gradeup

Rajasthan RVUNL

Electrical Engineering

Power Electronics

100 Days
 Important Formula Notes

POWER ELECTRONICS (FORMULA NOTES)

Charge stored in depletion region:
Let Q_{R} be the charge stored in depletion region of power diode.

$$
\begin{aligned}
& Q_{R}=\frac{1}{2} \cdot I_{R M} \cdot t_{r r} \\
& I_{R M}=\frac{2 Q_{R}}{t_{r r}}=t_{a} \cdot \frac{d i}{d t}=\sqrt{2 Q_{R}} \cdot\left(\frac{d i}{d t}\right) \\
& \text { If } t_{a} \approx t_{r r}, t_{r r}=\sqrt{\frac{2 Q_{R}}{d i / d t}} \\
& I_{R R}=t_{r r} \cdot \frac{d i}{d t}=\sqrt{2 Q_{R}\left(\frac{d i}{d t}\right)} \\
& t_{r r} \propto \sqrt{Q_{R}} \\
& Q_{R} \propto I_{f} \\
& t_{r r} \propto \sqrt{I_{f}} \\
& I_{R M} \propto \sqrt{I_{f}}
\end{aligned}
$$

Relation Between α and β :

$$
\begin{aligned}
& \alpha=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}} \quad \beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}} \\
& \frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{C}}}=1+\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{C}}} \\
& \frac{1}{\alpha}=1+\frac{1}{\beta} \\
& \alpha=\frac{\beta}{\beta+1} \quad \beta=\frac{\alpha}{1+\alpha}
\end{aligned}
$$

Design of Snubber circuit:

For Inductor (L):
$\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\max }=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{L}}$
$L=\frac{V_{s}}{(d i / d t)_{\max }}$
For resistor $\left(\mathrm{R}_{\mathrm{s}}\right)$:
$\left(\frac{d v_{a}}{d t}\right)_{\max }=R_{s}\left(\frac{d i}{d t}\right)_{\max }$
or $R_{s}=\frac{L}{V_{s}}\left(\frac{d v_{a}}{d t}\right)_{\max }$
For Capacitor $\left(\mathrm{C}_{\mathrm{s}}\right)$:
$C_{s}=\left(\frac{2 \xi}{R_{s}}\right)^{2} L \quad$ where $0.5<\xi<1$

Design of Snubber circuit:

String efficiency $=\frac{\text { Actual voltage/current rating of string. }}{\mathrm{n} \times \text { individual voltage/current rating of } \mathrm{SCR}}$
where n is the number of SCR in string.
Derating factor, $D R F=1$ - string efficiency.
Series Operation of Thyristors:
Consider n thyristor connected in series as shown in figure. Let SCR1 has minimum leakage current $I_{b m n}$. SCR with lower leakage current blocks more voltage.
Remaining ($n-1$) SCRs have the same leakage current $I_{b m x}$
Ibmx $>$ Ibmn
Here V_{bm} is the maximum permissible blocking voltage as SCR1.
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{\mathrm{bmn}}$
$\mathrm{I}_{1}=\mathrm{I}-\mathrm{Ibmn}$
$\mathrm{I}=\mathrm{I}_{2}+\mathrm{I}_{\mathrm{bmx}}$
$\mathrm{I}_{2}=\mathrm{I}-\mathrm{I}_{\mathrm{bm} x}$
Where, $\mathrm{I}=$ total string current
Voltage across SCR1 is $\mathrm{V}_{\mathrm{bm}}=\mathrm{I}_{1} \mathrm{R}$
Voltage across ($n-1$) SCRs $=(n-1) I_{2} R$
For a string voltage $\left(\mathrm{V}_{s}\right)$, the voltage equation for the series circuit is
$V_{s}=I_{1} R+(n-1) I_{2} R=V_{b m}+(n-1) R\left(I-I_{b m x}\right)$
$=V_{b m}+(n-1) R\left(I_{1}+I_{b m n}-I_{b m x}\right)$
$=\mathrm{V}_{\mathrm{bm}}+(\mathrm{n}-1) \mathrm{R}\left[\left(\mathrm{I}_{1}-\left(\mathrm{I}_{\mathrm{bmx}}-\mathrm{I}_{\mathrm{bmn}}\right)\right]\right.$

$$
V_{\mathrm{s}}=\mathrm{V}_{\mathrm{bm}}+(\mathrm{n}-1) R 1_{1}-(\mathrm{n}-1) R \Delta \mathrm{I}_{\mathrm{b}} \quad\left[\therefore \Delta \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{bmx}}--_{\mathrm{bmn}}\right]
$$

$\mathrm{AS}, \mathrm{RI}_{1}=\mathrm{V}_{\mathrm{bm}}$
$V_{s}=V_{b m}+(n-1) V_{b m}-(n-1) R \Delta I_{b}$
$V_{\mathrm{s}}=n \mathrm{~V}_{\mathrm{bm}}-(\mathrm{n}-1) R \cdot \Delta \mathrm{I}_{\mathrm{b}}$
$\mathrm{R}_{\mathrm{s}}=\frac{\mathrm{nV} \mathrm{V}_{\mathrm{bm}}-V_{\mathrm{s}}}{(\mathrm{n}-1)-\Delta \mathrm{I}_{\mathrm{b}}}$
' R_{s} ' is the static equalizing resistance.

Parallel Operation of Thyristors:

When current required by the load is more than the rated current of a single thyristor, SCR's are connected in parallel in a string.

Class A Commutation (Load Commutation)

$I(t)=V_{s} \sqrt{\frac{C}{L}} \sin \omega o t$ Conduction time of thyristor, $t_{0}=\frac{\pi}{\omega_{0}}=\pi \sqrt{L C}$
where, $\omega_{0}=$ resonant frequency $\frac{1}{\sqrt{\mathrm{LC}}}$

Class B Commutation:

- Resonant current $\mathrm{dI}_{\mathrm{C}}=-\mathrm{V}_{\mathrm{s}} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}} \sin \omega_{0} \mathrm{t}$
- Peak resonant current $I_{p}=V_{s} \sqrt{\frac{C}{L}}$
- Voltage across capacitor $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{s}} \cos \omega_{0} \mathrm{t}$
- Circuit turn-off time for the main thyristor $\left(T_{1}\right) ; \mathrm{tc}=\mathrm{C} \frac{\mathrm{V}_{\mathrm{ab}}}{\mathrm{I}_{0}}$
- Reverse voltage across the main thyristor (T_{1})
$\mathrm{V}_{\mathrm{sb}}=\mathrm{V}_{\mathrm{s}} \cos \omega_{0}\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)$
Where $t_{3}=$ time when the main thyristor is turned off
$\mathrm{t}_{2}=$ time when auxiliary thyristor is burned off
$\omega_{0}\left(t_{3}+-_{t 2}\right)=\sin ^{-1}\left(\frac{I_{0}}{I_{p}}\right)$ and

Class C Commutation:

When T_{1} is turned on at $t=0$

- The charging current $I_{s}=\frac{V_{s}}{R_{z}} \cdot e^{-t / R_{2} c}$
- Voltage across capacitor
$V_{c}(t)=V_{s}\left(1-e^{-t / R_{2} c}\right)$
When T_{1} is to be turned-off, T_{2} is turned-on at T_{1}
- The charging current $I_{c}(t)=-\frac{2 V_{S}}{R_{1}} \cdot e^{-t / R_{1} C}$
- The Voltage across capacitor
$V_{c}(t)=V_{s}\left[2 e^{-t / R_{1} C}-1\right]$
- Maximum current though thyrisor T_{1}

$$
\mathrm{I}_{\mathrm{T}_{1}(\max)}=\mathrm{V}_{\mathrm{s}}\left[\frac{1}{\mathrm{R}_{1}}-\frac{2}{\mathrm{R}_{2}}\right]
$$

- Maximum current though thyrisor T_{2},
$\mathrm{I}_{\mathrm{T}_{(\text {max })}}=\mathrm{V}_{\mathrm{s}}\left[\frac{2}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right]$
Circuit turn-off time $t_{c_{1}}$ for thyristor T_{1}
$t_{c_{1}}=R_{1} C \operatorname{In}(2)$
Circuit turn-off time $t_{c_{2}}$ for thyristor T_{2}
$t_{c_{2}}=R_{2} C \operatorname{In}(2)$

Class D Commutation:

- Capacitor current
$I_{c}=V_{s} \sqrt{\frac{C}{L}} \sin \omega_{o} t=I_{p} \sin \omega_{o} t$
- Circuit turn-off time for main thyristor (T_{1})
$\mathrm{t}_{\mathrm{c}}=\mathrm{C} \frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{I}_{0}}$
- Circuit turn-off time for main thyristor (TA)

$$
\mathrm{t}_{\mathrm{c}_{1}}=\frac{\pi}{2 \omega_{0}}
$$

Single Phase Half Wave Diode Rectifier:

With R Load:

- RMS value of output voltage

$$
V_{0 \mathrm{rms}}=\frac{V_{m}}{2}
$$

$\mathrm{V}_{\mathrm{m}}=$ Maximum value of source voltage (V_{s})

- Average value of output voltage,
$V_{O D C}=\frac{V_{m}}{\pi}$

Rajasthan RVUNL

A Technical Course for AEN \& JEN (Electrical)

- Average value of output voltage,
- Power delivered $\mathrm{P}=\mathrm{I}^{2}{ }_{0 \mathrm{rmz}}$. R

Io rms $=$ rms value of load current $=\frac{\text { Power delivered to load }}{\text { Input } V_{A}}$

- Input power Factor $=\frac{\mathrm{V}_{0 \mathrm{rms}} \cdot \mathrm{I}_{0 \mathrm{rms}}}{\mathrm{V}_{\mathrm{s}}-\mathrm{I}_{0 \mathrm{rms}}}=0.707$

With L load:

- Output current $I_{0}=\frac{V_{m}}{\omega L}(1-\cos \omega t)$
- Maximum value of current $I_{0}=\frac{2 X_{m}}{\omega L}$
- Average value of current $I_{0}=\frac{I_{\max }}{2}$
- RMS value of fundamental current

$$
I_{1 \mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}
$$

- Output voltage $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}=\mathrm{V}_{\mathrm{s}}$
- Average value of current voltage $\mathrm{V}_{0}=0$

With C Load:

- Output voltage $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{m}}$ sin $\omega t=\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{c}}$
- Diode voltage $V_{D}=V_{m}(\sin \omega t-1)$
- Output current $\mathrm{I}_{0}=\omega c \mathrm{~V}_{\mathrm{m}} \cos \omega t$
- Average value of diode voltage $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{m}}$
- RMS value of diode voltage

$$
\mathrm{V}_{\mathrm{rms} \mathrm{D}}=1.225 \mathrm{~V}_{\mathrm{m}}
$$

Single-Phase Full wave Mid-point Diode Rectifier:

Average output voltage,
$V_{0}=\frac{1}{\pi} \int_{0}^{\pi} V_{m} \sin \omega t d(\omega t)$
$V_{0}=\frac{2 V_{m}}{\pi}$
Average output current,
$\mathrm{i}_{0}=\frac{\mathrm{V}_{0}}{\Pi}$
Rms value of load voltage,
$V_{0(r m s)}=\sqrt{\left[\frac{1}{2} \int_{0}^{\pi} V_{m}^{2} \sin \omega t d(\omega t)\right]}$
$\mathrm{V}_{\mathrm{O}(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}=\mathrm{V}_{\mathrm{s}}$
Rms value of load current,
$I_{o(r m s)}=\frac{V_{s}}{R}$
Power delivered to load $=\mathrm{V}_{0(\mathrm{rms})} \mathrm{I}_{0(\mathrm{rms})}$
\therefore Input power factor $=\frac{V_{0(r m s)} I_{0(r m s)}}{V_{s} I_{0(r m s)}}$

Single-Phase Full wave Diode Bridge Rectifier:

Average value of diode current,
$I_{D}=\frac{1}{2 \pi} \int_{0}^{\pi} I_{m} \sin \omega t . d(\omega t)=\frac{I_{m}}{\pi}$
Rms value of diode current,
$I_{D(r m s)}=\sqrt{\left[\frac{1}{2 \pi} \int_{0}^{\pi} I_{m}^{2} \sin ^{2} \omega t . d(\omega t)\right]}$

$$
I_{D(r m s)}=\frac{I_{m}}{2}
$$

Single phase half wave-controlled rectifier with R Load
Average output voltage,
$V_{0}=\frac{V_{m}}{2 \pi}(1+\cos \alpha)$
Average output current,
$I_{0}=\frac{V_{m}}{2 \pi R}(1+\cos \alpha)$
Rms value of output voltage,
$V_{\text {or }}=\frac{V_{m}}{2 \sqrt{n}}\left[(\pi-\alpha)+\frac{1}{2} \sin 2 \alpha\right]^{1 / 2}$
Commutation time or turn off time of the thyristor,
$\mathrm{t}_{\mathrm{c}}=\frac{\pi}{\omega} \mathrm{sec}$
Input power factor of the converter,
p.f. $=\frac{V_{\text {or }} \cdot I_{\text {or }}}{V_{s} \cdot I_{\text {or }}}=\frac{1}{\sqrt{2 \pi}}\left[\pi-\alpha+\frac{1}{2} \sin 2 \alpha\right]^{1 / 2}$

Rajasthan RVUNL

Single phase half wave-controlled rectifier with RL load:
Average output voltage,
$V_{0}=\frac{V_{m}}{2 \pi}(\cos \alpha-\cos \beta)$
Average output current,
$I_{0}=\frac{V_{m}}{2 \pi R}(\cos \alpha-\cos \beta)$
Rms value of output voltage.
$V_{\text {or }}=\frac{V_{m}}{2 \sqrt{n}}\left[(\beta-\alpha)-\frac{1}{2}(\sin 2 \beta-\sin 2 \alpha)\right]^{\frac{1}{2}}$
Commutation time or turn off time for the thyristor,
$\mathrm{t}_{\mathrm{c}}=\frac{2 \pi-\beta}{\omega} \mathrm{sec}$
Single phase half wave-controlled rectifier with RLE load:
The minimum value of firing angle at which thyristor can be triggered is
$\theta_{1}=\sin ^{-1}\left(\frac{E}{V_{m}}\right)$
Average output current,
$I_{0}=\frac{1}{2 \pi R}\left[V_{m}(\cos \alpha-\cos (\gamma+a))-E_{\gamma}\right]$
Average output voltage,
$V_{0}=\frac{1}{2 \pi}\left[V_{m}(\cos \alpha-\cos \beta)+E(2 \pi+\alpha-\beta)\right]$
Input power factor,
p.f. $=\frac{\left(I_{\text {or }}^{2} R+E I_{0}\right)}{V_{s} I_{o r}}$

Commutation time or turn off time of thyristor,
$\mathrm{t}_{\mathrm{c}}=\frac{2 \pi-\beta}{\omega} \mathrm{sec}$

Three Phase Half Wave Diode Rectifier:

The peak inverse voltage (PIV) $=\sqrt{3} \mathrm{~V}_{\mathrm{mp}}$ for each of the three diode $\mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3}. The average output voltage.

$$
\begin{array}{rlr}
V_{0} & =\frac{1}{2 \pi / 3} \int_{\pi / 6}^{5 \pi / 6} V_{m p} \sin \omega t d(\omega t) \\
& =\frac{3 \sqrt{3}}{2 \pi} V_{m p} & \\
& =\frac{3 \sqrt{6}}{2 \pi} V_{p h} & \left(\because V_{m p}=\sqrt{2} V_{p h}\right) \\
& =\frac{3}{2 \pi} V_{m l} & \left(\because V_{m l}=\sqrt{3} V_{m p}=\sqrt{6} V_{p h}\right)
\end{array}
$$

Rms value of output voltage,

$$
\begin{aligned}
& V_{o(r m s)}=\sqrt{\left[\frac{3}{2 \pi} \int_{\pi 6}^{5 \pi / 6} V_{m p}^{2} \sin ^{2} \omega t \mathrm{~d}(\omega \mathrm{t})\right]} \\
& V_{0(\mathrm{rms})}=0.84068 \mathrm{~V}_{\mathrm{mp}}
\end{aligned}
$$

Three-Phase Mid-point 6-Pulse Diode Rectifier:

Average output voltage,
$V_{0}=\frac{1}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3} V_{m p} \sin \omega t d(\omega t)$
$\mathrm{V}_{0}=\frac{3 \mathrm{~V}_{\mathrm{mp}}}{\pi}$
Rms value of output voltage,
$V_{0(r m s)}=\sqrt{\left[\frac{1}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3}\left(V_{m p} \sin \omega t\right)^{2} d(\omega t)\right]}$
$\mathrm{V}_{\mathrm{orms})}=0.9558 \mathrm{~V}_{\mathrm{mp}}$

THREE PHASE DIODE BRIDGE RECTIFIER

Average Value of load voltage,
$V_{0}=\frac{1}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3} V_{m} \sin \omega t(d \omega t)$
$\mathrm{V}_{0}=\frac{3 \mathrm{~V}_{\mathrm{m}}}{\mathrm{n}}$
Rms value of output voltage,
$V_{0(r m s)}=\sqrt{\left[\frac{1}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3} V_{m 1}^{2} \sin ^{2} \omega t d(\omega t)\right]}$
$\mathrm{V}_{0 \text { (rms) }}=0.9558 \mathrm{~V}_{\mathrm{ml}}$

THREE PHASE HALF-WAVE-CONTROLLED RECTIFIER:

If V_{mp} is the peak value of phase voltage, the average value of the output voltage,

Rajasthan RVUNL

A Technical Course for AEN \& JEN (Electrical)
$V_{o}=\left\{\begin{array}{lr}\frac{3 \sqrt{3}}{2 \pi} V_{m p} \cos \alpha & ; \text { for } 0<\alpha<30^{\circ} \\ \frac{3}{2 \pi} V_{m p}\left(1+\cos \left(\alpha+30^{\circ}\right)\right) & \text {;for } 30^{\circ}<\alpha<150^{\circ}\end{array}\right.$
If V_{ml} is the peak value of line voltage, average output voltage,
$V_{0}=\frac{3 V_{\text {ml }}}{\pi} \cos \alpha$
If I_{0} is the load current, average value of source current,
$I_{s}=I_{0} \sqrt{\frac{2}{3}}$
Average value of thyristor current,
$I_{s}=I_{0} \sqrt{\frac{1}{3}}$

EFFECT OF SOURCE INDUCTANCE IN SINGLE PHASE RECTIFIER

1. It reduces the average output voltage.
2. It limits the maximum firing angle,

$$
\alpha_{\max }=180^{\circ}-\left(\omega \mathrm{t}_{\mathrm{q}}+\mu_{0}\right)
$$

where, $\omega \mathrm{t}_{\mathrm{q}}=$ device turn-off time (in degrees)
$\mu_{0}=$ overlap angle at $a=0$
3. Displacement angle, $\theta_{1}=-(a+\mu / 2)$
4. Fundamental displacement factor,

Fundamental Displacement Factor $=\cos \left(\alpha+\frac{\mu}{2}\right)$
5. Current distortion factor (g) increase because the waveform is smoother than without Ls waveform

Total Harmonic Distortion $=\left(\frac{1}{\mathrm{~g}^{2}}-1\right)^{1 / 2}$
6. Power factor (F.F.) = current distortion factor x fundamental displacement factor
7. Average reduction voltage $=\frac{V_{m}}{2 \pi}[\cos \alpha-\cos (\alpha+\mu)]=\frac{\omega L_{s}}{2 \pi} I_{0}$

DC DRIVES

$$
\begin{aligned}
& E_{a}=\frac{Z \phi N P}{60 A}=Z \phi n\left(\frac{P}{A}\right) \quad \omega_{m}=2 \pi n \\
& E_{a}=Z \phi\left(\frac{\omega_{m}}{2 \pi}\right)\left(\frac{P}{A}\right)=\left(\frac{Z}{2 \pi} \cdot \frac{P}{A}\right) \phi \omega_{m} \quad \Rightarrow E_{a}=K_{a} \phi \omega_{m}
\end{aligned}
$$

Where, $\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{Z}}{2 \mathrm{n}}\left(\frac{\mathrm{P}}{\mathrm{A}}\right)$
$\mathrm{E}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$ (Electrical power) $=\mathrm{T}_{\mathrm{e}} \omega_{\mathrm{m}}$ (Mechanical power)
$T_{e}=\frac{E_{a} I_{a}}{\omega_{m}} \quad \Rightarrow \mathrm{~T}_{\mathrm{e}}=\mathrm{K}_{\mathrm{a}} \phi \mathrm{I}_{\mathrm{a}}$

Buck Converter:

In Buck regulator, the average output voltage V_{0} is less than the input voltage V_{s}.
$\Delta \mathrm{I}=\frac{\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{0}\right) \mathrm{T}_{\mathrm{oN}}}{\mathrm{L}}$
$\Delta I=\frac{V_{0} T_{\text {OFF }}}{L} \quad V_{0}=V_{S} \frac{T_{\text {ON }}}{T}=V_{S} \alpha$
Where $\Delta \mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}$ is the peak to peak current ripple of the inductor L .
The peak to peak ripple current is $\Delta \mathrm{I}=\frac{\mathrm{V}_{\mathrm{s}} \alpha(1-\alpha)}{\mathrm{fL}}$
The peak to ripple voltage of the capacitor is $\Delta \mathrm{V}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{s}} \alpha(1-\alpha)}{8 \mathrm{LCf} f^{2}}$

Condition for continuous inductor current and capacitor voltage:

If $I L$ is average inductor current, the inductor ripple current $\Delta I=2 I L$, which gives the critical value of the inductor L_{c} as $L_{c}=L=\frac{(1-\alpha) R}{2 f}$
If V_{c} is the average capacitor voltage, the capacitor ripple voltage $\Delta \mathrm{V}_{\mathrm{c}}=2 \mathrm{~V}_{0}$, which gives the critical value of capacitor C_{c} as $\mathrm{C}_{\mathrm{c}}=\mathrm{C}=\frac{1-\alpha}{16 \mathrm{Lf}^{2}}$

Boost Converter:

$\Delta I=\frac{V_{S} T_{\text {oN }}}{L}=\frac{\left(V_{0}-V_{S}\right) T_{\text {OFF }}}{L}$
where $\Delta \mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}$ is peak to peak ripple current of the inductor L .
The average output voltage,
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{S}} \frac{\mathrm{T}}{\mathrm{T}_{\text {OFF }}}=\left(\frac{1}{1-\alpha}\right) \mathrm{V}_{\mathrm{S}}$
The peak to peak current ripple is, $\Delta I=\frac{V_{s} \alpha}{f L}$
The peak to peak ripple voltage of capacitor, $\Delta V_{C}=\frac{I_{0} \alpha}{f C}$

Condition of continuous inductor current and capacitor voltage:

If V_{C} is the average capacitor voltage, the capacitor ripple voltage $\Delta \mathrm{V}_{\mathrm{c}}=2 \mathrm{~V}_{0}$, which gives the critical value of the capacitor C_{c} as $C_{C}=\frac{\alpha}{2 f R}$

Buck Boost Converter:

$\Delta I=\frac{V_{S} T_{\text {ON }}}{L}=\frac{-\mathrm{V}_{0} T_{\text {OFF }}}{\mathrm{L}}$
where $\Delta \mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}$ is the peak to peak ripple current of inductor L .
The average output voltage is, $V_{0}=-\frac{V_{S} \alpha}{1-\alpha}$
The peak to peak current ripple is, $\Delta \mathrm{I}=\frac{\mathrm{V}_{\mathrm{S}} \alpha}{\mathrm{fL}}$
peak to peak ripple voltage of the capacitor is, $\Delta \mathrm{V}_{\mathrm{C}}=\frac{\mathrm{I}_{0} \alpha}{\mathrm{fC}}$

Condition of continuous inductor current and capacitor voltage:

If V_{c} is the average capacitor voltage, the capacitor ripple voltage, $\Delta \mathrm{V}_{\mathrm{C}}=2 \mathrm{~V}_{0}$, which gives the critical value of the capacitor C_{c} as $C_{C}=\frac{\alpha}{2 f R}$.

Inverters

Series Inverters: In a series inverter, the commutating elements L and C are connected in series with the load resistance R. The load resistance R can also be in parallel with C. The value of L and C are such that those form an underdamped circuit i.e.
$R^{2}<\frac{4 L}{C}$
$f=\left[\frac{1}{2\left(\frac{T}{2}+T_{\text {off }}\right)}\right]$
The frequency of output voltage.
Where, $\frac{T}{2}$ is the time period of oscillations.
Toff is the time gap between turn-off one thyristor and turn-on of the second thyristor.
$\frac{\mathrm{T}}{2}=\frac{\pi}{\sqrt{\left(\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}\right)}}$
The period of oscillation

Parallel Inverter: During the working of this inverter, capacitor C comes in parallel with the load
$V_{c}=2 V_{s}\left[2 \exp \left(-\frac{n^{2} r}{2 R C}\right)-1\right]$
Where, $\mathrm{n}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}$ (turns ratio)
$C=\frac{n^{2} \cdot t_{c}}{4 R \operatorname{In} 2}$
Commutating capacitance,
Where, $\mathrm{t}_{\mathrm{c}}=$ Circuit turn-off time
Bridge Inverter: Bridge circuits are commonly used in DC-AC conversion. Moreover, an output transformer is not essential in a bridge circuit.
$\mathbf{1 \varphi}$ Half Bridge Inverter - The output voltage volt $V_{0}=\sum_{n-1,3,5 \ldots}^{\infty} \frac{2 V_{s}}{n \pi} \sin n \omega t$
$\mathbf{1 \varphi}$ Full Bridge Inverter- The output voltage
$V_{0}=\sum_{n-1,3,5, \ldots}^{\infty} \frac{4 V_{s}}{n \pi} \sin n \omega t$
Where, $\mathrm{n}=$ order of harmonic
$\omega=2 \mathrm{nf}$, is frequency of the output voltage in red/sec

Key points:

- The load impedance $\left(Z_{n}\right)$ at frequency

$$
\mathrm{n}_{\mathrm{f}, \mathrm{n}} \mathrm{Z}_{\mathrm{n}}=\left[\mathrm{R}^{2+}\left(\mathrm{n} \omega \mathrm{~L}-\frac{1}{\mathrm{n} \omega \mathrm{C}}\right)^{2}\right]^{-1 / 2}
$$

- Phase angle, $\left(\phi_{n}\right), \phi_{n}=\tan ^{-1} \frac{\left[n \omega L-\frac{1}{n \omega C}\right]}{R}$ red
- Output current or load current at the instant of commutation $I_{0}=I_{0}=\frac{V_{0}}{Z_{n}}$ or $\omega t=\pi$ rad
- Fundamental load power

$$
\left(P_{01}\right) P_{01}=I_{01}^{2} R=V_{01} \cdot I_{01} \cos \phi_{1}
$$

Amplitude Modulation Depth:

$$
\mathrm{m}_{0}=\frac{\hat{\mathrm{V}}_{\mathrm{m}}}{\hat{V}_{\mathrm{c}}}
$$

Where $\mathrm{V}_{\mathrm{m}}, \mathrm{V}_{\mathrm{c}}$ are the modulating and carrier signal voltage, respectively.
For sinusoidal PWM, the amplitude modulation depth must be less than 1.0

Output Voltages:

$$
\begin{aligned}
& \hat{V}_{\mathrm{kg} 1}=m_{\mathrm{a}} \frac{V_{\mathrm{DC}}}{2} \\
& V_{\mathrm{kg} 1}=\frac{1}{2 \sqrt{2}} m_{\mathrm{a}} V_{\mathrm{DC}}
\end{aligned}
$$

the fundamental line-line voltage is given by
$V_{\mathrm{LLO}_{1}}=\frac{\sqrt{3}}{2 \sqrt{2}} \mathrm{~m}_{\mathrm{a}} \mathrm{V}_{\mathrm{DC}}$

Available output voltage:

Assuming that the DC voltage is created using a diode rectifier and capacitor dc link, the maximum available DC voltage is given by
$\mathrm{V}_{\mathrm{DC}}=\sqrt{2 \mathrm{~V}_{\mathrm{LL}}}$
where $V_{\text {LLs }}$ is the line-line supply voltage. The maximum output using sinusoidal PWM ($m_{a}=1$) is $\mathrm{V}_{\mathrm{LLO}_{1}}=\frac{\sqrt{3}}{2 \sqrt{2}} \sqrt{2 \mathrm{~V}_{\mathrm{LLS}}}=\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{LLS}}$.

Resistive Load:

$I(t)=\frac{V_{s}}{R}$
where, $\mathrm{V}_{\mathrm{s}}=\mathrm{DV}$ voltage source
$\mathrm{R}=$ Load resistance
R-C (Resistive-Capacitive Load):
$I(t)=\frac{V_{s}}{R} e^{-t / R C}$
$V_{c}(t)=V_{s}\left(1-e^{-t / \tau}\right)$
Where, $\mathrm{V}_{\mathrm{c}}(\mathrm{t})=$ Voltage across capacitor at time t
Where, $\mathrm{V}_{\mathrm{c}}(\mathrm{t})=$ Voltage across capacitor at time t
Initial rate of rise of capacitor voltage:
$\left(\frac{d V_{c}}{d t}\right)_{t=0}=\frac{V_{s}}{R C}=\frac{V_{s}}{\tau}$ and time constant $\tau=\frac{V_{s}}{\left(\frac{d V_{c}}{d t}\right)_{t=0}}$
R-L Load:
$I(t)=\frac{V_{s}}{R}\left(1-e^{R t / L}\right)$
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{s}} \mathrm{e}^{-\mathrm{Rt} / \mathrm{L}} ; \mathrm{V}_{\mathrm{L}}=$ Voltage accros inductor
Initial rate of rise of current $\left(\frac{d I}{d t}\right)_{t=0}=\frac{V_{s}}{L}$
L-C Load:
$I(t)=I_{p} \sin \omega_{o} t$
Where, $I_{P}=V_{s} \sqrt{\frac{C}{L}}$ and
$\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=$ resonant frequency
$\Rightarrow \mathrm{I}(\mathrm{t})=\mathrm{V}_{\mathrm{s}} \sqrt{\frac{C}{L}} \sin \omega_{0} \mathrm{t}$

Key Points

- Voltage across inductor, $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{s}}\left(\cos \omega_{0} \mathrm{t}\right)$
- Voltage across inductor, $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{s}}\left(1-\cos \omega_{\mathrm{o}} \mathrm{t}\right)$

$$
\mathrm{t}_{1}=\pi \sqrt{\mathrm{LC}}=\frac{\pi}{\omega_{0}}
$$

- Conduction time,

R-L-Load:
$s^{2}+\frac{R}{L} s+\frac{1}{L C}=0$
Damping factor, $\xi=\frac{R}{2 L}$
Resonant frequency $\omega_{0}=\frac{1}{\sqrt{\text { LC }}} \mathrm{rad} / \mathrm{s}$
Ringing frequency,
(or damped resonant frequency)
$\omega_{0}=\sqrt{\omega_{0}{ }^{2}-\xi^{2}}$

