Linear Equations

Formulae

Linear equation:

- A mathematical statement that has an equal to the "=" symbol is called an equation. Linear equations are equations of degree 1.
- A linear equation is an equation which gives straight line when plotted on a graph.
- Linear equations can be of one variable or two variable or three variable.
- Let a, b, c and d are constants and x, y and z are variables. A general form of single variable linear equation is $a x+b=0$. A general form of two variable linear equation is $a x+b y=c$. A general form of three variable linear equation is $a x+b y+c z=d$.

Important points:

- The values of the variable that makes a linear equation true are called the solution or root of the linear equation.
- The solution of a linear equation is unaffected if the same number is added, subtracted, multiplied, or divided into both sides of the equation.
- The graph of a linear equation in one or two variables is a straight line.

Equations with two variables:

- Consider two equations $a x+b y=c$ and $m x+n y=p$. Each of these equations represent two lines on the $x-y$ co-ordinate plane. The solution of these equations is the point of intersection.
- If $\frac{a}{m}=\frac{b}{n} \neq \frac{c}{p}$ then the slope of the two equations is equal and so they are parallel to each other. Hence, no point of intersection occurs. Therefore no solution.
- If $\frac{\mathrm{a}}{\mathrm{m}} \neq \frac{\mathrm{b}}{\mathrm{n}}$ then the slope is different and so they intersect each other at a single point. Hence, it has a single solution.
- If $\frac{\mathrm{a}}{\mathrm{m}}=\frac{\mathrm{b}}{\mathrm{n}}=\frac{\mathrm{c}}{\mathrm{p}}$ then the two lines are same and they have infinite points common to each other. So, infinite solutions occurs

General procedure to solve linear equation:

- Aggregate the constant terms and variable terms
- For equations with more than one variable, eliminate variables by substituting equations in their place.
- Hence, for two equations with two variables x and y, express y in terms of x and substitute this in the other equation.

Example:

- Let $x+y=8$ and $x+3 y=12$,

Then $x=8-y$ (from equation 1) substituting this in equation 2 , We get $8-y+3 y=12$ Hence, $y=2$ and $x=6$.

Note:

For equations of the form $a x+b y=c$ and $m x+n y=p$, find the LCM of b and n. Multiply each equation with a constant to make the y term coefficient equal to the LCM. Then subtract equation 2 from equation 1.
Example: Let $2 x+3 y=13$ and $3 x+4 y=18$ are the given
equations (1) and (2)
LCM of 3 and 4 is 12 .
Multiplying (1) by 4 and (2) by 3,
We get $8 x+12 y=52$ and $9 x+12 y=54$.
(2) - (1) gives $x=2, y=3$

Gradeup Achievers' Corner

