gradeup

Rajasthan RVUNL

Electrical Engineering

Power System

100 Days
 Plan Formula Notes

POWER SYSTEM (FORMULA NOTES)

Work done $=$ F. $\mathrm{d} \cos \mathrm{a}$
Where F = force applied, d = displacement,
$\mathrm{a}=$ angle between F \& d
Energy: It is capacity to do the work.
Unit: watt second $1 \mathrm{w}-\mathrm{s}=1$ Joule $=1 \mathrm{~N}-\mathrm{m}$ (Newton - meters)
Electrical energy generally expressed in kilo watt hours (kwh)
$1 \mathrm{kwh}=3.6 \times 10^{6} \mathrm{~J}$
Kinetic energy (KE): $\frac{1}{2} m v^{2}$ (Jules)
Potential Energy (PE): Mgh (Jules)
Thermal Energy: Internal energy present in system by virtue of its temperature.
Unit: Calories $1 \mathrm{Cal}=4.186 \mathrm{~J}$
Power: it is time rate of change of energy
$P=\frac{d w}{d t}=\frac{d u}{d t} u=$ work, $w=$ energy
Unit: Watt 1 Watt = $1 \mathrm{~J} / \mathrm{s}$
Note: Electric motor ratings are expressed in horse power (hp)
$1 \mathrm{hp}=745.7 \mathrm{~W}$ and also 1 metric horse power $=735 \mathrm{Watt}$.
Electric parameter:
Let $v=\sqrt{2 \mathrm{~V}} \sin \omega t$
$\mathrm{i}=\sqrt{2} I \sin (\omega \mathrm{t}-\phi)$
where $\mathrm{v}=$ instantaneous voltage
$\mathrm{i}=$ instantaneous value current
$\mathrm{V}=$ rms value of voltage
In Phasor representation
$\mathrm{V}=\mathrm{V} \angle 0, \mathrm{i}=\mathrm{I} \angle-\varphi$

$S=P+j Q=V I \cos \phi+j V I \sin \phi V I^{*}$ (for this relation Q will be positive for lagging VAR)
Where $S=$ complex power of apparent power
$\mathrm{P}=$ Active power
$\mathrm{Q}=$ Reactive power

For balanced 3 phase system
$P=3\left|V_{P}\right|\left|I_{P}\right| \cos \varphi_{P}=\sqrt{3}\left|V_{L}\right|\left|I_{L}\right| \cos \phi_{P}$
$Q=3\left|V_{P}\right|\left|I_{P}\right| \sin \varphi_{P}=\sqrt{3}\left|V_{L}\right|\left|I_{L}\right| \cos \phi_{P}$
Where $\mathrm{V}_{\mathrm{L}}=$ line voltage
$V_{P}=$ phase voltage
Note: in Y connection $\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}} \& \mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{L}}$
Δ connection $V_{P}=V_{L} \& I_{P}=\frac{I_{L}}{\sqrt{3}}$
Hydro power:
P = pgWh (watt)
Where $\rho=$ water density ($100 \mathrm{~kg} / \mathrm{m}^{3}$)
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{W}=$ discharge rate $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$
$h=$ head of water

Tidal power

$\mathrm{P}=\rho \mathrm{gh}^{2} \mathrm{~A} / \mathrm{T}$ (watt)
Where $\mathrm{h}=$ tidal head
A = area of basin
$\mathrm{T}=$ period of tidal cycle
Wind power
$P=0.5 \rho A V^{3}$ (watt)
$\mathrm{P}=$ air density ($1201 \mathrm{~g} / \mathrm{m}^{3}$ at NTP)
$\mathrm{V}=$ Wind speed in (m / s)
A = Swept area by blade (m^{2})
Load Curve: It is graph between the power demands of the system w.r.t. to time.
(i) Base Load: The unvarying load which occur almost the whole day.
(ii) Peak load: The various peak demands of load over and above the base load.

Designation Capacity	Capital cost	Fuel cost	Typical annual load factor	Type of plant
Base load	High	Low	$65-75$	Nuclear, thermal
Peak load	Low	High	$5-10$	Gas based, small hydro, pump storage

Operational factors:

1. Demand Factor $=\frac{\text { Maximum demand }}{\text { Connected load }}$
2. Average load $=\frac{\text { energy consumedis a givenperiod }}{\text { Hoursinthat time period }}$
3. Load factor $=\frac{\text { Average demand }}{\text { Maximumload }}$
4. Diversity factor $=\frac{\text { sum of individual max demands }}{\text { Maximum demand onpower station }}$
5. Plant Capacity factor $=\frac{\text { Average demand }}{\text { Installed capcity }}$
6. Reserve Capacity = Plant capacity - max. demand
7. Plant use factor $=\frac{\text { Actual energy produced }}{\text { Plant capacity } \times \text { hours (theplanthasbeen in operation) }}$

Thermal Power Station:-

\rightarrow Thermal efficiency, $\eta_{\text {Thermal }}=\frac{\text { Heat equivalent of mech }- \text { energy Transmitted to Turbine shat }}{\text { Heat of coal combustion }}$
\rightarrow Thermal efficiency $=\eta_{\text {boiler }} \times \eta_{\text {turbine }}$
\rightarrow Overall efficiency, $\eta_{\text {overall }}=\frac{\text { Heat equvivalent of electricalo } / p}{\text { Heat of combustion of coal }}$
\rightarrow Overall efficiency, Thermal efficiency \times Electrical efficiency.
\rightarrow Energy output $=$ coal consumption \times calorific value $=$ coal consumption $\times 6500 \mathrm{k}$. cal

$$
\eta=\frac{\text { Outputink.cal }}{\text { Inputink.cal }}
$$

Water Power equation:-

Water Head: The difference of water level is called the water head.
Gross Head : The total head between the water level at inlet and tail race is called as gross head
Rated Head: Head utilized in doing work on the turbine
Net Head: It is the sum of the Rated Head and the loss of head in guide passage and entrance
$H=$ Head of water in meter
$\mathrm{Q}=$ Quantity of water in $\mathrm{m}^{3} / \mathrm{sec}$ or lit/sec.
$\mathrm{W}=$ specific gravity of water
$=1 \mathrm{~kg} / \mathrm{lit}$ when ' Q ' represented in lit/sec.
$=100 \mathrm{~kg} / \mathrm{m}^{3}$ when ' Q ' represented in $\mathrm{m}^{3} / \mathrm{sec}$.
$\eta=$ efficiency of the system
Effective work done $=W Q H \times \eta \mathrm{kg}-\mathrm{m} / \mathrm{sec}$.
\rightarrow Metric output $=\frac{\mathrm{WQH} \times \eta}{75}(\mathrm{H} . \mathrm{P})$
$1 \mathrm{H} . \mathrm{P}=75 \mathrm{~kg}-\mathrm{m} / \mathrm{sec}$
\rightarrow Metric output in watt $=\frac{\mathrm{WQH} \times \eta}{75} \times 735.5$
\rightarrow Output $=\frac{W Q H}{102} \times \eta \mathrm{kw}$
\rightarrow Volume of water available per annum $=$ catchment area \times Annual Rainfall
\rightarrow Electric energy generated $=$ weight \times head \times overall η.

GAS TURBINE POWER PLANT:

\rightarrow The thermal efficiency of gas turbine plant is about 22% to 25%
\rightarrow The air fuel ratio may be of the order of 60: 1 in this case.
\rightarrow Engine efficiency $\eta_{\text {engines }}=\frac{\eta_{\text {overall }}}{\eta_{\text {alt }}}$
\rightarrow Thermal efficiency $\eta_{\text {the }}=\frac{\eta_{\text {engine }}}{\text { mech. } \eta \text { of engInd }}$
\rightarrow Heat produced by fuel per day $=$ coal consumption/day \times calorific value

Terms and Definitions:-

1. Connected load :-

It is the sum of ratings in kilo watts of equipment installed in the consumer's premises

2. Demand :-

It is the load or power drawn from the source of supply at the receiving end averaged over a specified period.

3. Maximum Demand :-

Maximum demand (M.D) of a power station is the maximum load on the power station in a given period.

4. Average load :-

If the number of KWH supplied by a station in one daily average load.
Daily average load $=\frac{\text { KWHdeliverdinone day }}{24}$
Monthly average load $=\frac{K W H \text { deliveredin onemonth }}{30 \times 24}$
Yearly average load $=\frac{\text { KWHdeliveredinone year }}{365 \times 24}$

5. Plant capacity :-

It is the capacity or power for which a plant or station is designed. It should be slightly more than M.D. it is equal to sum of the ratings of all the generators in a power station

6. Firm Power :-

It is the power which should be always be available even under emergency

7. Prime Power :-

It is the maximum power (may be thermal or hydraulic or mechanical) continuously available for conversion into electrical power.

8. Dump power:-

This is the term usually used in hydro electric plant and it represents the power in excess of the load requirements. It is made available by surplus water.

9. Spill Power:-

Is that power which is produced during floods in a hydro power station.

10. Cold reserve:-

Is that reserve generating capacity which is not in operation but can be made available for service.

11. Hot reserve:-

It that reserve generating capacity which is in operation but not in service

12. Spinning reserve:-

Is that reserve generating capacity which is connected to bus-bars and is ready to take the load.

Load factor:-

It is defined as the ratio of number of units actually generated in a given period to the number of units that could have been generated with maximum demand.
\rightarrow Load factor $=\frac{\text { Average load or Averager Demand }}{\text { MaximumDemand. }}$
$=\frac{\text { Energy generated in a given period }}{(\text { Maximum Demand }) \times(\text { Hours of operaation in the given period })}$
\rightarrow The load factor will be always less than one (<1)

Demand factor:-

It is defined as the ratio of maximum demand on the station to the total connected load to the station.
$\rightarrow \therefore$ Demand factor $=\frac{\text { MaximumDemand on the station }}{\text { Total connectedload to the station }}$
\rightarrow Its value also will be always less than one (<1)
Diversity Factor:-
Diversity factor may be defined as "the sum of individual maximum demand to the station to the maximum demand on the power station".
\rightarrow Diversity factor $=\frac{\text { sum of individual consumersmaximum demand }}{\text { Maximum demandon the station. }}$
\rightarrow Its value will be always greater than one (>1)
Plant Factor or Plant Use Factor: -
Plant factor $=\frac{\text { station output inkwh }}{\sum\left(\mathrm{KW}_{1}\right) \mathrm{H}_{1}+\left(\mathrm{KW}_{2}\right) \mathrm{H}_{2}+\left(\mathrm{KW}_{3}\right) \mathrm{H}_{3}+\ldots}$
Where $\mathrm{KW}_{1}, \mathrm{KW}_{2}, \mathrm{KW}_{3}$ etc. are the kilowatt ratings of each generator and $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ etc.
are the number of hours for which they have been worked.
Capacity Factor or plant capacity factor or capability factor:-
\rightarrow It is defined as the ratio of average demand on the station to the maximum installed capacity.
i.e. capacity factor $=\frac{\text { Average demand on the station }}{\text { Max.installed capacity of the station }}$

\rightarrow Coincidence factor:-

It is the reciprocal of diversity factor and is always less than 1
\rightarrow Utilization factor $=\frac{\text { Maximum demand }}{\text { Plant capacity }}$
\rightarrow Operation factor $=\frac{\text { Servicehours }}{\text { Totalduration }}$
\rightarrow Use factor $=\frac{\text { Actual energy produced }}{\text { Plant capacity } \times \text { Time }(\mathrm{hrs}) \text { the plant has been in operation }}$

D.C. Distribution calculations

Uniformly loaded Distributor fed at one end.

\rightarrow Fig (a) shows the single lien diagram of a 2 - wire d. c. distributor $A B$ fed at one end A and loaded uniformly with i amperes per metre length.

Fig. (a)
\rightarrow Then the current at point c is.

$$
\begin{aligned}
& =\delta \mathrm{l}-\mathrm{ix} \text { amperes } \\
& =\mathrm{i}(\mathrm{I}-\mathrm{x}) \text { amperes. }
\end{aligned}
$$

\rightarrow Total voltage drop is the distributor up to point C is
$V=\int_{0}^{x} \operatorname{ir}(I-x) d x=\operatorname{ir}\left(I x-\frac{x^{2}}{2}\right)$
\rightarrow Voltage drop over the distributor $A B$

$$
=\left.\frac{1}{2} \mathrm{irl}\right|^{2}=\frac{1}{2} I R
$$

Where il = I, the total current entering at point A $r l=R$, the total resistance of the distributor.

Uniformly loaded distributor fed at both ends.

(i) Distributor fed at both ends with equal voltages

Current supplied from each feeding point $=\frac{91}{2}$

\rightarrow Voltage drop up to point $C=\frac{i r}{2}\left(I x-x^{2}\right)$
\rightarrow Max. voltage drop $=\frac{1}{8}$ IR
\rightarrow Min. voltage $=\mathrm{V}-\frac{\mathrm{IR}}{8}$ volts
(ii) Distributor fed at both ends with unequal voltages:-

The point of minimum potential C is situated at a distance x meters from the feeding point A.

Voltage drop in section $A C=\frac{i r x^{2}}{2}$ volts.

$\rightarrow X=\frac{V_{A}-V_{B}}{\text { irl }}+\frac{1}{2}$

Performance of Lines

\rightarrow By performance of lines is meant the determination of efficiency and regulation of lines.
The efficiency of lines is defined as
$\rightarrow \%$ efficiency $=\frac{\text { Power delivered at the receiving end }}{\text { Power sent from sendingend }} \times 100$
$\rightarrow \%$ efficiency $=\frac{\text { Power delivered at the receiving end }}{\text { Power delivered at the receivingend }+ \text { losses }} \times 100$
Where V_{r} 放 the receiving end voltage under no load condition and V_{r} the
Receiving end voltage under full load condition.
Effect of Earth on a 3 - φ lines :-

$\mathrm{S}_{\text {. }}$ No.	Line Description	R	L	X	C	Xc
1.	Length Increases	Increases	Increases	Increases	Increases	Decreases
2.	Distance of separation	No change	Increases	Increases	Decreases	Increases
3.	Radius of conductor	Decreases	Decreases	Decreases	Increases	Decreases
4.	Symmetrical spacing	Does not depend	Decreases	Decreases	Increases	Decreases
5.	Unsymmetrical spacing	Does not depend	Increases	Increases	Decreases	Increases
6.	Effect of earth is taken into account	No change	No change	No change	Increases	Decreases
7.	Height of the conductor increases	No change	No change	No change	Decreases	Increases

Short Transmission Line

\rightarrow The equivalent circuit and vector diagram for a short transmission line are shown in fig.
$V_{S}=\sqrt[v r]{1+\frac{2 I_{r} R \cos \phi_{r}}{V_{r}}+\frac{2 I_{r} X \sin \phi_{r}}{V_{r}}+\frac{I_{r}}{V_{r}^{2}}\left(R^{2}+X^{2}\right)}$
\rightarrow In practice the last term under the square root sign is generally negligible; therefore.
$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{r}}\left\{1+\left(\frac{2 \mathrm{I}_{\mathrm{r}} \mathrm{R}}{\mathrm{V}_{\mathrm{r}}} \cos \phi_{\mathrm{r}}+\frac{2 \mathrm{I}_{\mathrm{r}} \mathrm{X}}{\mathrm{V}_{\mathrm{r}}} \sin \phi_{\mathrm{r}}\right)\right\}^{1 / 2}$

The terms within the simple brackets is small as compared to unity. Using binomial expansion and limiting only to second term,
$V_{s} \simeq V_{r}+I_{r} R \cos \Phi_{r}+I_{r} X \sin \Phi_{r}$
\rightarrow The receiving end voltage under no load $V r^{\prime}$ is the same as the sending end voltage under full load condition.
$\%$ regulation $=\frac{V_{s}-V_{r}}{V_{r}} \times 100=\left(\frac{I_{r} R}{V_{r}} \cos \phi_{r}+\frac{I_{r} X}{V_{r}} \sin \phi_{r}\right) \times 100$
Regulation per unit $=\frac{\mathrm{I}_{\mathrm{r}} \mathrm{R}}{\mathrm{V}_{\mathrm{r}}} \cos \phi_{\mathrm{r}}+\frac{\mathrm{I}_{\mathrm{r}} \mathrm{X}}{\mathrm{V}_{\mathrm{r}}} \sin \phi_{\mathrm{r}}=\mathrm{V}_{\mathrm{r}} \cos \varphi_{r}+\mathrm{V}_{x} \sin \varphi_{r}$
\rightarrow Where V_{r} and V_{x} are the per unit values of resistance and reactance of the line.
$\mathrm{V}_{\mathrm{s}}=A \mathrm{~V}_{\mathrm{r}}+\mathrm{BI}_{\mathrm{r}}$
$\mathrm{I}_{\mathrm{s}}=C \mathrm{~V}_{\mathrm{r}}+\mathrm{DI}_{\mathrm{r}}$
$\left.A=\frac{V_{s}}{V_{r}} \right\rvert\, I_{r}=0$
This means A is the voltage impressed at the sending end per volt at the receiving end when receiving end is open. It is dimensionless.

$$
\left.B=\frac{V_{s}}{V_{r}} \right\rvert\, V_{r}=0
$$

B is the voltage impressed at the sending end to have one ampere at the short circuited receiving end. This is known as transfer impedance in network theory.

$$
\left.C=\frac{V_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{r}}} \right\rvert\, \mathrm{I}_{\mathrm{r}}=0
$$

C is the current in amperes into the sending end per volt on the open - circuited receiving end. It has the dimension of admittance.

$$
\left.D=\frac{I_{s}}{I_{r}} \right\rvert\, V_{r}=0
$$

D is the current at the sending end for one ampere of current at the short circuited receiving end \rightarrow The constants A, B, C, and D are related for a passive network as follow

$$
A D-B C=1
$$

\rightarrow The sending end voltage and current can be written from the equivalent network as,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{r}}+\mathrm{I}_{\mathrm{r}} \mathrm{Z} \\
& \mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{r}}
\end{aligned}
$$

\rightarrow The constants for short transmission lines are,

$$
\begin{aligned}
& A=1 \\
& B=Z \\
& C=0 \\
& D=1
\end{aligned}
$$

$\rightarrow \%$ regulation $=\frac{V_{S / A}-V_{r}}{V_{r}} \times 100$
$\rightarrow \% \eta=\frac{\text { Power received at the receivingend }}{\text { Power receivedper at the receivingend }+ \text { losses }} \times 100$
Where R is the resistance per phase of the line.

Medium Length Lines:-

\rightarrow Transmission lines with length between 80 km and 160 km are categorized as medium lines Where the parameters are assumed to be lumped.
\rightarrow The two configurations are known as nominal - T and nominal $-\pi$ respectively.

A, B, C, D constant for nominal - T

$$
\begin{aligned}
& A=1+\frac{Y Z}{2} \\
& B=Z\left(1+\frac{Y Z}{2}\right) \\
& C=Y
\end{aligned}
$$

$$
D=\left(1+\frac{Y Z}{2}\right)
$$

Nominal - π

$V_{r}^{\prime}=\frac{\left|V_{s}\right|\left(\frac{-2 j}{\omega C}\right)}{R+j X-\frac{j}{\omega C / 2}}$
$\%$ regulation $=\frac{V_{r} L_{v r}}{V_{r}} \times 100$
$\% \eta=\frac{P}{P+3 I_{1}^{2} R} \times 100$
A, B, C, D constants for nominal $-\pi$

$$
\begin{aligned}
& A=1+\frac{Y Z}{2} \\
& B=Z \\
& C=Y\left(1+\frac{Y Z}{4}\right) \\
& D=\left(1+\frac{Y Z}{2}\right)
\end{aligned}
$$

Long Transmission Lines :-

\rightarrow In case the lines are more than 160 km long

\rightarrow Let $Z=$ series impedance per unit length
$Y=$ shunt admittance per unit length
$I=$ length of line
Z = zl = total series impedance
$Y=y l=$ total shunt admittance.
$V=A e^{r x}+B e^{-r x}$
$I=\frac{I}{Z_{c}}\left(A e^{r x}-B e^{-r x}\right)$
$V=\frac{V_{r}+I_{r} Z_{c}}{2} e^{r x}+\frac{V_{r}-I_{r} Z_{c}}{2} e^{-r x}$
$I=\frac{1}{Z_{C}}\left[\frac{V_{r}+I_{r} Z_{C}}{2} e^{r x}-\frac{V_{r}-I_{r} Z_{C}}{2} e^{-r x}\right]$
$Z_{c}=\sqrt{\frac{z}{y}}=\sqrt{\frac{r+j \omega L}{g+j \omega C}}$
\rightarrow The propagation constant $r=\infty+j \beta$; the real part is known as attenuation constant and the quadrature component β the phase constant and is measured in radians per unit length.
$V=\frac{V_{r}+I_{r} Z_{C}}{2} e^{\alpha x} \cdot e^{j \beta x}+\frac{V_{r}-I_{r} Z_{C}}{2} e^{-\alpha x} \cdot e^{-j \beta x}$
$V_{s}=V_{r} \cos h r l+I_{r} Z_{c} \sin h r l$
$I_{s}=V_{r} \frac{\operatorname{sinhrl}}{Z_{C}}+I_{r} \cos h r l$
A $=\cosh \mathrm{rl}$
$B=Z_{c} \sinh r l$
$C=\frac{\operatorname{sinhrl}}{Z_{C}}$
$\mathrm{D}=\cosh \mathrm{rl}$
The equivalent Circuit Representation of a Long Line equivalent - π Representation.

Equivalent - T Representation of Long Line.

$$
\frac{z^{\prime}}{2}=\frac{z}{2} \frac{\operatorname{tanhrl} / 2}{r 1 / 2}
$$

Constants for Two networks in Tandem

equivalent $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{ll}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right]\left[\begin{array}{ll}A_{2} & B_{2} \\ C_{2} & D_{2}\end{array}\right]$

Constants for networks in parallel

$$
\text { Equivalent } \begin{aligned}
& \text { Single } \\
& \text { Network } \\
& \text { Parameters }
\end{aligned}\left\{\begin{array}{l}
A=\frac{A_{1} B_{2}+A_{2} B_{1}}{B_{1}+B_{2}} \\
B_{1}+B_{2} \\
A=D=\frac{B_{1}}{B_{2}+A_{2} B_{1}} \\
B_{1}+B_{2}
\end{array}=\frac{D_{1} B_{2}+D_{2} B_{1}}{B_{1}+B_{2}}, \begin{array}{l}
C=C_{1}+C_{2}+\frac{\left(A_{1}-A_{2}\right)\left(D_{2}-D_{1}\right)}{B_{1}+B_{2}}
\end{array}\right.
$$

FAULTS:

\rightarrow Percentage reactance $\% \mathrm{X}=\frac{\mathrm{IX}}{\mathrm{V}} \times 100 \quad \mathrm{I}=$ full load current

$$
\mathrm{V}=\text { phase voltage }
$$

$$
X=\text { reactance in ohms per phase }
$$

\rightarrow Alternatively percentage reactance (\%X) (an also be expressed in terms of KVA and KV under

$$
\%=\frac{(\mathrm{KVA})}{10(\mathrm{KV})^{2}}
$$

Where X is the reactance in ohms.
\rightarrow If X is the only reactance element in the circuit then short circuit current is given by

$$
\mathrm{I}_{\mathrm{sc}}=\frac{\mathrm{V}}{\mathrm{X}}=\mathrm{I} \times\left(\frac{100}{\% \mathrm{X}}\right)
$$

i.e short circuit current is obtained by multiplying the full load current by $100 / \% \mathrm{X}$

Short - circuit KVA $=$ Base KVA $\times \frac{100}{\% X}$

Symmetrical components in terms of phase currents:-

\rightarrow The unbalanced phase current in a 3-phase system can be expressed in terms of symmetrical components as under.
$\overrightarrow{\mathrm{IR}}=\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}+\overrightarrow{\mathrm{I}_{\mathrm{R} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{RO}}}$
$\overrightarrow{\mathrm{I}_{\mathrm{Y}}}=\overrightarrow{\mathrm{I}_{\mathrm{Y} 1}}+\overrightarrow{\mathrm{I}_{\mathrm{Y} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{YO}}}$
$\overrightarrow{\mathrm{I}_{\mathrm{B}}}=\overrightarrow{\mathrm{I}_{\mathrm{B} 1}}+\overrightarrow{\mathrm{I}_{\mathrm{B} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{BO}}}$
Where the positive phase current $\left(\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}, \overrightarrow{\mathrm{I}_{\mathrm{Y} 1}}, \& \overrightarrow{\mathrm{I}_{\mathrm{B} 1}}\right)$
Negative phase sequence currents $\left(\overrightarrow{\mathrm{I}_{\mathrm{R} 2}}, \overrightarrow{\mathrm{I}_{\mathrm{Y} 2}}, \& \overrightarrow{\mathrm{I}_{\mathrm{B} 2}}\right)$ and
Zero phase sequence currents ($\overrightarrow{\mathrm{I}_{\mathrm{RO}}}, \overrightarrow{\mathrm{I}_{\mathrm{YO}}}, \& \overrightarrow{\mathrm{I}_{\mathrm{BO}}}$)
\rightarrow The operator 'a' is one, which when multiplied to a vector rotates the vector through 120° in the anticlockwise direction.
$\rightarrow A=-0.5+j 0.866 \quad ; \quad a^{2}=-0.5-j 0.866$
$a^{3}=1$
\rightarrow Properties of operator ' a ' :
$1+a+a^{2}=0$
$a-a^{2}=j \sqrt{3}$
\rightarrow Positive sequence current $\overrightarrow{\mathrm{I}_{\mathrm{B} 1}}$ in phase B leads $\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}$ by 120° and therefore $\overrightarrow{\mathrm{I}_{\mathrm{B} 1}}=a \overrightarrow{\mathrm{I}_{\mathrm{R} 1}}$ similarly, positive sequence current in phase Y is 240° ahead of $\overrightarrow{I_{Y 1}}=a^{2} \overrightarrow{I_{R 1}}$
$\mathrm{I}_{\mathrm{R}}{ }^{\prime}=\mathrm{I}_{\mathrm{R} 1}{ }^{\prime}+\mathrm{I}_{\mathrm{R} 2}{ }^{\prime}+\mathrm{I}_{\mathrm{RO}}{ }^{\prime}$
$\overrightarrow{\mathrm{I}_{\mathrm{Y}}}=\overrightarrow{\mathrm{I}_{\mathrm{Y} 1}}+\overrightarrow{\mathrm{I}_{\mathrm{Y} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{YO}}}=\mathrm{a}^{2} \overrightarrow{\mathrm{I}_{\mathrm{R} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{RO}}}$
$\overrightarrow{\mathrm{I}_{\mathrm{B}}}=\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}_{\mathrm{R} 2}}+\overrightarrow{\mathrm{I}_{\mathrm{RO}}}=\overrightarrow{\mathrm{I}_{\mathrm{BO}}}+\overrightarrow{\mathrm{I}_{\mathrm{B} 1}}+\overrightarrow{\mathrm{I}_{\mathrm{B} 2}}$
\rightarrow Zero sequence current:
$\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\overrightarrow{\mathrm{I}_{\mathrm{Y}}}+\overrightarrow{\mathrm{I}_{\mathrm{B}}}=\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}\left(1+\mathrm{a}+\mathrm{a}^{2}\right)+\overrightarrow{\mathrm{I}_{\mathrm{R} 2}}\left(1+\mathrm{a}+\mathrm{a}^{2}\right)+3 \overrightarrow{\mathrm{I}_{\mathrm{RO}}}=3 \overrightarrow{\mathrm{I}_{\mathrm{RO}}}$
$\therefore \overrightarrow{\mathrm{I}_{\mathrm{RO}}}=\frac{1}{3}\left[\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\overrightarrow{\mathrm{I}_{\mathrm{R}}}\right]$
\rightarrow Positive sequence current:
$\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\overrightarrow{\mathrm{I}_{\mathrm{Y}}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}_{\mathrm{B}}}=\overrightarrow{\mathrm{I}_{\mathrm{R} 1}}\left(1+a^{3}+a^{3}\right)+\overrightarrow{\mathrm{I}_{\mathrm{R} 2}}\left(1+a^{2}+a^{4}\right)+\overrightarrow{\mathrm{I}_{\mathrm{RO}}}\left(1+a+a^{2}\right)=3 \overrightarrow{\mathrm{R}_{1}}$
$\therefore \overrightarrow{\mathrm{I}}_{\mathrm{R} 1}=\frac{1}{3}\left[\overrightarrow{\mathrm{I}_{R}}+\mathrm{a} \overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}}_{\mathrm{B}} \mid\right.$
\rightarrow Negative sequence current:-
$\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}_{\mathrm{Y}}}+\overrightarrow{\mathrm{I}_{\mathrm{B}}}\left(1+a^{4}+\mathrm{a}^{2}\right)+\overrightarrow{\mathrm{I}_{\mathrm{R} 2}}\left(1+\mathrm{a}^{3}+\mathrm{a}^{3}\right)+\overrightarrow{\mathrm{I}_{\mathrm{RO}}}\left(1+a^{2}+a\right)=3 \overrightarrow{\mathrm{IR}_{2}}$
$\therefore \overrightarrow{\mathrm{I}_{\mathrm{R} 2}}=\frac{1}{3}\left[\overrightarrow{\mathrm{I}_{\mathrm{R}}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}_{\mathrm{Y}}}+\mathrm{a}_{\mathrm{B}}\right]$
Single Line to - Ground Fault:
$\rightarrow \vec{V}_{R}=0$ and $\overrightarrow{\mathrm{I}}_{\mathrm{B}}=\overrightarrow{\mathrm{I}}_{\mathrm{Y}}=0$
The sequence currents in the red phase in terms of line currents shall be:-
$\overrightarrow{\mathrm{I}}_{1}=\frac{1}{3}\left[\mathrm{I}_{\vec{R}}+\mathrm{a} \overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}}_{\mathrm{B}}\right]=\frac{1}{3} \overrightarrow{\mathrm{I}}_{\mathrm{R}}$
$\overrightarrow{\mathrm{I}}_{0}=\frac{1}{3}\left[\overrightarrow{\mathrm{I}}_{\mathrm{R}}+\overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\overrightarrow{\mathrm{I}}_{\mathrm{B}}\right]=\frac{1}{3} \overrightarrow{\mathrm{I}}_{\mathrm{R}}$
$\overrightarrow{\mathrm{I}}_{2}=\frac{1}{3}\left[\vec{I}_{R}+\mathrm{a}^{2} \overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\mathrm{aI}_{\mathrm{I}}\right]=\frac{1}{3} \overrightarrow{\mathrm{I}}_{\mathrm{R}}$
\rightarrow Fault current:- Fault current, $\overrightarrow{\mathrm{I}}_{\mathrm{R}}=3 \overrightarrow{\mathrm{I}_{0}}=\frac{3 \overrightarrow{\mathrm{E}_{\mathrm{R}}}}{\overrightarrow{\mathrm{z}_{0}}+\mathrm{Z}_{1}+\overrightarrow{\mathrm{z}_{2}}}$
Phase voltage at fault
Since the generated emf system is of positive sequence only, the sequence components of emf in R-phase are:
$\rightarrow \vec{E}_{0}=0 ; \vec{E}_{2}=0$ and $\vec{E}_{1}=\vec{E}_{R}$
This is expected because R-phase is shorted
$\Rightarrow \overrightarrow{\mathrm{V}}_{1}+\overrightarrow{\mathrm{V}}_{2}+\overrightarrow{\mathrm{V}}_{0}=0$
The sequence voltage at the fault for R -phase are: to ground.
$\vec{V}_{1}=\frac{\vec{Z}_{2}+\vec{Z}_{0}}{\vec{Z}_{1}+\vec{Z}_{2}+\overrightarrow{\mathrm{Z}}_{0}} . \overrightarrow{\mathrm{E}}_{\mathrm{R}}$
$\vec{V}_{2}=\frac{\vec{Z}_{2}}{\vec{Z}_{1}+\vec{Z}_{2}+\vec{Z}_{0}} \cdot \vec{E}_{\mathrm{R}}$
$\vec{V}_{0}=\frac{\vec{Z}_{0}}{\vec{Z}_{1}+\vec{Z}_{2}+\vec{Z}_{0}} \cdot \vec{E}_{\mathrm{R}}$
\therefore The phase voltages at fault are :
$\vec{V}_{R}=\vec{V}_{0}+\vec{V}_{1}+\overrightarrow{\mathrm{V}}_{2}=0$
$\vec{V}_{Y}=\vec{V}_{0}+a^{2} \vec{V}_{1}+a \vec{V}_{2}$
$\vec{V}_{B}=\vec{V}_{0}+\mathrm{a}_{1}+\mathrm{a}^{2} \overrightarrow{\mathrm{~V}}_{2}$
Line-To-Line fault:-
The condition created by this fault lead to:
$\rightarrow \overrightarrow{\mathrm{V}}_{Y}=\overrightarrow{\mathrm{V}}_{B}:=0$ and $\overrightarrow{\mathrm{I}}_{Y}+\overrightarrow{\mathrm{I}}_{B}=0$
Again taking R -phase as the reference, we have
$\rightarrow \overrightarrow{\mathrm{I}}_{0}=\frac{1}{3}\left(\overrightarrow{\mathrm{I}}_{\mathrm{R}}+\overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\overrightarrow{\mathrm{I}}_{\mathrm{B}}\right)=0$
$\overrightarrow{\mathrm{I}}_{\mathbf{Y}}=\overrightarrow{\mathrm{I}}_{\mathrm{B}}$
Expressing in terms of sequence components of red line, we have
$\vec{V}_{0}+\mathrm{a}^{2} \overrightarrow{\mathrm{~V}}_{1}+\mathrm{a} \overrightarrow{\mathrm{V}}_{2}=\overrightarrow{\mathrm{V}}_{0}+\mathrm{a} \overrightarrow{\mathrm{V}}_{1}+\mathrm{a}^{2} \overrightarrow{\mathrm{~V}}_{2}$
$\Rightarrow \overrightarrow{\mathrm{V}}_{1}=\overrightarrow{\mathrm{V}}_{2}$
Also, $\Rightarrow \overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\overrightarrow{\mathrm{I}}_{\mathrm{B}}=0 \Rightarrow \overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{2}=0\left[\because \mathrm{I}_{0}=0\right]$
Fault current:
$\mathrm{I}_{1}=-\mathrm{I}_{2}=\frac{\vec{E}_{\mathrm{R}}}{\bar{Z}_{1}+\bar{Z}_{2}}$
$I_{Y}=\frac{-J \sqrt{3} \vec{E}_{R}}{\bar{Z}_{1}+\dot{Z}_{2}}$
\rightarrow Phase voltages:- since the generated emf system is of positive phase sequence only, the sequence components of emf in R-phase are:
$\overrightarrow{\mathrm{E}}_{0}=0: \overrightarrow{\mathrm{E}}_{2}=0$ and $\overrightarrow{\mathrm{E}}_{1}=\overrightarrow{\mathrm{E}}_{\mathrm{R}}$
\rightarrow The sequence voltages at the fault for R -phase are :
$\overrightarrow{\mathrm{V}}_{1}=\frac{\overrightarrow{\mathrm{Z}}_{2}}{\overrightarrow{\mathrm{Z}}_{1}+\overrightarrow{\mathrm{Z}}_{2}} \overrightarrow{\mathrm{E}}_{\mathrm{R}}$
$\overrightarrow{\mathrm{V}}_{2}=\frac{\overrightarrow{\mathrm{Z}}_{2}}{\overrightarrow{\mathrm{Z}}_{1}+\overrightarrow{\mathrm{Z}}_{2}} \overrightarrow{\mathrm{E}}_{\mathrm{R}}$
$\vec{V}=0$
\rightarrow The phase voltages at the fault are :
$\vec{V}_{R}=\frac{2 \dot{Z}_{2}}{\bar{Z}_{1}+\dot{Z}_{2}} \cdot \vec{E}_{R}$
$\vec{V}_{\mathrm{Y}}=\frac{-\mathrm{Z}_{2}}{\bar{Z}_{1}+\overrightarrow{\mathrm{Z}}_{2}} \cdot \overrightarrow{\mathrm{E}}_{\mathrm{R}}$
$\vec{V}_{B}=\frac{-\vec{Z}_{2}}{\bar{Z}_{1}+\vec{Z}_{2}} \cdot \vec{E}_{R}$
\rightarrow Double Line- To - Ground Fault:-
The conditions created by this fault lead to:
$\vec{I}_{R}=0 ; \vec{V}=\vec{V}_{B}=0$
$\overrightarrow{\mathrm{V}}_{1}=\overrightarrow{\mathrm{V}}_{2}=\overrightarrow{\mathrm{V}}_{0}=\frac{1}{3} \overrightarrow{\mathrm{~V}}_{\mathrm{R}}$
Also, $\overrightarrow{\mathrm{I}}_{\mathrm{R}}=\overrightarrow{\mathrm{I}}_{1}+\overrightarrow{\mathrm{I}}_{2}+\overrightarrow{\mathrm{I}}_{0}=0$
\rightarrow Fault current:
$\rightarrow \overrightarrow{\mathrm{I}}_{\mathrm{F}}=\overrightarrow{\mathrm{I}}_{\mathrm{Y}}+\overrightarrow{\mathrm{I}}_{\mathrm{B}}=3 \overrightarrow{\mathrm{I}}_{0}=\frac{-3 \overrightarrow{\mathrm{Z}}_{2} \overrightarrow{\mathrm{E}}_{\mathrm{R}}}{\overrightarrow{\mathrm{Z}_{0} \overrightarrow{\mathrm{Z}}_{1}+\overrightarrow{\mathrm{Z}}_{0} \overrightarrow{\mathrm{Z}}_{2}+\overrightarrow{\mathrm{Z}}_{1} \mathrm{Z}_{2}}}$
Phase voltages:- the sequence voltages for phase R are:
$\rightarrow \overrightarrow{\mathrm{V}}_{1}=\overrightarrow{\mathrm{E}}_{\mathrm{R}}-\overrightarrow{\mathrm{I}}_{1} \overrightarrow{\mathrm{Z}}_{1}: \overrightarrow{\mathrm{V}}_{2}=0-\overrightarrow{\mathrm{I}}_{2} \vec{Z}_{2}: \overrightarrow{\mathrm{V}}_{0}=0-\overrightarrow{\mathrm{I}}_{0} \vec{Z}_{0}$
Now $\overrightarrow{\mathrm{V}}_{1}=\overrightarrow{\mathrm{V}}_{2}=\overrightarrow{\mathrm{V}}_{0}=\frac{1}{3} \overline{\mathrm{I}}_{\mathrm{R}}$

$$
\rightarrow \because \overrightarrow{\mathrm{V}}_{\mathrm{R}}=3 \overrightarrow{\mathrm{~V}}_{2}: \overrightarrow{\mathrm{V}}_{\mathrm{Y}}=0 \text { and } \overrightarrow{\mathrm{V}}_{\mathrm{B}}=0
$$

TRANSIENTS IN SIMPLE CIRCUITS:

1. D.C sources
(a) Resistance only:- As soon as switch is closed, the current in the circuit will be determined according to ohms law.

$$
I=\frac{V}{R}
$$

Now transients will be there in the circuit.
(b) Inductance only :- when switch s is closed the current in the circuit will be given by

$$
\begin{aligned}
& I(S)=\frac{V(s)}{Z(s)}=\frac{V}{S} \cdot \frac{1}{L S}=\frac{V}{L} \cdot \frac{1}{S^{2}} \\
& i(t)=\frac{V}{L} t
\end{aligned}
$$

(c) Capacitance only:- when switch s is closed, the current in the circuit is given

$$
I(s)=\frac{V(s)}{Z(s)}=\frac{V}{S} \cdot C S=V C
$$

Which is an impulse of strength (magnitude) VC
(d) R-L circuit: when switch s is closed, the current in the circuit is given by

$$
\begin{aligned}
& I(s)=\frac{V(s)}{Z(s)}=\frac{V}{S} \frac{1}{R+L S}=\frac{V}{S} \cdot \frac{1 / L}{S+R / L} \\
& =\frac{V}{L}\left[\frac{1}{S}-\frac{1}{S+R / L}\right] \frac{L}{R} \\
& =\frac{V}{R}\left[\frac{1}{S}-\frac{1}{S+R / L}\right]
\end{aligned}
$$

$$
i(t)=\frac{V}{R}\left[1-\exp \left(\frac{-R}{L} t\right)\right]
$$

(e) R-L circuit: After the switch s is closed, current in the circuit is given by

$$
\begin{aligned}
& I(s)=\frac{V(s)}{Z(s)}=\frac{V}{S} \frac{1}{R+1 / C S} \\
& =\frac{V}{S} \frac{\left(\frac{1}{R C}\right) C S}{S+1 / R C}=\frac{V}{R} \cdot \frac{1}{S+1 / R C} \\
& i(t)=\frac{V}{R} \cdot e^{-t / C R}
\end{aligned}
$$

$\rightarrow R-L-C$ circuit:- After the switch S is closed, the current in the circuit is given by

$$
\begin{aligned}
& I(s)=\frac{V}{S} \frac{1}{R+L S+1 C S} \\
& I(s)=\frac{V}{L} \frac{1}{(s+a-b)(s+a+b)}
\end{aligned}
$$

$i(t)=\frac{V}{2 b L}\left\{e^{-(a-b)+}-e^{-(a+b) t}\right\}$
where $\frac{R}{2 L}=a$ and $\sqrt{\frac{R^{2}}{4 L^{2}}}-\frac{1}{L C}=b$; then
\rightarrow There are three conditions based on the value of to

* If $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}, b$ is real
* If $\frac{R^{2}}{4 L^{2}}=\frac{1}{L C}, b$ is zero
* If $\frac{R^{2}}{4 L^{2}}<\frac{1}{L C}, b$ is imaginary

Case I: when b is real

$$
\rightarrow i(t)=\frac{V}{2 \sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C} \cdot L}}\left\{\exp \left\{-\left\{\frac{R}{2 L}+\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}\right\}+\right\}-\exp \left\{-\left(\frac{R}{2 L}-\sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}\right) t\right\}\right\}
$$

Case II: when $\mathrm{b}=0$
The expression for current becomes
$\rightarrow i(t)=\frac{V}{2 b L}\left\{e^{-a t}-e^{-a t}\right\}$ which is indeterminate.
\rightarrow Now at $\mathrm{b}=0$
$i(t)=\frac{V}{L} t e^{-a t}=\frac{V t_{e}}{L}-(R / 2 L)^{t}$

Case III. When b is imaginary
$\rightarrow i(t)=\frac{V}{2 b L}\left\{e^{-a t} . e^{j k t}-e^{-a t} . e^{-j k t}\right\}=\frac{V}{2 b L} e^{-a t} .2 \sin k t$
$=\frac{V}{2 L \sqrt{\frac{R^{2}}{4 L^{2}}-\frac{1}{L C}}} e^{-a t} .2 \sin \left(\sqrt{\frac{-R^{2}}{4 L^{2}}+\frac{1}{L C}}\right) t$
A.C source:
$\rightarrow R-L$ circuit: when switch is closed, the current in the circuit is given by
$I(s)=\frac{V(S)}{Z(S)}=V_{m}\left\{\frac{\omega \cos \phi}{S^{2}+\omega^{2}}\right\} \frac{1}{R+L S}$
$=\frac{V_{m}}{L}\left\{\frac{\omega \cos \phi}{S^{2}+\omega^{2}}+\frac{S \sin \phi}{S^{2}+\omega^{2}}\right\} \frac{1}{S+R / L}$
\rightarrow R-L circuit connected to an ac source
Let $\frac{R}{L}=a$; then
$I(S)=\frac{V_{m}}{L}\left\{\frac{\omega \cos \phi}{(s+a)\left(S^{2}+\omega^{2}\right)}+\frac{S \sin \phi}{(s+a)\left(S^{2}+\omega^{2}\right)}\right\}$
$i(t)=\frac{V_{m}}{\sqrt{\left(\sqrt{\left.R^{2}+\omega^{2} L^{2}\right)^{1 / 2}}\right.}}\left\{\sin (\omega t+\phi-\theta)-\sin (\phi-\theta) e^{-a t}\right\}$
Where $\theta=\tan ^{-1} \frac{\omega L}{R}$

Circuit Breaker ratings:

\rightarrow The value of resistor required to be connected across the breaker contacts which will given no transient oscillation, is $R=0.5 \sqrt{\frac{L}{C}}$
Where L, C are the inductance and capacitance up to the circuit breaker
\rightarrow The average RRRV $=\frac{2 V_{r}}{\pi \sqrt{L C}}$
\rightarrow Maximum value of RRRV $=W_{n} E_{\text {peak }}$
\rightarrow Where $W_{n}=2 \pi f_{n}$,
\rightarrow Natural frequency of oscillations, $f_{n}=\frac{1}{2 \pi} \sqrt{\frac{1}{\text { LC }}}$
Where L, C are the reactance and capacitance up to the location of circuit breaker
\rightarrow Frequency of demand oscillation, $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{1}{4 R^{2} C^{2}}}$

Breaking capacity:

\rightarrow Symmetrical breaking current $=$ r.m.s value of a.c component

$$
=\frac{x}{\sqrt{2}}
$$

\rightarrow Asymmetrical breaking current $=$ r.m.s value of total current.

$$
=\sqrt{\left(\frac{X}{\sqrt{2}}\right)^{2}+Y^{2}}
$$

Where $X=$ maximum value of a.c component
$Y=$ d.c component
\rightarrow Is the rated service line voltage in volts, then for 3-phae circuit? Breaking capacity
$=\sqrt{3} \times \mathrm{V} \times \mathrm{I} \times 10^{-6} \mathrm{MVA}$
\rightarrow String efficiency $=\frac{\text { Voltage a coss the string }}{\mathrm{n} \times \text { voltage across the unit near power conductor }}$
Where, $\mathrm{n}=$ no of insulators

Making capacity:-

\rightarrow Making capacity $=2.55 \times$ symmetrical breaking capacity.

The Universal Relay Torque Equation:-

\rightarrow The universal relay torque equation is given as follows
$T=K_{1} I^{2}+K_{2} V^{2}+K_{3} V I(\theta-\tau)+K$

Distance Relays:

Impedance relays:
From the universal torque equation putting $\mathrm{K}_{3}=0$ and giving negative sign to voltage term, it becomes
$\rightarrow \mathrm{T}=\mathrm{K}_{1} \mathrm{I}^{2}-\mathrm{K}_{2} \mathrm{~V}^{2}$ (Neglecting spring torque)
For the operation of the relay the operating toque should be greater than the restraining torque i.e
$\mathrm{K}_{1} \mathrm{I}^{2}>\mathrm{K}_{2} \mathrm{~V}^{2}$
\rightarrow Here V and I are the voltage and current quantities fed to the relay.

$$
\rightarrow \frac{\mathrm{V}^{2}}{\mathrm{I}^{2}}<\mathrm{K}_{1} / \mathrm{K}_{2}
$$

$\rightarrow Z<\sqrt{K_{1} / K_{2}}$
$\rightarrow Z<$ constant (design impedance)
This means that the impedance relay will operate only if the impedance seen by the relay is less than a pre-specified value (design impedance). At threshold condition,
$Z=\sqrt{K_{1} / K_{2}}$
Reactance Relay:
The directional element is so designed that its maximum torque angle is 90°
i.e. in the universal torque equation.
$\mathrm{T}=\mathrm{K}_{1} \mathrm{I}^{2}-\mathrm{K}_{3} \mathrm{VI} \cos (\theta-\tau)=\mathrm{K}_{1} \mathrm{I}^{2}-\mathrm{K}_{3} \mathrm{VI} \cos (\theta-90)=\mathrm{K}_{1} \mathrm{I}^{2}-\mathrm{K}_{3} \mathrm{VI} \sin \theta$
For the operation of the relay
$\mathrm{KI}^{2}>\mathrm{K}_{3} \mathrm{VI} \sin \theta$
$\frac{\mathrm{VI}}{\mathrm{I}^{2}} \sin \theta<\mathrm{K} 1 / \mathrm{K} 3$
$Z \sin \theta<K_{1} / K_{3}$
$x<K_{1} / K_{3}$
The mho relay:-
\rightarrow In the relay the operating torque is obtained by the V - I element and restraining torque due to the voltage element
$\mathrm{T}=\mathrm{K}_{3} \mathrm{VI} \cos (\theta-\tau) \mathrm{K}_{2} \mathrm{~V}^{2}$
\rightarrow For relay to operate
$\mathrm{K}_{3} \mathrm{VI} \cos (\theta-\tau) \mathrm{K}_{2} \mathrm{~V}^{2}$
$\frac{\mathrm{V}^{2}}{\mathrm{VI}}<\mathrm{K}_{3} / \mathrm{K}_{2} \cos (\theta-\tau)$
$Z<K_{3} / K_{2} \cos (\theta-\tau)$

