

sr. No. 851

Paper Code: 18 Sr. N PHYSICAL SCIENCES [Paper-II]

	gnature and Name of Invigilator		OMR Sheet No.:
1.	(Signature)		(To be filled by the candidate)
	(Signature)	7 .	Roll No.
2	(Signature)	_	
2.	(Signature)	- .	(In Figures as per admission card)
	(Name)		
			Roll No.
			(In words)
Ti	me : 1¼ Hours		Maximum Marks : 100
	umber of Pages in this Booklet : 16		Number of Questions in this Booklet : 50
-			
	Instructions for the Candidates		परीक्षार्थियों के लिए निर्देश
. I.	Write your roll number in the space provided on the top	1.	. पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
	of this page.	2.	इस प्रश्न-पत्र में पचास बहुविकल्पीय प्रश्न हैं।
2.	This paper consists of fifty multiple-choice type of questions.	3.	•
3.	At the commencement of examination, the question	Э.	भिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के
٠.	bookelt will be given to you. In the first 5 minutes, you		
	are requested to open the booklet and compulsorily		लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
	examine it as below;		(i) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों
	(i) Tally the number of pages and number of questions		की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण
	in the booklet with the information printed on the		पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल
	cover page. Fault booklets due to pages/questions		में न हों अर्थात् किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न
	missing or duplicate or not in serial order or any other discrepancy should be got replaced		करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही
	immediately by a correct booklet from the		प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे।
	invigilator within the period of 5 minutes.		•
	Afterwards, neither the Question Booklet will be		उसके बाद न तो आपको प्रश्न-पुस्तिका वापस ली जायेगी और न
	replaced nor any extra time will be given.		ही आपको अतिरिक्त समय दिया जायेगा।
	(ii) After this verification is over, the OMR Sheet		(ii) इस जाँच के बाद OMR पत्रक की क्रम संख्या इस प्रश्न-पुस्तिका
	Number should be entered on this Test Booklet.		पर अंकित कर दें।
4.	Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the oval as indicated	4.	प्रत्येक प्रश्नु के लिए चार उत्तर पत्रक विकल्प (A), (B), (C) तथा (D)
	below on the correct response against each item.		दिये गये हैं। आपको सही उत्तर के दीर्घवृत्त को पेन से भरकर काला
	Example: (A) (B) (D)		करना है जैसा कि नीचे दिखाया गया है। उदाहरण : (A) (B) (D)
	where (C) is the correct response.		जबिक (C) सही उत्तर है।
5.	Your responses to the items are to be indicated in the	5.	
	Answer Sheet given inside the Paper I Booklet only. If	٥.	अंकित करने हैं। यदि आप उत्तर पत्रक पर दिये गये दीर्घवृत्त के अलावा
	you mark at any place other than in the ovals in the		किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मृल्यांकन
,	Answer Sheet, it will not be evaluated.		नहीं होगा।
6. 7.	Read instructions given inside carefully. Rough Work is to be done in the end of this booklet.	6.	अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
8.	If you write your name or put any mark on any part of	7.	~ ~
٥.	the test booklet, except for the space allotted for the	8.	
	relevant entries, which may disclose your identity, you		हैं तो परीक्षा के लिये अयोग्य घोषित कर दिये जायेंगे।
	will render yourself liable to disqualification.	9.	आपको परीक्षा समाप्त होने पर प्रश्न-पुस्तिका एवं OMR उत्तर-पत्रक
9.	You have to return the test question booklet and OMR		निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद
	Answer sheet to the invigilators at the end of the		उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें।
	examination compulsorily and must not carry it with you	10). परीक्षा समाप्ति पर परीक्षार्थी OMR उत्तर-पत्रक की कार्बन कापी अपने
10	outside the Examination Hall. Students can take home carbon copy of this OMR		साथ ले जा सकते हैं।
10.	answer sheet.		. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें। 💥
11.	Use only Blue/Black Ball point pen.	12	. किसी भी प्रकार का संगणक (केलकुलेटर) या लाग टेबल आदि का
12.	Use of any calculator or log table etc., is prohibited.		प्रयोग वर्जित है।
13.	There is no negative marks for incorrect answers.	13	. गलत उत्तरों के लिए कोई अंक काटे नहीं जाएँगे।

Paper Code : [18] Paper-II [PHYSICAL SCIENCES]

Note: • This paper contains Fifty (50) multiple choice questions, each question carrying two (2) marks. नोट: • इस प्रश्नपत्र में पचास (50) बहुविकल्पीय प्रश्न हैं। प्रत्येक प्रश्न के दो (2) अंक हैं।

- 1. If grad $r^m = \frac{\overrightarrow{r}}{r^3}$, then the value of m is:
 - (A) One

(B) Two

(C) Three

- (D) -1
- 2. For what value of m do the following transformation equations present a cononical transformation?
 - $Q = q^m \cos 2p$; $P = q^m \sin 2p$
 - (A) 1

(B) 2

(C) ½

- (D) 3/2
- 3. What is the condition of validity of first Born approximation for the potential $V(r) = \frac{V_0 e^{-\alpha r}}{\alpha r}$

where the length $\frac{1}{\alpha} = r_0$ is the range of potential:

(A) $|V_0|r_0^2 = \frac{\hbar^2}{2m}$

(B) $|V_0|r_0^2 \ll \frac{\hbar^2}{2m}$

(C) $|V_0|r_0^2 >> \frac{\hbar^2}{2m}$

- (D) $|V_0| \ll \frac{\hbar^2 r_0^2}{2m}$
- 4. Find the charge parity of positronium (a hydrogen-line) system consisting of an electron and a positron:
 - (A) $CP = (-1)^{S}$

(B) $CP = (-1)^{S+1}$

(C) $CP = (-1)^{S+\frac{1}{2}}$

- (D) $CP = (-1)^{l+S+1}$
- 5. The motion of a system can be represented by a differential equation

$$\frac{d^2y}{dt^2} + 2k\frac{dy}{dt} + w_0^2 = 0$$

what is the time period of motion?

(A) $T = \frac{2\pi}{K}$

(B) $T = \frac{2\pi}{W_0}$

(C) $T = \frac{2\pi}{\left(W_0^2 + K^2\right)^{\frac{1}{2}}}$

(D) $T = -\frac{2\pi}{\left(W_0^2 - K^2\right)^{1/2}}$

6. For a system with the Lagrangian $L = \frac{1}{2z}q^2 - \frac{1}{2}\left[X - \frac{Y^2}{Z}\right] - \frac{Y}{Z}qq$ where X, Y and Z are time

dependent, which of the following relations is wrong?

$$(A) H = T + V$$

(B)
$$\dot{q} = Zq + Yq$$

(C)
$$P = \frac{1}{2}(\dot{q} - Yq)$$

(D)
$$p = -(Yp + Xq)$$

7. Diffstion current in a P-n junction is greater than the drift current in magnitude:

(A) If the junction is forward-biased.

(B) If junction is reverse-biased.

(C) If the junction is unbiased.

(D) It can not happen.

- 8. In a transistor:
 - (A) Emitter has the least concentration of impurity.
 - (B) Collector has the least concentration of inpurity.
 - (C) Base has the least concentration of impurity.
 - (D) All the three regions have equal concentration of impurity.
- 9. What is the nature of four-wave vector $\{K_m\}$ for electromagnetic fields?
 - (A) Space-like

(B) Light-like

(C) Time-like

(D) None of these

- 10. The change in entropy is:
 - (A) Positive in a reversible change

(B) Negative in an irreversible change

(C) Positive in an irreversible change

(D) Negative in a reversible change

11. For what values of α is the following transformation canonical ?

$$Q = \int 2q e^{\alpha} \cos p$$
, $P = \int 2q e^{-\alpha} \sin p$

(i) $\frac{1}{2}$

(ii) $-\frac{1}{2}$

(iii) 2

(iv) 0

- (A) (i), (ii) & (iv) are correct.
- (B) (ii), (iii) & (iv) are correct,
- (C) (i), (iii) & (iv) are correct.
- (D) (i), (ii) & (iii) are correct.

P.C.-18-PHY. SCI.-II/850

7

12. In an electromagnetic wave propagating along unit vector \overrightarrow{n} in an anistropic dielectric, which of the following set of vectors do not consist all coplanar vectors?

(i)
$$(\overrightarrow{P}, \overrightarrow{D}, \overrightarrow{E} \text{ and } \overrightarrow{x})$$

(ii)
$$(\overrightarrow{P}, \overrightarrow{D}, \overrightarrow{H} \text{ and } \overrightarrow{x})$$

(iii)
$$(\overrightarrow{P}, \overrightarrow{D}, \overrightarrow{E} \text{ and } \overrightarrow{H})$$

(iv)
$$(D, E, H \text{ and } E \times H)$$

(A) (i), (ii) & (iv) are correct.

(B) (ii), (iii) & (iv) are correct.

(C) (ii) & (iv) are correct.

(D) (i) & (iii) are correct.

13. Which of the following properties are essential for bound states of one dimensional time independent schrodinger equation?

(i) reality of eigen values

(ii) orthogonality of eigen fluctions

(iii) non-degeneracy

(iv) dicreteness of spectrum

(A) (i), (iii) & (iv) are correct.

(B) (ii), (iii) & (iv) are correct.

(C) (i), (ii) & (iii) are correct.

(D) (ii) & (iv) are correct.

14. A cylinder has length lcm which is measured with a probable error \pm a and has a radius r cm which is measured with probable error \pm b. The probable errors in the calculation of area of the curved surface and in volume?

(i)
$$A = \pm 2\pi \sqrt{l^2b^2 + a^2r^2}$$
, $V = \pi r \sqrt{a^2 + l^2}$

(ii)
$$A = \pm \sqrt{l^2b^2 + a^2r^2}, V = \pi r\sqrt{a^2 + 4l^2l^2}$$

(iii)
$$A = \pm 2\pi \int l^2 b^2 + a^2 r^2$$
, $V = \pi r \int a^2 + 4l^2 l^2$

(iv)
$$A = \pm \sqrt{l^2b^2 + a^2r^2}, V = \pi r \sqrt{a^2 + l^2}$$

(A) (i) & (ii) are correct.

(B) only (iv) is correct.

(C) Only (iii) is correct.

(D) (iii) & (iv) are correct.

15. A D/A converter has 6 bits and a reference voltage of 10V. The minimum value of R and the smallest quantized value of output current will be if the maximum value of output current does not exceed 10 mA.

(i) Rmin = 2 K Ω and current with LSB = 156 μ A

(ii) Rmin = 20 K Ω and current with LSB = 156 μ A

(iii) Rmin = 2 K Ω and current with LSB = 100 μ A

(iv) Rmin = 20 K Ω and current with LSB = 100 μ A

(A) only (i) & (ii) are correct.

(B) only (iii) & (iv) are correct.

(C) only (ii) is correct.

(D) only (i) is correct.

- 16. Which of the following statements are true for fermi. Divac distribution of particles:
 - (i) particles are distinguishable.
 - (ii) dparticles are found to have odd half integral spins $\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots\right)$.
 - (iii) particles obey Pauli's exclusion principle.
 - (iv) protons and neutrons are the examples.
 - (A) (i) & (ii) are correct.
- (B) (i), (ii) & (iii) are correct.
- (C) (ii) & (iii) are correct.
- (D) (iii) & (iv) are correct.
- 17. Following statements are true for first law of thermodynamics:
 - (i) It is the law of conservation of energy.
 - (ii) In mathematical form : dQ = dU + dW.
 - (iii) It is associated with internal energy of system.
 - (iv) none of these.
 - (A) (i), (ii) & (iii) are correct.
- (B) (iv) is correct.
- (C) (ii) & (iii) are correct.
- (D) (i) & (iii) are correct.
- 18. Following statements are correct for a well behaved wave function:
 - (i) $\overline{\psi}$ must be single valued & continuous everywhere.
 - (ii) $\overline{\psi}$ must be normalizable.
 - (iii) $\overline{\psi}$ must be single valued & continuous but not normalizable.
 - (iv) $\int |\overline{\psi}|^2 dv$ over all space should be a finite constant.
 - (A) (i) & (ii) are correct.
- (B) (i) & (iv) are correct.
- (C) (i), (iii) & (iv) are correct.
- (D) (i), (ii) & (iv) are correct.
- 19. Following are true for an electromagnetic wave in free space :
 - (i) Wave equation: $\nabla^2 \vec{E} \frac{1}{C^2} \cdot \frac{\partial^2 \vec{E}}{\partial t^i} = 0$
- (ii) $C = \sqrt[1]{\int_{\epsilon_0 \mu_0}}$
- (iii) these are transverse waves.

(iv) these are longitudinal waves.

- (A) (i) & (ii) are correct.
- (B) (i), (ii) (iv) are correct.
- (C) (i), (ii) & (iii) are correct.
- (D) (ii) & (iii) are correct.

20.	Following a	re true in	case of mass-	energy equivalence
	1 0110 11116			

(i) mass and energy are different aspects of same thing.

(ii) Total energy:
$$E = \frac{mc^2}{\sqrt{1 + v^2/c^2}}$$

(iii) rest energy : $E_0 = mc^2$

(iv) Kinetic Energy:
$$KE = mc^2 \left[\frac{1 - \sqrt{1 - v^2/c^2}}{\sqrt{1 - v^2/c^2}} \right]$$

(B) (ii), (iii) & (iv) are corect.

(D) all are correct.

21. The derivative of a vector of fixed direction is:

(B) Perpendicular to vector

(D) independent of the direction of vector

22. What is the nature of the matrix $\begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$, where * denotes complex conjugate and $|a|^2 + b^2 + b^2$

$$|\mathbf{b}|^2 = 1$$
?

(A) Unitary with positive determinant.

(B) Unitary with negative determinant.

(C) Hermitian.

(D) Skew-Hermitian.

23. In a Maxwell-Boltzmann system with two states of energy ∈ and 2∈ respectively and a degeneracy of 2 for each, the partition function is:

(A)
$$e^{-\frac{\pi}{kT}}$$

(B)
$$2e^{-2} / kT$$

(C)
$$e^{-\xi/kT} + e^{-2\xi/kT}$$

(D)
$$2\left(e^{-\frac{\epsilon}{kT}} + e^{-2\frac{\epsilon}{kT}}\right)$$

24. The eigenvalues of a Hermitian operator are always:

(A) real

(B) imaginary

(C) digenerate

(D) linear

25. A free particle with initial kinetic energy E and de Broglie wavelength λ enters a region in which it has potential energy V. What is the particle's new De Broglie wavelength?

(A)
$$\lambda \left(1 + \frac{E}{V}\right)$$

(B)
$$\lambda \left(1 - \frac{E}{V}\right)$$

(C)
$$\lambda (1 + \frac{V}{E})^{\frac{1}{2}}$$

(D)
$$\lambda (1 - \frac{V}{E})^{-\frac{1}{2}}$$

26. Heat Q is added to a monoatomic ideal gas under conditions of constant volume, resulting in a temperature change ΔT . How much heat will be required to produce the same temperature change, if it is added under conditions of constant pressure?

(A)
$$\frac{3Q}{5}$$

(C)
$$\frac{5Q}{3}$$

27. Which of the following CANNOT be used as a dopart in germanium to make an n-type conductor?

28. In a dielectric medium, the phase difference between field vectors \overrightarrow{E} and \overrightarrow{H} is:

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{\pi}{4}$$

(D) any value

Above figure represents the circuit diagram of:

(A) Olk gate

(B) AND gate

(C) NOR, gate

(D) NAND gate

P.C.-18-PHY. SCI.-II/850

0.	An eigenfunction of the	operator $\frac{d^2}{dx^2}$ is $\psi = e^{2x}$. Find the corresponding eigenvalue:
	(A) 4	(B) 2
	(C) 0	(D) 1
	Find the solution of ques	tion 31 and 32 on the basis of following statement.

31. The curl of which of the following vectors is non-vanishing:

(A)
$$_{r}^{\rightarrow}$$

(B)
$$\frac{r}{r^3}$$

(C)
$$\stackrel{\rightarrow}{e} \times \stackrel{\rightarrow}{r}$$

(D)
$$\begin{pmatrix} \overrightarrow{e} \times \overrightarrow{r} \end{pmatrix} \times \vec{e}$$

32. Divergence of which of the following vectors is vanishing:

$$(A) \xrightarrow{r}$$

$$(B) \stackrel{\rightarrow}{e} \times \frac{1}{e}$$

(C)
$$\begin{pmatrix} \overrightarrow{e} & \overrightarrow{r} \\ \overrightarrow{e} & r \end{pmatrix} \stackrel{\rightarrow}{e}$$

(D)
$$\begin{pmatrix} \overrightarrow{e} \times \overrightarrow{r} \end{pmatrix} \times \vec{e}$$

Find the solution of question 33 and 34 on the basis of following statement:

The displacement of a moving particle at any time is

$$x = a \cos wt + l \sin wt$$

33. What is the maximum velocity of particle?

(A)
$$w(a+l)$$

(B)
$$w(a^2+l^2)^{\frac{1}{2}}$$

$$(C)$$
 $w(al)$

(D)
$$\frac{w}{a+l}$$

34. What is the maximum acceleration?

(A)
$$w^2(a + l)$$

(B)
$$w^2(a^2-l^2)^{\frac{1}{2}}$$

(C)
$$w^2 \sqrt{a^2 + l^2}$$

(D)
$$w^2ab$$

P.C.-18-PHY. SCI.-II/850

Find the solution of questions 35 and 36 on the basis of following statement:

Consider the propagation of electromagnetic waves in a linear, homogeneous and isotropic material medium with electric permittivity ∈, and magnitude permebility as:

- 35. For a plane wave of angular frequency w and propagation vector \overrightarrow{k} propagating in the medium Maxwell's equations reduce to:
 - (A) $\overrightarrow{k}.\overrightarrow{E} = 0$; $\overrightarrow{k}.\overrightarrow{H} = 0$; $\overrightarrow{k} \times \overrightarrow{E} = w \in H$; $\overrightarrow{k} \times \overrightarrow{H} = -w\mu \overrightarrow{E}$
 - (B) $\overrightarrow{k}.\overrightarrow{E} = 0$, $\overrightarrow{k}.H = 0$, $\overrightarrow{k} \times \overrightarrow{E} = -w \in H$; $\overrightarrow{k} \times H = -w\mu E$
 - (C) $\overrightarrow{k}.\overrightarrow{E} = 0$; $\overrightarrow{k}.H = 0$; $\overrightarrow{k} \times \overrightarrow{E} = -wuH$; $\overrightarrow{k} \times H = w \in \overrightarrow{E}$
 - (D) $\overrightarrow{k}.\overrightarrow{E} = 0$; $\overrightarrow{k}.\overrightarrow{H} = 0$; $\overrightarrow{k} \times \overrightarrow{E} = w\mu H$; $\overrightarrow{k} \times \overrightarrow{H} = -w \in \overrightarrow{E}$
- 36. If \in and μ assume negative values in a certain frequency range, Then the directions of the propagation vector \overrightarrow{k} and the poynting vector \overrightarrow{S} in that frequency range are related as:
 - (A) $\stackrel{\rightarrow}{k}$ and $\stackrel{\rightarrow}{S}$ are parallel.
- (B) $\stackrel{\rightarrow}{k}$ and $\stackrel{\rightarrow}{S}$ are anti-parallel.
- (C) $\stackrel{\rightarrow}{k}$ and $\stackrel{\rightarrow}{S}$ are perpendicular to each other.(D) $\stackrel{\rightarrow}{k}$ and $\stackrel{\rightarrow}{S}$ make an angle that depends on the magnitude of $|\epsilon|$ and $|\mu|$.

Find the solution of questions 37 and 38 on the basis of following statement:

A free particle of mass m moves along the x direction. At $\epsilon = 0$, the normalized wave function

of the particle is given by $\psi(X,0) = \frac{1}{(2 \cap \alpha)^{\frac{1}{4}}} C \times P \left[-\frac{x^2}{4\alpha^2} + ix \right]$, where α is a real constant.

- 37. The expectation value of the momentum, in this state is:
 - (A) ħα

(B) $\hbar \sqrt{\alpha}$

(C) a

(D) $\hbar / \sqrt{\alpha}$

38. The expectation value of the particle energy is:

$$(A) \frac{\hbar^2}{2m} \frac{1}{2\alpha^{\frac{3}{2}}}$$

(B)
$$\frac{\hbar^2}{2m}\alpha^2$$

(C)
$$\frac{\hbar^2}{2m} \frac{4\alpha^2 + 1}{4\alpha^{\frac{3}{2}}}$$

(D)
$$\frac{\hbar^2}{8m\alpha^{\frac{3}{2}}}$$

Ultraviolet catastrophe of classical physics was resolved by Max Planck in 1900, by introducing a constant (h) named after him:

39. According to Planck the oscillators in the cavity walls have the following distribution of energies:

(A)
$$\in_n = \left(n + \frac{1}{2}\right) hv$$
; $n = 0, 1, 2, ...$

(B)
$$\epsilon_n = n \ h \ v; \ n = 1,2,3,...$$

(C)
$$\epsilon_n = n h v$$
; $n = 0,1,2,...$

(D)
$$\in_n = \left(n + \frac{1}{2}\right)hv$$
; $n = 1,2,3,...$

40. According to Planck actual average energy per standing wave:

$$(A) \in = kT$$

(B)
$$\in = hv$$

(C)
$$\in \frac{hv}{e^{hv/kT}+1}$$

(D)
$$\in = \frac{hv}{e^{hv/kT} - 1}$$

(m) Specific gravity

(n) Gravitational Constant

- 41. Match the following:
 - (i) Dimensionless constant
 - (ii) Dimensionless variables
 - (iii) Dimensional Constant

 - (iv) Dimensional Variables
 - (i) (ii)
 - (A)
 - (B)
 - (C)
- (D)

(iii)

p 0

(iv)

m

- (o) Impulse
- (p) π
- m
- m n
- P.C.-18-PHY. SCI.-II/850

			units of :				
(i)	Boltzma	ann Cons	stant			(m) $\frac{N}{A^2}$	
(ii)) Planck's	s Constar	nt			(n) $\frac{C^2}{Nm^2}$	
(iii) Permitti	ivity of fi	ree space			(o) $\frac{1}{K}$	
(iv) Permeal	hility of 1	free space			(p) Js	
	(i)	(ii)	(iii)	(iv)		(h) 12	
(A)		n	0	р			
(B)	100	p	n	m			
(C)	p	n	m	0			
(D)) 0	n	m	р			
(i)	List-l sin kw					List-II (m) A constant	
(i) (ii)						List-II (m) A constant (n) Exponential function	
(ii)	sin kw w				((m) A constant	
(ii) (iii)	sin kw w e-jwd				((m) A constant (n) Exponential function	
(ii) (iii)	$\frac{\sin kw}{w}$ e^{-jwt} $\frac{1}{(jw+2)^2}$				((m) A constant n) Exponential function o) t-multiplied exponential fucntion	
(ii) (iii) (iv)	$\frac{\sin kw}{w}$ e^{-jwt} $\frac{1}{(jw+2)^2}$	(ii)	(iii)	(iv)	((m) A constant n) Exponential function o) t-multiplied exponential fucntion p) Rectangular Pulse	
(ii) (iii) (iv) (A)	$\frac{\sin kw}{w}$ e^{-jwd} $\frac{1}{(jw+2)^2}$ $k \delta(w)$	(ii) q	(iii) •	(iv) m	((m) A constant n) Exponential function o) t-multiplied exponential fucntion p) Rectangular Pulse	
(ii) (iii) (iv) (A) (B)	$\frac{\sin kw}{w}$ e^{-jwd} $\frac{1}{(jw+2)^2}$ $k \delta(w)$ (i) p	1 134 4			((m) A constant n) Exponential function o) t-multiplied exponential fucntion p) Rectangular Pulse	
(ii) (iv) (A) (B) (C)	$\frac{\sin kw}{w}$ e-jwd $\frac{1}{(jw+2)^2}$ k $\delta(w)$ (i) p p o	q q p	o o n	m n m	((m) A constant n) Exponential function o) t-multiplied exponential fucntion p) Rectangular Pulse	
(ii) (iii) (iv) (A) (B)	$\frac{\sin kw}{w}$ e^{-jwd} $\frac{1}{(jw+2)^2}$ $k \delta(w)$ (i) p	q q	0	m n	((m) A constant n) Exponential function o) t-multiplied exponential fucntion p) Rectangular Pulse	

- 44. Match the following:
 - (i) Conservative Force
 - (ii) Non-Conservative Force
 - (iii) Harmonic and Conservative Force
 - (iv) Anharmonic and conservative
 - (i) (ii) (iii) (iv)
 (A) p o m n
 (B) o p m n
 - (C) p o n m

n

m

45. Match the following:

(i)
$$\left[\stackrel{\wedge}{A}, \stackrel{\wedge}{B} + \stackrel{\wedge}{C} \right]$$

(D)

(ii)
$$\left[\stackrel{\wedge}{A} + \stackrel{\wedge}{B}, \stackrel{\wedge}{C} \right]$$

(iii)
$$\left[\hat{A}, \hat{B} \hat{C} \right]$$

(iv)
$$\left[\stackrel{\wedge}{A} \stackrel{\wedge}{B}, \stackrel{\wedge}{C} \right]$$

- (i) (ii) (iii) (iv) A) m n o p
- (C) n m o p (D) n m n o
- 46. Match the following:
 - (i) Lorentz condition
 - (ii) Coulomb gauge condition
 - (iii) The differential form of Gouss's in C.G.S. system is
 - (iv) Poisson's equation

- (m) Simple pendulum under going small oscillations
- (n) Simple pendulum under going Large oscillations
- (o) Frictional Forces
- (p) Coulombian Force

(m)
$$\left[\hat{A},\hat{B}\right] + \left[\hat{A},\hat{C}\right]$$

(n)
$$\left[\hat{A},\hat{C}\right]+\left[\hat{B},\hat{C}\right]$$

(o)
$$\left[\hat{A},\hat{C}\right]\hat{B}+\hat{A}\left[\hat{B},\hat{C}\right]$$

(p)
$$\left[\hat{A},\hat{B}\right]\hat{C}+\hat{B}\left[\hat{A},\hat{C}\right]$$

(m)
$$\nabla^2 V = -4\pi\rho$$

(n)
$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = 4\pi\rho$$

(o)
$$\overrightarrow{div} \overrightarrow{A} = 0$$

(p)
$$div \overrightarrow{A} + \mu \in \frac{\partial \phi}{dt} = 0$$

- (A) m
- (B)
- m
- (C) (D) m
- 47. Match the following:
 - (i) Rn Junction diode

(ii) Zener diode

(iii) pnp Transistor

(iv) npn transistor

- - (ii) (iii) (iv)
- (i) (A) n m
- (B) m n
- (C) m n
- (D) m
- 48. Match the following; where F is Helmholtz Free energy, H is enthalpy and other terms have their usual meaning:
 - (i) P

(m) $-\left(\frac{\partial F}{\partial T}\right)_V$

(ii) T

(n) $\left(\frac{\partial H}{\partial p}\right)_{S}$

(iii) V

(o) $\left(\frac{\partial H}{\partial S}\right)_V$

(iv) S

		(i)	(ii)	(iii)	(iv)				
	(A) m	p	n	o				
	(B) n	m	p	o				
	· (C) o	p	n	m				
	(D) p	. 0	n	m				
49	. Ma	atch the I	_agrangia	n of the fo	ollowing p	ohysical	systems:		
	(i)	Linear	Harmonio	o Oscillate	or .	(n	1) $\frac{1}{2}mr^2(\dot{\theta}^2 + \sin^2\theta\dot{\theta})$	$(-1)^2 - mgr \cos \theta$	Million The Committee of the Committee o
	(ii)	Simple	pendulur	'n		(n	$\frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$		
	(iii) Spheric	cal pendul	um		(o)	$\frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 +$	<u>k</u> <u>r</u>	
	(iv)	Particle	moving	under a ce	entral force	e (p)	$\frac{1}{2}ml^2\dot{\theta}^2 = mgl(1-\epsilon)$	cosθ)	
		(i)	(ii)	(iii)	(iv)				
	(A)	m	p .	'n	o				
	(B)	m	o	p	n				
	(C)	n ·	p	m	o				
	(D)	n	p	o	m				
50.	Mat	tch the B	oolean ex	pression o	of column	I with o	orresponding logi	c operator on	Column II:
		Column					Column II	-	
	·(i)	$(A^{\dagger}B^{\dagger})^{\dagger}$			•	(m)	XOR		
	(ii)	$(A+B^{\dagger})$	(A¹+B)			(n)	AND		
	(iii)	(A + B)	(A^1+B^1)			(o)	XNOR		
	(iv)	(A^1+B^1)	1			(p)	OR		
		(i)	(ii)	(iii)	(iv)				
	(A)	o	m	р	n				
	(B)	p	0	m	n		•		
	(C)	n	m	0	р				5%
	(D)	m	n n	p	0				
P.C.	18-P	HY. SCI.	II/850			13			P.T.O.

(ii) (iii) (iv)