Rajasthan RVUNL

Electrical Engineering

Microprocessor and Microcontroller

100 Days
Important Formula Notes

MICROPROCESSOR \& MICROCONTROLLER (FORMULA NOTES)

Microprocessor: A microprocessor includes ALU, register arrays and control circuits on a single chip. Microcontroller: A device that includes microprocessor, memory and input and output signal lines on a single chip, fabricated using VLSI technology.

Architecture of $\mathbf{8 0 8 5}$ Microprocessor

8085 MPU:

- 8 bit general - purpose microprocessor capable of addressing 64 K of memory.
- It has 40 pins, requires +5 V single power supply and can operate with $3-\mathrm{MHz}$ single phase clock.

Accumulator: Is an 8 bit register that is used to perform arithmetic and logic functions.

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S Z AC P CY | | | | | | | |

Carry Flag (CY): If an arithmetic operation result in a carry or borrow, the CY flag is set, otherwise it is reset.

Parity Flag (P):

If the result has au even number of 1 s , the flag is set, otherwise the flag is reset.

A Technical Course for AEN \& JEN (Electrical)

Auxiliary Carry (AC): In an arithmetic operation

- If carry is generated by D_{3} and passed to D_{4} flag is set.
- Otherwise, it is reset.

Zero Flag (Z): Zero Flag is set to 1 , when the result is zero otherwise it is reset.
Sign Flag (S): Sign Flag is set if bit of the result is 1. Otherwise, it is reset.
Program counter (PC): It is used to store the 16 bit address of the next byte to be fetched from the memory or address of the next instruction to be executed.

Stack Pointer (SP): It is 16 -bit register used as a memory pointer. It points to memory location in Read/Write memory which is called as stack.

REGISTER ARRAY

The register array can be categorized as:

8085 Signals:

Address lines: There are 16 address line $A D_{0}-A D_{7}$ and $A_{8} \square \square A_{15}$ to identify the memory locations.

- In memory mapped input ; input Devices are treated as memory locations. You can connect max of 65536 devices in this technique.
- In input mapped input, input devices are identified by separate 8-bit address, same address can be used to identify input \& output device.
- Max of 256 input \& 256 output devices can be connected.

Programmable Interfacing Devices:

- $8185 \rightarrow$ Programmable peripheral interface with 256 bytes RAM and 16 -bits counter.
- $8255 \rightarrow$ Programmable interface adaptor.
- $8253 \rightarrow$ Programmable interval timer.
- $8251 \rightarrow$ Programmable Communication Interfacing Device (USART).
- $8257 \rightarrow$ Programmable DMA controller (4-channel)
- $8259 \rightarrow$ Programmable Interrupt controller
- $8272 \rightarrow$ Programmable Floppy Disk controller.
- CRT controller
- Key board and Display interfacing Device.

	CALL \& RET	PUSH \& POP
1.	When CALL executes, $\mu \mathrm{p}$ automatically stores 16 bits address of instruction next to CALL on the stack.	Programmer use PUSH to save the contents rp on stack.
2.	CALL executed, SP decremented by 2	PUSH executes "SP" decremented by "2"
3.	RET transfers contents of top 2 of SP to PC	Same here but to specific "rp".
4.	RET executes "SP" incremented by 2.	Same here

CLASSIFICATION OF INSTRUCTIONS SET OF 8085 MICROPROCESSOR

9.1. Symbols and Abbreviations used in Instruction Sets:

S.No.	Symbol/ Abbreviations	Meaning
1.	Address	16 -bit address of the memory location
2.	Data	8 -bit data
3.	Data 16	16 -bit data
4.	R, R1, R2	One of the registers A, B, C, D, E, H and L
5.	A	Accumulator
6.	HL	Register pair HL
7.	BC	Register pair BC
8.	DE	Register pair DE
9.	PSW	Program Status Word

Rajasthan RVUNL

A Technical Course for AEN \& JEN (Electrical)

10.	M	Memory content/ locations whose address is in HL pair
11.	H	Appearing at the end of a group of digits specifies hexadecimal number
12.	R_{p}	One of the register pair. B represents BC pair; B is high order register and C is low order register
13.	R_{H}	The high order register of a register pair
14.	R_{L}	The low order register of a register pair
15.	PC	16 -bit program counter, PCH is high order 8-bits and PCL is low order 8-bits of register PC
16.	CS	Carry Status
17.	[]	The contents of a register identified within the bracket
18.	$[[]]$	The contents of the memory location whose address is in the register pair identified within brackets
19.	\wedge	AND operation
20.	V	OR operation
21.	\forall or \oplus	Exclusive-OR operation
22.	\leftarrow	Move data in the direction of arrow
23.	\Leftrightarrow	Exchange contents
24.	A, B, C, D, E, H, L	8-bit register

Rotate Instruction:

RLC: Each bit shifted to adjacent left position. D7 becomes Do.
CY flag modified according to D7.
RAL: Each bit shifted to adjacent left position. D_{7} becomes CY and CY becomes D_{0}.
ROC: CY flag modified according D_{0}.
RAR: D_{0} becomes CY and CY becomes D_{7}.

CALL and Return Instructions:

CALL - 18T states SRRWW
CC - Call on carry 9-18 states
CM - Call on minus 9-18
CNC - Call on no carry
CZ - Call on zero; CNZ call on non zero
CP - Call on +ve
CPE - Call on even parity
CPO - Call on odd parity

RET : 10T
RC : 6/12 't' states

Jump Instruction:

JMP - 10T
JC - Jump on Carry 7/10T
States JNC - Jump on no carry
JZ - Jump on zero
JNZ - Jump on non zero
JP - Jump on positive
JM - Jump on Minus
JPE - Jump on even parity
JPO - Jump on odd parity.

- PCHL : Move HL to PC 6T
- PUSH: 12T ; POP: 10T
- SHLD: address : store HL directly to address 16T
- SPHL: Move HL to SP 6T
- STAX: R_{p} store A in memory 7T
- STC: Set carry 4T
- XCHG: exchange DE with HL " $4 \mathrm{~T}^{\prime \prime}$

XTHL: Exchange stack with HL 16T

- For "AND" operation "AY" flag will be set and "CY" Reset
- For "CMP" if A < Reg/mem:
$\mathrm{CY} \rightarrow 1 \& \mathrm{Z} \rightarrow 0$ (Nothing but A-B)
A > Reg/mem: $\mathrm{CY} \rightarrow 0 \& Z \rightarrow 0$
A > Reg/mem: $Z \rightarrow 1 \& Z \rightarrow 0$
- "DAD" Add HL + RP (10T) \rightarrow fetching, busidle, busidle
- DCX, INX won't effect any flags. (6T)
- DCR, INR effect all flags except carry flag. "CY" wont be modified
- "LHLD" load "HL" pair directly
- "RST" \rightarrow 12T states
- SPHL, RZ, RNZ..., PUSH, PCHL, INX, DCX, CLL \rightarrow fetching has 6T states
- PUSH-12T; POP - 10T

Hardware Interrupts:

RST \mathbf{n}

RST 4.5 (TRAP)
RST5.5

Vectored address

0024 H
002CH

RST 6.5
0034 H
RST 7.5
INTR 0036 H

Apart from these hardware interrupts there are eight software interrupt present in 8085 microprocessor. All the software interrupts are vectored interrupt.

Software interrupts:

RST n
RST 0
RST 1
RST 2
RST 3
RST 4
RST 5
RST 6
RST 7

Vectored address

0000H
0008 H
0010 H
0018 H
0020 H
0028 H
0030 H
0038 H

