

Rajasthan RVUNL

Electrical Engineering

Microprocessor and Microcontroller

100 Days Important Formula Notes

Sahi Prep Hai Toh Life Set Hai

www.gradeup.co

MICROPROCESSOR & MICROCONTROLLER (FORMULA NOTES)

Microprocessor: A microprocessor includes ALU, register arrays and control circuits on a single chip. **Microcontroller:** A device that includes microprocessor, memory and input and output signal lines on a single chip, fabricated using VLSI technology.

Architecture of 8085 Microprocessor

8085 MPU:

- 8 bit general purpose microprocessor capable of addressing 64 K of memory.
- It has 40 pins, requires +5V single power supply and can operate with 3 MHz single phase clock.

Accumulator: Is an 8 bit register that is used to perform arithmetic and logic functions.

Carry Flag (CY): If an arithmetic operation result in a carry or borrow, the CY flag is set, otherwise it is reset.

Parity Flag (P):

If the result has au even number of 1s, the flag is set, otherwise the flag is reset.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Auxiliary Carry (AC): In an arithmetic operation

- If carry is generated by D₃ and passed to D₄ flag is set.
- Otherwise, it is reset.

Zero Flag (Z): Zero Flag is set to 1, when the result is zero otherwise it is reset.

Sign Flag (S): Sign Flag is set if bit of the result is 1. Otherwise, it is reset.

Program counter (PC): It is used to store the I6 bit address of the next byte to be fetched from the memory or address of the next instruction to be executed.

Stack Pointer (SP): It is 16-bit register used as a memory pointer. It points to memory location in Read/Write memory which is called as stack.

REGISTER ARRAY

The register array can be categorized as:

8085 Signals:

Address lines: There are 16 address line $AD_0 - AD_7$ and $A_8 \square \square A_{15}$ to identify the memory locations.

- In memory mapped input ; input Devices are treated as memory locations. You can connect max of 65536 devices in this technique.
- In input mapped input, input devices are identified by separate 8-bit address, same address can be used to identify input & output device.
- Max of 256 input & 256 output devices can be connected.

Programmable Interfacing Devices:

- $8185 \rightarrow$ Programmable peripheral interface with 256 bytes RAM and 16-bits counter.
- $8255 \rightarrow Programmable$ interface adaptor.
- $8253 \rightarrow Programmable interval timer.$
- 8251 \rightarrow Programmable Communication Interfacing Device (USART).
- 8257 \rightarrow Programmable DMA controller (4-channel)
- $8259 \rightarrow Programmable Interrupt controller$
- 8272 \rightarrow Programmable Floppy Disk controller.
- CRT controller
- Key board and Display interfacing Device.

Rajasthan RVUNL

A Technical Course for AEN & JEN (Electrical)

	CALL & RET	PUSH & POP
1.	When CALL	Programmer use PUSH to save the
	executes, µp	contents rp on stack.
	automatically stores	
	16 bits address of	
	instruction next to CALL on the stack.	
2.	CALL executed, SP decremented by 2	PUSH executes "SP" decremented
		by ``2″
3.	RET transfers	Same here but to specific "rp".
	contents of top 2 of SP to PC	
4.	RET executes "SP" incremented by 2.	Same here

CLASSIFICATION OF INSTRUCTIONS SET OF 8085 MICROPROCESSOR

9.1. Symbols and Abbreviations used in Instruction Sets:

S.No.	Symbol/ Abbreviations	Meaning
1.	Address	16-bit address of the memory location
2.	Data	8-bit data
3.	Data 16	16-bit data
4.	R, R1, R2	One of the registers A, B, C, D, E, H and L
5.	A	Accumulator
6.	HL	Register pair HL
7.	BC	Register pair BC
8.	DE	Register pair DE
9.	PSW	Program Status Word

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

10.	М	Memory content/ locations whose address is in HL pair
11.	н	Appearing at the end of a group of digits specifies hexadecimal
		number
12.	R _p	One of the register pair. B represents BC pair; B is high order
		register and C is low order register
13.	Rн	The high order register of a register pair
14.	RL	The low order register of a register pair
15	PC	16-bit program counter, PCH is high order 8-bits and PCL is low
15.		order 8-bits of register PC
16.	CS	Carry Status
17.	[]	The contents of a register identified within the bracket
1.9	[[]]	The contents of the memory location whose address is in the
10.		register pair identified within brackets
19.	^	AND operation
20.	V	OR operation
21.	\forall or \oplus	Exclusive-OR operation
22.	<i>←</i>	Move data in the direction of arrow
23.	\Leftrightarrow	Exchange contents
24.	A, B, C, D, E, H, L	8-bit register

Rotate Instruction:

RLC: Each bit shifted to adjacent left position. D7 becomes D0.

CY flag modified according to D7.

RAL: Each bit shifted to adjacent left position. D7 becomes CY and CY becomes D0.

ROC: CY flag modified according D₀.

RAR: D₀ becomes CY and CY becomes D₇.

CALL and Return Instructions:

- CALL 18T states SRRWW
- CC Call on carry 9 18 states
- CM Call on minus 9-18
- CNC Call on no carry
- CZ Call on zero; CNZ call on non zero

CP - Call on +ve

CPE - Call on even parity

CPO – Call on odd parity

Rajasthan RVUNL

A Technical Course for AEN & JEN (Electrical)

RET : 10T RC :6/12 `t' states

Jump Instruction:

JMP – 10T

JC – Jump on Carry 7/10T

States JNC – Jump on no carry

- JZ Jump on zero
- JNZ Jump on non zero
- JP Jump on positive
- JM Jump on Minus
- JPE Jump on even parity
- JPO Jump on odd parity.
- PCHL : Move HL to PC 6T
- PUSH: 12T ; POP : 10T
- SHLD: address : store HL directly to address 16T
- SPHL: Move HL to SP 6T
- STAX: R_p store A in memory 7T
- STC: Set carry 4T
- XCHG: exchange DE with HL "4T"

XTHL: Exchange stack with HL 16T

- For "AND" operation "AY" flag will be set and "CY" Reset
- For "CMP" if A < Reg/mem:

 $CY \rightarrow 1 \& Z \rightarrow 0$ (Nothing but A - B)

A > Reg/mem: CY \rightarrow 0 & Z \rightarrow 0

A > Reg/mem: $Z \rightarrow 1 \& Z \rightarrow 0$

- "DAD" Add HL + RP (10T) \rightarrow fetching, busidle, busidle
- DCX, INX won't effect any flags. (6T)
- DCR, INR effect all flags except carry flag. "CY" wont be modified
- "LHLD" load "HL" pair directly
- "RST" \rightarrow 12T states
- SPHL, RZ, RNZ..., PUSH, PCHL, INX, DCX, CLL \rightarrow fetching has 6T states
- PUSH 12T; POP 10T

Hardware Interrupts:

RST n	Vectored address	
RST 4.5 (TRAP)	0024 H	
RST5 5	002CH	

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

RST 6.5	0034 H
RST 7.5	0036 H
INTR	Non-vectored

Apart from these hardware interrupts there are eight software interrupt present in 8085 microprocessor. All the software interrupts are vectored interrupt.

Software interrupts:

RST n	Vectored address
RST 0	0000H
RST 1	0008 H
RST 2	0010 H
RST 3	0018 H
RST 4	0020 H
RST 5	0028 H
RST 6	0030 H
RST 7	0038 H

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)