Ratio, Proportion and Variation

Formulae

Ratio:

- A ratio can be represented as fraction a / b or using the notation a : b. In each of these representation ' a ' is called the antecedent and ' b ' is called the consequent.

Example:
The ratio 5:9 represents $\frac{5}{9}$ with antecedent $=5$, consequent $=9$.

- For a ratio to be defined, the quantities of the items should be of same nature. We can't compare the Area of the square to the volume of a cube.
- However if these quantities are represented in numbers, i.e., Area of a square is a cm^{2} and area of a cube is $b \mathrm{~m}^{3}$, we can still define the ratio of these numbers as a:b

Properties of ratios:

- A ratio need not be positive. However, if we are dealing with quantities of items, their ratios will be positive. In this concept we will consider only positive ratios.
- The multiplication or division of each term of a ratio by the same non-zero number does not affect the ratio.

$$
\frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathrm{pa}}{\mathbf{p} \mathbf{b}}=\frac{\mathbf{a} / \mathbf{p}}{\mathbf{b} / \mathbf{p}}, \mathbf{p} \neq \mathbf{0}
$$

Example: $\frac{3}{5}=\frac{2 \times 3}{2 \times 5}=\frac{3 / 2}{5 / 2}$

- Two ratios in their fraction notation can be compared just as we compare real numbers.

$$
\begin{aligned}
& \frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathbf{p}}{\mathbf{q}} \Leftrightarrow \mathbf{a q}=\mathbf{b p} \\
& \frac{\mathbf{a}}{\mathbf{b}}>\frac{\mathbf{p}}{\mathbf{q}} \Leftrightarrow \mathbf{a q}>\mathbf{b p}
\end{aligned}
$$

$$
\frac{\mathbf{a}}{\mathbf{b}}<\frac{\mathbf{p}}{\mathbf{q}} \Leftrightarrow \mathbf{a q}<\mathbf{b p}
$$

- If antecedent > consequent, the ratio is said to be ratio of greater inequality.
- If antecedent < consequent, the ratio is said to be ratio of lesser inequality.
- If the antecedent = consequent, the ratio is said to be ratio of equality.
- Duplicate Ratio of $a: b$ is $a^{2}: b^{2}$
- Sub-duplicate ratio of $a: b$ is $\sqrt{a}: \sqrt{b}$
- Triplicate Ratio of $a: b$ is $a^{3}: b^{3}$
- Sub-triplicate ratio of $a: b$ is $a^{1 / 3}: b^{1 / 3}$

If a, b, x are positive, then

- If $a>b$, then $\frac{a+x}{b+x}<\frac{a}{b}$
- If $\mathrm{a}<\mathrm{b}$, then $\frac{\mathrm{a}+\mathrm{x}}{\mathrm{b}+\mathrm{x}}>\frac{\mathrm{a}}{\mathrm{b}}$
- If $a>b$, then $\frac{a-x}{b-x}>\frac{a}{b}$
- If $a<b$, then $\frac{a-x}{b-x}<\frac{a}{b}$
- If $\frac{a}{p}=\frac{b}{q}=\frac{c}{r}=\frac{d}{s}=\cdots$, then $a: b: c: d: \ldots \ldots . .=p: q: r: s: \ldots \ldots$.

Proportions:

A proportion is an equality of ratios. Hence $a: b=c: d$ is a proportion. The first and last terms are called extremes and the other two terms are called means.

If four terms a, b, c, d are said to be proportional, then $a: b=c: d$. If three terms a, b, c are said to be proportional, then $a: b=b: c$

Properties of proportions:

If $a: b=c: d$ is a proportion, then

- Product of extremes $=$ product of means i.e., $a d=b c$
- Denominator addition/subtraction: $\mathrm{a}:(\mathrm{a}+\mathrm{b})=\mathrm{c}:(\mathrm{c}+\mathrm{d})$ and $\mathrm{a}:$ $(\mathrm{a}-\mathrm{b})=\mathrm{c}:(\mathrm{c}-\mathrm{d})$
- a, b, c, d, \ldots are in continued proportion means, $a: b=b: c=c$: $d=\ldots$
- $a: b=b: c$ then b is called mean proportional and $b^{2}=a c$
- The third proportional of two numbers, a and b, is c, such that, $a: b$ $=\mathrm{b}$: c
- d is fourth proportional to numbers a, b, c if $a: b=c: d$

Variations:

- If x varies directly to y, then x is said to be in directly proportional with y and is written as $x \propto y$ $x=k y$ (where k is direct proportionality constant) $x=k y+C$ (If x depends upon some other fixed constant C)
- If x varies inversely to y, then x is said to be in inversely proportional with y and is written as $\mathrm{x} \propto \frac{1}{\mathrm{y}}$ $x=k \frac{1}{y}$ (where k is indirect proportionality constant) $x=k \frac{1}{y}+C$ (If x depends upon some other fixed constant C)
- If $x \propto y$ and $y \propto z$ then $x \propto z$
- If $x \propto y$ and $x \propto z$ then $x \propto(y \pm z)$
- If $a \propto b$ and $x \propto y$ then $a x \propto b y$

gradeup

Gradeup Achievers' Corner

