for total strain		
86.	Therm	nostat valve is a component of -				
	(1)	Engine fuel system	(2)	Exhaust system		
	(3)	Cooling system	(4)	Hydraulic system		
87.	The ratio between the molecular diffusivity of momentum to the molecular diffusivity of heat					
	is -					
	(1)	Nusselt number	(2)	Prandtl number		
	(3)	Rayleigh number	(4)	Peclet number		
88.	The time of concentration of a watershed is proportional to -					
	(1)	L ^{1.77}	(2)	S-0.385		
. •	(3)	$L^{1.77} S^{0.385}$	(4)	S ^{1.77}		
89.	Hydrographic Survey deals with the mapping of -					
	(1)	Large water bodies	(2)	Watershed		
	(3)	Canal system	(4)	Movements of clouds		
90.	The grazing animals can change the type of Vegetation by-					
	(1)	Cross pollination	(2)	Selective grazing		
. u	(3)	Bringing in plant pathogens	(4)	Bringing the seeds of other plants		
91.	Contour bunding is done to check-					
	(1)	Sheet erosion	(2)	Rill erosion		
	(3)	Gully erosion	(4)	Ravine formation		
92.	Inter	ception loss is-				
	(1)	High in the beginning of storm and	(2)	Low in the beginning of storm and		
	3 558	gradually decreases		gradually decreases		
	. (3)		(4)	High in the beginning of storm and		
	00 200	decreases		gradually increases		
93.	The heat transfer rate in solid agricultural products of any shape is called-					
	(1)		(2)			
	(3)	Bulk density	(4)	Mass diffusivity		

94.	Octai	ne number for regular petrol fuel varies as -		14 avi			
	(1)	95-98	(2)	85-90			
	(3)	70-80	(4)	60-65			
95.	Critic	cal pressure of water is -					
	(1)	1 kg/cm ²	(2)	100 kg/cm ²			
	(3)	155 kg/cm ²	(4)	213.8 kg/cm ²			
96.	Whic	h of the following countries is <u>not</u> in the list	of top	3 consumers of energy in the world?			
	(1)	China	(2)	India			
	(3)	Russia	(4)	United States			
97.	Whic	h one is a false statement?					
•	(1)	Magnets are used to generate electricity.	(2)	Using hydropower does not impact			
				the environment.			
	(3)	Propane comes from oil and natural gas	(4)	Electricity is a renewable resource.			
		wells.		ng in aga jagap Basa San gga ^a			
98.	A 1cm	n ² silicon solar cell has a saturation current	of 10	-12 A and is illuminated with sunlight			
yielding a short – circuit photocurrent of 25 mA. Calculate the solar cell efficiency.							
			Carcui	ate the solar centerney.			
	(1)	13%	(2)	14%			
	(3)	15%	(4)	16%			
99.	The m	naximum size of the raindrop is -					
	(1)	6 mm	(2)	10 mm			
	(2)	2					
	(3)	2 mm	(4)	0.5 mm			
100.	In the	Universal Soil Loss Equation (USLE), the s	soil er	odability factor K is			
	(1)	Measure of the susceptibility of soil particles to detachment and transport	(2)	Slope length gradient factor			
	(3)	Crop management factor	(4)	Rainfall-runoff factor			
		XX					

[05]

Space for Rough Work

x selvel.