Simple \& Compound Interest- Formulae

Principal:

The amount which is lent / deposited is called Principal.

Interest:

The money that the principal generates is called Interest. This is the money generated as a result of borrowing/lending.

Simple interest:

In Simple Interest the principal and the Interest (occurred every period) remains constant.

- The sum of principal and the interest is called Amount.

Amount (A) = Principal (P) + Interest (I)

- The Simple Interest (I) occurred over a time period (T) for R\% (rate of Interest per annum),

$$
\mathrm{I}=\frac{\mathrm{PTR}}{100}
$$

Compound interest:

In Compound Interest the Interest earned over the period is added over to the existing principal after every compounding period. So the principal and the Interest over a period changes after every compounding period. (Simply, there will be interest on interest).

- The amount to be paid, if money is borrowed at Compound Interest for N number of years,

$$
A=P\left(1+\frac{R}{100}\right)^{N}
$$

- The Interest occurred, I = A - P

$$
I=P\left(1+\frac{R}{100}\right)^{N}-P
$$

Note:

If compounding period is not annual, rate of interest is divided in accordance with the compounding period. For example,

- If the interest is compounded half yearly, then Amount,

$$
A=P\left(1+\frac{R / 2}{100}\right)^{2 N}
$$

- If the interest is compounded quarterly, then Amount,

$$
A=P\left(1+\frac{R / 4}{100}\right)^{4 N}
$$

- If the interest is compounded monthly, then Amount

$$
A=P\left(1+\frac{R / 12}{100}\right)^{12 N}
$$

- If the interest is compounded daily, then Amount

$$
A=P\left(1+\frac{R / 365}{100}\right)^{365 N}
$$

Some important points:

- If interest Rate is R1\% for first year, R2\% for second year and R3\% for 3rd year, then the Amount,

$$
A=P\left(1+\frac{\mathrm{R}_{1}}{100}\right)\left(1+\frac{\mathrm{R}_{2}}{100}\right)\left(1+\frac{\mathrm{R}_{3}}{100}\right)
$$

- If a difference between C.I and S.I for certain sum at same rate of interest is given, then

$$
\text { Principal }=\text { Difference }\left(\frac{100}{\mathrm{R}}\right)^{2}
$$

- If R is the rate per annum, then present worth of Rs. K due to N years hence is given by

$$
\text { Present worth }=\frac{\mathrm{K}}{\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{N}}}
$$

- If principal amount is P and rate of interest is R, then difference between compound interest and simple interest for 2 years,

$$
\text { Difference }=P\left(\frac{R}{100}\right)^{2}
$$

- If a certain sum becomes " x " times in n years, then the rate of compound interest will be

$$
R=100\left(x^{\frac{1}{n}}-1\right)
$$

- If a sum of money P amounts to A_{1} after T years at $C I$ and the same sum of money amounts to A_{2} after $(T+1)$ years at $C I$, then

$$
\mathrm{R}=\frac{\mathrm{A}_{2}-\mathrm{A}_{1}}{\mathrm{~A}_{1}} \times 100
$$

gradeup

Gradeup Achievers' Corner

