Logarithms

Formulae

Logarithm:

Logarithm, the exponent or power to which a base must be raised to yield a given number. Expressed mathematically, x is the logarithm of n to the base a if $a^{x}=n$, in which case one writes $x=\log _{a} n$

For example, $2^{3}=8$; therefore, 3 is the logarithm of 8 to base 2 , or $3=$ $\log _{2} 8$. In the same fashion, since $10^{2}=100$, then $2=\log _{10} 100$.

Another way to understand this would be:
If $a^{x}=N$, then $x=\log _{a} N$
Logarithm of a negative number or zero is not defined.
Natural logarithm: base of the number is "e"
Common logarithm: Base of the number is 10 . When the base is not mentioned, it can be taken as 10 .

Properties of logarithm:

- $\log _{\mathrm{a}} 1=0$
- $\log _{a} a=1$
- $\log _{a} x y=\log _{a} x+\log _{a} y$
- $\log _{a}(X / Y)=\log _{a} X-\log _{a} Y$
- $\log _{a} b * \log _{b} a=1$
- $b^{\log _{b} x}=x$
- $\log _{a} x=1 / \log _{x} a$
- $\log _{\mathrm{a}} b=\log _{\mathrm{c}} b * \log _{\mathrm{a}} \mathrm{C}$
- $\log _{a} b^{c}=c * \log _{a} b$
- $x^{\log _{b} y}=y^{\log _{b} x}$
- $\log _{\mathrm{a}} \sqrt[n]{b}=\left(\log _{\mathrm{a}} \mathrm{b}\right) / \mathrm{n}$
- If $0<a<1$, then $\log _{a} x<\log _{a} y$ (if $x>y$)
- If $a>1$ then $\log _{a} x>\log _{a} y$ (if $x>y$)

SOME POINTS TO REMEMBER:

- $\log (x-y) \neq \log x-\log y$
- $\log (x+y) \neq \log x+\log y$

log values of some numbers (base 10):

Number	Value
1	0
2	0.301
3	0.4771
4	0.602
5	0.698
6	0.778
7	0.845
8	0.903
9	0.954

gradeup

Gradeup Achievers' Corner

