Percentages

Formulae

Percentage

Reciprocal to percentage:

$$
\begin{array}{llll}
\frac{1}{2}=50 \% & \frac{1}{4}=25 \% & \frac{1}{8}=12.5 \% & \frac{1}{16}=6.25 \% \\
\frac{1}{3}=33.33 \% & \frac{1}{6}=16.67 \% & \frac{1}{12}=8.33 \% & \frac{1}{24}=4.16 \% \\
\frac{1}{5}=20 \% & \frac{1}{10}=10 \% & \frac{1}{20}=5 \% & \frac{1}{15}=6.67 \% \\
\frac{1}{7}=14.28 \% & \frac{1}{14}=7.14 \% & \frac{1}{28}=3.57 \% & \\
\frac{1}{9}=11.11 \% & \frac{1}{11}=9.09 \% & \frac{1}{18}=5.55 \% & \frac{1}{22}=4.54 \% \\
\frac{1}{13}=7.69 \% & \frac{1}{17}=5.88 \% & & \\
\frac{1}{19}=5.25 \% & \frac{1}{20}=5 \% & \frac{1}{21}=4.75 \% &
\end{array}
$$

Introduction to percentages:

Percentage to Fraction
$20 \%=\frac{20}{100}=\frac{1}{5}$
$35 \%=\frac{35}{100}=\frac{7}{20}$
Fraction to Percentage
$\frac{1}{4}=\frac{1}{4} \times 100=25 \%$
$\frac{7}{8}=\frac{7}{8} \times 100=87.5 \%$

Percentage increase and decrease:

Fraction for Percentage Increase
Increase of 20%
$20 \%=\frac{1}{5}$
\therefore New value $=\left(1+\frac{1}{5}\right) \times$ Original Value $=\frac{6}{5} \times$ Original Value
Fraction for Percentage Decrease
Decrease of 14.28%
$14.28 \%=\frac{1}{7}$
\therefore New value $=\left(1-\frac{1}{7}\right) \times$ Original Value $=\frac{6}{7} \times$ Original Value

Percentage Offset:

If the price of the petrol is increased by 14.28%. By how much should you reduce your consumption to keep the expenses constant?
Let Price $=1$, Consumption $=1 \Rightarrow$ Expenses $=1 \times 1=1$
$\mathrm{P} \times \mathrm{C}=\mathrm{P}^{\prime} \times \mathrm{C}^{\prime} \Rightarrow 1 \times 1=\frac{8}{7} \times \mathrm{C}^{\prime}$
$\therefore \mathrm{C}^{\prime}=\frac{7}{8}$
Consumption to be reduced $=\left(1-\frac{7}{8}\right)=12.5 \%$

Percentage change:

If A is 20% less than B, then B is \qquad \% more than A.
$A=\frac{4}{5} B \Rightarrow B=\frac{5}{4} A$
$\therefore B$ is $\left(1+\frac{1}{4}\right) \times A$
$\therefore B$ is $\frac{1}{4}$ more than A.
$\therefore \mathrm{B}$ is 25% more than A .

Successive percentage change:

If a change of $a \%$ is followed by another change of $b \%$, then
Net Change $=a \%+b \%+\left(\frac{a b}{100}\right) \%$

gradeup

Gradeup Achievers' Corner

