

Rajasthan RVUNL

Electrical Engineering

Material Science

Important Formula Notes

Sahi Prep Hai Toh Life Set Hai

www.gradeup.co

MATERIAL SCIENCE (FORMULA NOTES)

CONDUCTORS

Introduction

Constants

Planck's constant h = $6.626 \times 10-34$ J s Rest mass of electron m = $9.109 \times 10-31$ kg Charge of electron e = $1.602 \times 10-19$ - C

Units

Quantity	SI units		Other units
Unit		Symbol	
Resistivity p	Ohm metre	Ohm	Micro
		in	ohm-inch,
			ohm-cm
Temperature	Per Kelvin	K-1	
coefficient			Per °F
of resistance a			
Conductivity σ	Per ohm per	ohm⁻	Mho/cm
	metre	¹ m ⁻¹	
De Broglie	metre	m	Å
wavelength λ			
Wave number	Per metre	m⁻¹	-
k			
Kinetic energy	Joule	J	erg, eV
E Fermi			
energy E _F			
Drift velocity	metre per	m s⁻	-
v	second	1	

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Field gradient	Volt per	V m⁻	Volts/mil
ε	metre	1	
_	_		
Current	Ampere per	A m ⁻	Amp/cm2
density Je	m ²	2	

THE FREE ELECTRON THEORY

The de Broglie wavelength of an electron λ is related to its momentum mv as

$$\lambda = \frac{h}{mv}$$

Where h is Plank's constant, m is the mass of the free electron and v is its velocity. The wavelength is inversely related to the magnitude of the wave number vector k:

$$\mathsf{K}=\;\frac{2\pi}{\lambda}$$

As the velocity of the free electrons is much smaller than that of light, we can ignore relativistic effects and use the classical relation for kinetic energy E.

$$E=\frac{1}{2}mv^2$$

Substitute the above values from equations, we obtain

$$\mathsf{E}=\;\frac{\mathsf{h}^2\mathsf{k}^2}{8\pi^2\mathsf{m}}$$

CONDUCTION BY FREE ELECTRONS

The force experienced by an electron of charge e in an applied field of gradient ' ϵ ' can be equated to the force as defined in the classical law:

εe = ma

when m is the mass of the electron and a is the acceleration due to the applied field.

If the average collision time is τ and v_d is the drift velocity acquired by the electrons.

$$m(v_d/\tau) = \epsilon e \text{ or } v_d = \frac{e\epsilon\tau}{m}$$

The flux Je due to the flow of electrons is called the current density:

$$Je=nev_d==\frac{ne^2\epsilon\tau}{m}$$

where n is the number of free electrons of charge e. This is in the form of Ohm's law. As conductivity σ is by definition the flux per unit potential gradient, we have

$$\sigma = \frac{ne^2\tau}{m}$$

The electrical resistivity $\boldsymbol{\rho}$ is the reciprocal of conductivity.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

INSULATING MATERIALS

A good insulating material should possess the following characteristics:

- i. Large insulating resistance.
- ii. High dialectic strength.
- **iii.** Uniform viscosity—it gives uniform electrical and thermal properties.
- **iv.** Should be uniform throughout—it keeps the electric losses as low as possible and electric stresses uniform under high voltage difference.
- v. Least thermal expansion.
- vi. When exposed to arcing should be non-ignitable.
- vii. Should be resistance to oils or liquids, gas fumes, acids and alkalis.
- viii. Should have no deteriorating effect on the material, in contact with it.
- ix. Low dissipation factor (loss tangent).
- ix. High mechanical strength.
- **x.** High thermal conductivity.
- xi. Low permittivity.
- xii. High thermal strength.
- **xiii.** Free from gaseous insulation to avoid discharges (for solids and gases).
- **xiv.** Should be homogeneous to avoid local stress concentration.
- **xv.** Should be resistant to thermal and chemical deterioration.

CLASSIFICATION OF INSULATING MATERIALS

The insulating materials can be classified in the following two ways:

- **A.** Classification according to substances and materials.
- **B.** Classification according to temperature.

A. Classification According to Substances and Materials:

i. Solids (Inorganic and Organic):

Mica, wood, slate, glass, porcelain, rubber, cotton, silk, rayon, terylene, paper and cellulose materials etc.

- **ii.** Liquids (Oils and Varnishes): Linseed oil, refined hydrocarbon mineral oils, spirit and synthetic varnishes etc.
- iii. Gases: Dry air, carbon dioxide, argon, nitrogen etc.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

B. Classification According to Temperature:

Class	Insulating materials Included	Assigned limiting
		Insulating
		temperature
Y	Cotton, silk, paper, cellulose, wood, etc.,	90°C
(Formerly O)	neither impregnated nor immersed in oil.	
	Materials of Y class are unsuitable for electrical	
	machines and apparatus as they deteriorate	
	rapidly and are extremely hygroscopic.	
A	Materials of class Y impregnated with natural	105°C
	resin, cellulose esters, insulating oils etc. Also	
	included in this list are laminated wool,	
	varnished paper.	
E	Synthetic resin enamels, cotton and paper	120°C
	laminates with formaldehyde bounding etc.	
В	Mica, glass fibres, asbestos with suitable	130°C
	bonding substance, built up mica, glass fibre	
	and asbestos laminates.	
F	Materials of class B with bonding materials of	155°C
	higher thermal stability.	
Н	Glass fibre and asbestos materials, and built up	180°C
	mica, with silicon resins.	
С	Mica, ceramics, glass quartz without binders or	above 180°C
	with silicon resins of higher thermal stability.	

MAGNETIC MATERIALS

Magnetic materials are used in electric motors, transformers, loudspeakers, cranes, data processing, and in households. Hard magnets must retain their magnetization even in stray magnetic fields, and soft magnets must change their magnetization with the lowest possible resistance.

Magnetic Descriptions of Atoms & Ions

Diamagnetic - Atoms or ions with a closed shell of electrons, all of the electrons are paired. **Paramagnetic** - Atoms or ions with unpaired electrons, where the moment of an atom with unpaired electrons is given by the spin, S, and orbital angular, L and total momentum, J, quantum numbers.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

The field of the sample in the applied field is known as its magnetization, M, where H is the applied field.

The magnetic flux density, B, is given by:

$$\mathsf{B} = \mu \mathsf{0}(\mathsf{H} + \mathsf{M})$$

 μ_0 is the permeability of free space, 4π x $10^{\text{--}7}$ $Hm^{\text{--}1}$

where H is the symbol for henry

 μ_0 H is the induction generated by the field alone

 $\mu_0 M$ is the additional induction contributed by the sample

Typically, the magnetization is discussed in terms of the magnetic susceptibility,

$$\chi=\frac{M}{H}$$

Ferromagnetism – Magnetic moments of atoms align to produce a strong magnetic effect. For ferromagnetism, the Curie Law becomes $\chi = C / (T - Tc)$, where T_c is the Curie Temperature. **Antiferromagnetism** – magnetic moments of atoms align anti-parallel to produce a strong

magnetic effect. For antiferromagnetism, the Curie Law becomes $\chi = C / (T + T_N)$, where TN is the Neel temperature.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)