gradeup

Rajasthan RVUNL Electrical Engineering

Electrical Machines

Important Formula Notes

ELECTRICAL MACHINES (FORMULA NOTES)

1. Transformer:

- Gross cross-sectional area = Area occupied by magnetic material + Insulation material.
- Net cross sectional area $=$ Area occupied by only magnetic material excluding area of insulation material.
- Hence for all calculations, net cross-sectional area is taken since majority $\phi($ flux $)$ flows in magnetic material.
$\phi=B A_{n}$
- Specific weight of $t / f=\frac{\text { Weight of Transformer }}{\text { KVA rating of Transformer }}$
- Staking/iron factor:
$\left(\mathrm{k}_{\mathrm{s}}\right)=\frac{\text { Net cross sectional area }}{\text { Gross cross sectional area }}$
- k_{s} is always less than 1
- Gross CS area $=A_{G}=$ Length \times Breadth
- Net CS area $=A_{n}=k_{s} \times A_{G}$
- Utilization factor of transformer core
$=\frac{\text { Effective CS area }}{\text { Total CS area }}$ U.F. of cruciform core $=0.8$ to 0.85 .
- Flux $=\frac{\mathrm{mmF}}{\text { Reluctance }}=\phi_{\mathrm{m}} \sin \omega t$
- According to faradays second law,

$$
e_{1}=-N_{1} \frac{d \phi}{d t}=-N_{1} \frac{d}{d t}\left(\phi_{m} \sin \omega t\right)
$$

Instantaneous value of emf in primary

$$
e_{1}=N_{1} \phi_{m} \omega \sin \left(\omega t-\frac{\pi}{2}\right)
$$

- Transformer emf equations:

$$
\begin{align*}
& E_{1}=4.44 N_{1} B_{\max } A_{n} f \tag{i}\\
& E_{2}=4.44 N_{2} B_{\max } A_{n} f \tag{ii}
\end{align*}
$$

- Emf per turn in Primary:
$I^{r y}=\frac{E_{1}}{N_{1}}=4.44 B_{\max } A_{n} f$
- Emf per turn in Secondary:
$I I^{r y}=\frac{E_{2}}{N_{2}}=4.44 B_{\max } A_{n} f$
- Emf per turn on both sides of the transformer is same
$\frac{\mathrm{E}_{1}}{\mathrm{~N}_{1}}=\frac{\mathrm{E}_{2}}{\mathrm{~N}_{2}} \Rightarrow \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{1}{\mathrm{k}}$
Transformation ratio $=K=\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}$
Turn ratio $=\frac{1}{\mathrm{~K}}=\mathrm{N}_{1}: \mathrm{N}_{2}$
- For an ideal two-winding transformer with primary voltage V_{1} applied across N_{1} primary turns and secondary voltage V_{2} appearing across N_{2} secondary turns:
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$
- The primary current I_{1} and secondary current I_{2} are related by:
$\frac{I_{1}}{I_{2}}=\frac{N_{2}}{N_{1}}=\frac{V_{2}}{V_{1}}$
- For an ideal step-down autotransformer with primary voltage V_{1} applied across ($\mathrm{N}_{1}+\mathrm{N}_{2}$) primary turns and secondary voltage V_{2} appearing across N_{2} secondary turns.
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)}{\mathrm{N}_{2}}$
- The primary (input) current I_{1} and secondary (output) current I_{2} are related by:
$\frac{I_{1}}{I_{2}}=\frac{N_{2}}{\left(N_{1}+N_{2}\right)}=\frac{V_{2}}{V_{1}}$.
- For a single-phase transformer with rated primary voltage V_{1}, rated primary current I_{1}, rated secondary voltage V_{2} and rated secondary current I_{2}, the volt ampere rating S is:
$\mathrm{S}=\mathrm{V}_{1} \mathrm{I}_{1}=\mathrm{V}_{2} \mathrm{I}_{2}$
- For a balanced m-phase with rated primary phase voltage V_{1} rated primary current I_{1}, rated secondary phase voltage V_{2} and rated secondary current I_{2}, the volt ampere rating S is:

$$
\mathrm{S}=\mathrm{mV}_{1} \mathrm{I}_{1}=\mathrm{mV}_{2} \mathrm{I}_{2}
$$

- The primary circuit impedance Z_{1} referred to the secondary circuit for an ideal transformer with N_{1} primary turns and N_{2} secondary turns is:

$$
\mathrm{Z}_{12}=\mathrm{Z}_{1}\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}}\right)^{2}
$$

- During operation of transformer:
$B_{m} \propto \frac{E_{1}}{f} \propto \frac{V_{1}}{f}$
$B_{\text {max }}=$ Constant $\Rightarrow \frac{V_{1}}{f}=$ Constant

Equivalent circuit of Transformer under No-Load condition:

- No load current $=\mathrm{I}_{0}=\overline{\mathrm{I}}_{\mathrm{u}}+\overline{\mathrm{I}}_{\mathrm{w}}=\mathrm{I}_{0} \angle-\phi_{0}$
$\mathrm{I}_{\mathrm{w}}=\mathrm{I}_{0} \cos \phi_{0}$
$\mathrm{I}_{\mu}=\mathrm{I}_{0} \sin \phi_{0}$
- No load power $=\mathrm{V}_{1} \mathrm{I}_{0} \cos \phi_{0}=\mathrm{V}_{1} \mathrm{I}_{\mathrm{w}}=$ Iron losses

$$
\mathrm{R}_{0}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{\mathrm{w} 1}} ; \mathrm{X}_{0}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{\mu}} \Rightarrow \quad \mathrm{I}_{\mathrm{w}}=\frac{\text { No load power }}{\mathrm{V}_{1}}
$$

Transferring from Secondary to Primary:

$$
\begin{aligned}
& \mathrm{I}_{2}^{2} \mathrm{R}_{2}=\mathrm{I}_{1}{ }^{2} \mathrm{R}_{2}^{1} \\
& \mathrm{R}_{2}^{1}=\mathrm{R}_{1}\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right)^{2}=\frac{\mathrm{R}_{2}}{\mathrm{~K}^{2}} \quad \because \quad \mathrm{R}_{2}^{1}=\frac{\mathrm{R}_{2}}{\mathrm{~K}^{2}}
\end{aligned}
$$

From Primary to Secondary:

$$
\begin{aligned}
& I_{1}{ }^{2} \mathrm{R}_{1}=\mathrm{I}_{2}{ }^{2} \mathrm{R}_{1}{ }^{1} \\
& \mathrm{R}_{1}^{1}=\frac{\mathrm{I}_{1}^{2}}{\mathrm{I}_{2}^{2}} \times \mathrm{R}_{1}=\mathrm{R}_{1} K_{2}
\end{aligned}
$$

- Total resistance ref to primary $=\mathrm{R}_{1}+\mathrm{R}_{2}{ }^{1}$

$$
R_{01}=R_{1}+\frac{R_{2}}{k^{2}}
$$

- Total resistance ref to secondary $=\mathrm{R}_{2}+\mathrm{R}_{1}{ }^{1}$
$R_{02}=R_{2}+k^{2} R_{1}$
- Total Cu loss $=\mathrm{I}_{1}{ }^{2}$ R01 or $\mathrm{I}_{2}{ }^{2}$ Ro2

Per unit resistance drops:

- P.U. primary resistance drop $=\frac{\mathrm{I}_{1} \mathrm{R}_{1}}{\mathrm{E}_{1}}$
- P.U. secondary resistance drop $=\frac{I_{2} R_{2}}{E_{2}}$
- Total P.U. resistance drop ref to $I^{r y}=\frac{I_{1} R_{01}}{E_{1}}$
- Total P.U. resistance drop ref to $\mathrm{II}^{\mathrm{ry}}=\frac{\mathrm{I}_{2} \mathrm{R}_{02}}{\mathrm{E}_{2}}$
- The P.U resistance drops on both sides of the t / f is same
$\frac{\mathrm{I}_{1} \mathrm{R}_{01}}{\mathrm{E}_{1}}=\frac{\mathrm{I}_{2} \mathrm{R}_{02}}{\mathrm{E}_{2}}$

Losses present in transformer:

1. Copper losses: Transformer windings major losses
2. Iron losses: Transformer core
3. Stray load losses: Cu parts and Iron parts minor losses
4. Dielectric losses: Insulating materials.
5. Cu losses in transformer:

Total Cu loss $=I_{1}^{2} R_{1}+I_{2}^{2} R_{1}=I_{1}^{2} R_{01}=I_{2}^{2} R_{02}$

- Rated current on $I^{r y}=\frac{\text { VA rating of } t / f}{E_{1}}$
- Similarly, current on $I I^{r y}=\frac{\text { VA rating of } t / f}{E_{2}}$
- Cu losses $\propto I_{1}^{2}$ or I_{2}^{2}. Hence these are called as variable losses.
- P.U. full load Cu loss $=\frac{\mathrm{FL} \text { Cu loss in watts }}{\text { VA rating of } t / f}=\frac{I_{1}^{2} R_{01}}{E_{1} I_{1}}$
- If VA rating of transformer is taken as base then P.U Cu loss $\propto I_{1}^{2}$ as remaining terms are constant.
- P.U. Cu loss at \times (Loading factor) of $\mathrm{FL}=\mathrm{x}^{2} \times$ PU FL Cu loss
- PU resistance drop ref to $I^{\mathrm{ry}} \quad$ PU resistance ref to $I^{r y} \quad I_{1} R_{01} \frac{I_{1}}{E_{1}}=\frac{I_{1}^{2} R_{01}}{I_{1}}=\frac{E_{1} I_{1}}{I_{1}}$
\therefore PU resistance drop $=$ PU Full Load Cu loss
$\% \mathrm{FLCu}$ loss $=\% \mathrm{R}=\%$ Resistance drop.

Iron (or) Core losses in Transformer:

1. Hysteresis loss:

Steinmetz formula:

$\mathbf{W}_{\mathrm{h}}=\boldsymbol{\eta} \mathbf{B}_{\text {max }}{ }^{\mathbf{x}} \mathbf{f} \mathbf{V}$
Area under one hysteresis loop
where,
$\eta=$ Stienmetz coefficient
$B_{\max }=$ Maximum flux density in transformer core.
$f=$ Frequency of magnetic reversal = supply frequency.
$\mathrm{V}=$ Volume of core material
$x=$ Hysteresis coefficient (or) stienmetz exponent $=1.6$ (Si or CRGO steel)

2. Eddy current loss:

Eddy current loss, $\mathrm{W}_{\mathrm{e}} \propto \mathrm{R}_{\mathrm{ce}} \times \mathrm{I}_{\mathrm{e}}^{2}$
As area decreases in laminated core resistance as a result conductivity decrease.
$W_{e}=K($ Constant $) B_{\max }^{2} f^{2}$ (Supply freq.) $\times t^{2}$ (Thickness of lamination)
(It is a function of σ)
During operation of transformer:
$B_{m} \propto \frac{V_{1}}{f}$
Case(i): $\frac{V_{1}}{f}=$ Constant, $B_{\max }=$ Constant
$W_{e} \propto f^{2}$
$W_{e}=B f^{2}$
$\left.\therefore \begin{array}{l}W_{i}=W_{h}+W_{e} \\ W_{i}=A f+B f^{2}\end{array}\right\}$ When $B_{\max }=$ Constant
Case(ii): $\frac{V_{1}}{f} \neq$ Constant, $B_{\max } \neq$ Constant
$W_{e} \propto\left(\frac{V_{1}}{f}\right)^{2} f^{2}$
$W_{e} \propto V_{1}^{2}$
$W_{i}=W_{h}+W_{e}$
$W_{i}=\frac{A V_{1}^{1.6}}{f^{0.6}}+B V_{1}^{2}$

P.U. iron loss:

- P.U. iron loss $=\frac{\text { Iron loss in watts }}{\text { VA rating of } t / f}$
- As VA rating is chosen as base then the P.U. iron loss are also constant at all load conditions.

To find out constant losses:

- $W_{0}=$ Losses in t/f under no-load condition $=$ Iron losses + Dielectric loss + no-load primary loss ($\mathrm{I}_{0}{ }^{2} \mathrm{R}_{1}$)
- Constant losses $=\mathrm{W}_{0}-\mathrm{I}_{02}^{2} \mathrm{R}_{1}$

Where, $\mathrm{R}_{1}=\mathrm{LV}$ winding resistance.

To find out variable losses:

- $\mathrm{W}_{\text {sc }}=$ Loss in transformer under SC condition = Full Load Cu loss + stray load losses (Cu and Iron) + Iron losses in both windings.
- Variable losses $=\mathrm{W}_{\mathrm{sc}}$ - Iron losses corresponding to V_{sc}.

OC Test:

V_{1} rated $\rightarrow \mathrm{W}_{\mathrm{i}}$

SC Test:

$\mathrm{V}_{\mathrm{sc}} \rightarrow\left(\mathrm{W}_{\mathrm{i}}\right)_{\mathrm{sc}}$
$\mathrm{W}_{\mathrm{i}} \propto \mathrm{V}_{1}^{2}$
$\frac{\mathrm{W}_{\mathrm{i}}}{\left(\mathrm{W}_{\mathrm{i}}\right)_{\mathrm{sc}}}=\left(\frac{\mathrm{V}_{1} \text { rated }}{\mathrm{V}_{\mathrm{sc}}}\right)^{2}$
$\left(W_{i}\right)_{s c}=W_{i}\left(\frac{V_{s c}}{V_{1} \text { rated }}\right)^{2}$
\therefore Variable losses $=\mathrm{W}_{\mathrm{sc}}-\left(\mathrm{W}_{\mathrm{i}}\right)_{\mathrm{sc}}\left(\frac{\mathrm{V}_{\mathrm{sc}}}{\mathrm{V}_{1} \text { rated }}\right)^{2}$

- Under the assumption that small amount of iron losses corresponds to $\mathrm{V}_{\text {sc }}$ and stray load losses are neglected the wattmeter reading in SC test can be approximately taken as FL Cu losses in the transformer.
- $W_{s c} \simeq F L C u$ loss $\simeq I_{s c}^{2} \times R_{01}$

$$
\mathrm{R}_{01}=\frac{\mathrm{W}_{\mathrm{sc}}}{\mathrm{I}_{\mathrm{sc}}^{2}}
$$

Efficiency:

- Efficiency of transformer is given by
$\eta=\frac{\text { output power }}{\text { input power }}=\frac{\text { output power }}{\text { input power }+ \text { losses }}$
$=\frac{\mathrm{E}_{2} \mathrm{I}_{2} \cos \phi_{2}}{\mathrm{E}_{2} \mathrm{I}_{2} \cos \phi_{2}+\mathrm{FL} \text { Cu losses + Iron losses }}$
$\eta_{F L}=\frac{E_{2} I_{2} \cos \phi_{2}}{E_{2} I_{2} \cos \phi_{2}+I_{2}^{2} R_{02}+W_{i}}$
$\eta_{\mathrm{x} \text { of } \mathrm{FL}}=\frac{x\left(E_{2} I_{2}\right) \cos \phi_{2}}{x\left(E_{2} I_{2}\right) \cos \phi_{2}+x^{2}\left(I_{2}^{2} R_{02}\right)+W_{i}}$
- Transformer efficiency $=\frac{\mathrm{KVA} \times \cos \phi}{\mathrm{KVA} \times \cos \phi+\mathrm{W}_{\mathrm{i}}+\mathrm{Cu} \text { losses }}$
- Voltage drop in t / f at a specific load, p.f. $=I_{2} R_{02} \cos \phi_{2} \pm I_{2} X_{02} \sin \phi_{2}$
- \% Voltage regulation $=\frac{I_{2} R_{02} \cos \phi_{2} \pm I_{2} X_{02} \sin \phi_{2}}{V_{2}} \times 100=\left(\frac{I_{2} R_{02}}{V_{1}}\right) \cos \phi_{2} \pm\left(\frac{I_{2} R_{02}}{V_{1}}\right) \sin \phi_{2}$ $\%$ Regulation $=\left[\left(R_{P U}\right) \cos \phi_{2}+\left(X_{P U}\right) \sin \phi_{2}\right] \times 100$

Auto Transformer:

- K of auto transformer $=\frac{\mathrm{LV}}{\mathrm{HV}}$
(KVA) induction $=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \mathrm{I}_{1}$
Input $\mathrm{KVA}=\mathrm{V}_{1} \mathrm{I}_{1}$
$\frac{(\mathrm{KVA})_{\text {induction }}}{\text { input } \mathrm{KVA}}=\frac{\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \mathrm{I}_{1}}{\mathrm{~V}_{1} \mathrm{I}_{1}}=1-\frac{\mathrm{LV}}{\mathrm{HV}}=1-\mathrm{K}$
$\therefore(K V A))_{\text {induction }}=(1-K)$ input KVA
$(\mathrm{KVA})_{\text {induction }}=$ Input KVA $-(\mathrm{KVA})_{\text {ind }}$
$(\mathrm{KVA})_{\text {conduction }}=\mathrm{K} \times$ input KVA
- Wt. of conductor in section $A B$ of auto $t / f \propto\left(N_{1}-N_{2}\right) I_{1}$
- Wt. of conductor in section $B C$ of auto $t / f \propto\left(I_{1}-I_{2}\right) N_{1}$
\therefore Total Wt. of conductor in auto t / f is
$\propto I_{1}\left(N_{1}-N_{2}\right) N_{1}+\left(N_{2}-N_{1}\right) N_{2}$
$\propto 2\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right) \mathrm{I}_{1}$
- Total Wt. of conductor in 2 wdg transformer
$\propto \mathrm{I}_{1} \mathrm{~N}_{1}+\mathrm{I}_{2} \mathrm{~N}_{2} \propto 2 \mathrm{I}_{1} \mathrm{~N}_{1}$
- Wt. of conductor in an auto $\mathrm{t} / \mathrm{f}, \frac{2\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right) \mathrm{I}_{1}}{2 \mathrm{~N}_{1} \mathrm{I}_{1}}=1-\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=1-\mathrm{K}$

Wt. of conductor in auto $t / f=(1-K)(W t$. of conductor in $2 w d g t / f)$

- Thus, saving of conductor material if auto-transformer is used $\}=\mathrm{K} \times$ (Conductor wt. in 2 wdg transformer)
- $(\% \mathrm{FL} \text { losses })_{\mathrm{AT}}=(1-\mathrm{K})(\% \mathrm{FL} \text { losses })_{2 w d g} \mathrm{t} / \mathrm{f}$
- $(\% Z)_{A T}=(1-K)(\% Z)_{2 w d g} \mathrm{t} / \mathrm{f}$
- $(\mathrm{KVA})_{\mathrm{AT}}=\frac{1}{1-\mathrm{K}}(\mathrm{KVA})_{2 w d g t / f}$

2. DC Machines:

S.No.		Lap winding	Wave winding
1.	Coil span:	$Y_{\text {cs }}=\mathrm{s} / \mathrm{p}$	$Y_{\text {cs }}=\mathrm{s} / \mathrm{p}$
2.	Back pitch	$\mathrm{Y}_{\mathrm{b}}=\mathrm{UY} \mathrm{Cs}$	$\mathrm{Y}_{\mathrm{b}}=\mathrm{UY}_{\mathrm{cs}}$
3.	Commutator pitch	$Y_{c}=1$ for progressive winding $\mathrm{Yc}=-1$ for retrogressive winding	$Y_{c}=\frac{2(c+1)}{p}$ for progressive winding $Y_{c}=\frac{2(c+1)}{p}$ for retrogressive winding (Y_{c} must be integer)
4.	Front pitch	$Y_{f}=Y_{b}+2$ for progressive winding $Y_{f}=Y_{b}-2$ for retrogressive winding	$\mathrm{Y}_{\mathrm{f}}=2 \mathrm{Y}_{\mathrm{b}}-\mathrm{Y}_{\mathrm{b}}$
5.	Parallel paths	A = P	A $=2$
6.	Conductor current	$\mathrm{I}_{\mathrm{c}}=\frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{A}}$	$\mathrm{I}_{\mathrm{c}}=\frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{A}}$
7.	No. of brushes	No. of brushes $=\mathrm{A}=\mathrm{P}$	No. of brushes = 2

S = No. of commutator segments
$\mathrm{P}=$ No. of poles
$U=$ No. of coil sides/No. of poles $=\frac{2 c}{s}$
C $=$ No. of coils on the rotor
A $=$ No. of armature parallel paths
$\mathrm{I}_{\mathrm{a}}=$ Armature current

- Distribution factor

$$
\left(\mathrm{K}_{\mathrm{d}}\right)=\frac{\text { Phasor sum coil emf }}{\text { Arthematic sum of coil emf }}=\frac{\text { Chord }}{\text { arc }}=\frac{2}{\pi}
$$

- Pitch factor
$\left(\mathrm{K}_{\mathrm{p}}\right)=\frac{\text { Electrical angle of coil }}{180^{\circ}} \times 100 \%$
- $\theta_{\text {electrical }}^{0}=\frac{P}{2} \theta_{\text {mechanical }}^{0}$
- Armature $\mathrm{mmf} /$ Pole(Peak), $A T_{a}=\frac{\mathrm{zI}_{a}}{2 \mathrm{AP}}$
- AT (compensating winding) $=\frac{\mathrm{zI}_{\mathrm{a}}}{2 \mathrm{AP}} \times \frac{\text { Pole arc }}{\text { Pole pitch }}$
- At (Inter pole) $=A T_{a}+\frac{B_{i}}{\mu_{o}} I_{g i}$
where $B_{i}=$ flux density in inter pole air gap
$\mathrm{I}_{\mathrm{gi}}=$ Length of inter pole air gap,
$\mu_{0}=4 \pi \times 10^{-7}$
- No of turns in each interpole,
$N_{\text {interpole }}=\frac{\text { AT (Inter pole) }}{I_{a}}$
- The no. of compensating conductor per pole, $\frac{N_{c w}}{\text { Pole }}=\frac{Z}{A P}\left(\frac{\text { Pole arc }}{\text { Pole pitch }}\right)$
- The mechanical power that is converted is given by $\mathrm{P}_{\text {conv }}=\mathrm{T}_{\mathrm{ind}} \omega_{\mathrm{m}}$ Where, $T=$ Induced torque $\omega_{\mathrm{m}}=$ Angular speed of the machine rotor
- The resulting electric power produced $P_{\text {conv }}=E_{A} I_{A}$
- The power balance equation of the DC machine is $T_{\text {ind }} \omega_{m}=E_{A} I_{A}$
- The induced emf in the armature is $E_{a}=\frac{\varnothing Z N P}{60 A}$.
- Torque developed in DC machine, $T_{e}=\frac{P Z}{2 \pi A} \varnothing I_{a}$.

Where $\varnothing=\frac{\text { Flux }}{\text { Pole }}, Z=$ Number of armature conductors, $P=$ No. of poles, $N=$ Speed in rpm, $\mathrm{A}=$ No. of armature parallel paths $\mathrm{I}_{\mathrm{a}}=$ Armature current

- The terminal voltage of the $D C$ generator is given by $V_{t}=E_{a}-I_{a} R_{a}$
- The terminal voltage of the $D C$ motor is given by $V_{t}=E_{a}+I_{a} R_{a}$
- Speed regulation of DC machine is given by, $\mathrm{SR}=\frac{\omega_{\mathrm{n} 1}-\omega_{\mathrm{f} 1}}{\omega_{\mathrm{f} 1}} \times 100 \%=\frac{\mathrm{N}_{\mathrm{n} 1}-\mathrm{N}_{\mathrm{f} 1}}{\mathrm{~N}_{\mathrm{f} 1}} \times 100 \%$
- Voltage regulation, $V R=\frac{V_{n 1}-V_{f 1}}{V_{f 1}} \times 100 \%$

Shunt Generator:

- For a shunt generator with armature induced voltage E_{a}, armature current I_{a} and armature resistance R_{a}, the terminal voltage V is: $V=E_{a}-I_{a} R_{a}$
- The field current If for a field resistance R_{f} is: $I_{f}=\frac{V}{R_{f}}$
- The armature induced voltage E_{a} and torque T with magnetic flux Φ at angular speed ω are:
$\mathrm{E}_{\mathrm{a}}=\mathrm{k}_{\mathrm{f}} \Phi \omega=\mathrm{k}_{\mathrm{m}} \omega \quad \mathrm{T}=\mathrm{k}_{\mathrm{f}} \Phi \mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{m}} \mathrm{I}_{\mathrm{a}}$
Where, k_{f} and k_{m} are design coefficients of the machine.
Note that for a shunt generator:
- Induced voltage is proportional to speed.
- Torque is proportional to armature current.
- The airgap power P_{e} for shunt generator is:

$$
P_{e}=\omega T=E_{a} I_{a}=k_{m} \omega I_{a}
$$

Series Generator:

- For a series generator with armature induced voltage Ea_{a}, armature current I_{a}, armature resistance R_{a} and field resistance R_{f}, the terminal voltage V is:
$V=E_{a}-\left(I_{a} R_{a}+I_{a} R_{f}\right)=E_{a}-I_{a}\left(R_{a}+R_{f}\right)$
The field current is equal to the armature current.
- The armature induced voltage E_{a} and torque T with magnetic flux Φ at angular speed ω are:
$E_{a}=k_{f} \Phi \omega I_{a}=k_{m} \omega I_{a}$
$\mathrm{T}=\mathrm{k}_{\mathrm{f}} \Phi \mathrm{I}_{\mathrm{a}}^{2}=\mathrm{k}_{\mathrm{m}} \mathrm{I}_{\mathrm{a}}^{2}$
Where k_{f} and k_{m} are design coefficient of the machine.
Note that for a series generator:
- Induced voltage is proportional to both speed and armature current,
- Torque is proportional to the square of armature current.
- Armature current is inversely proportional to speed for a constant E_{a}
- The airgaps power Pe for a series generator is:

$$
\mathrm{P}_{\mathrm{e}}=\omega \mathrm{T}=\mathrm{E}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{m}} \omega \mathrm{I}_{\mathrm{a}}^{2}
$$

- Cumulatively compounded DC generator: (long shunt)
(a) $I_{a}=I_{f}+I_{L}$
(b) $V_{t}=E_{a}-I_{a}\left(R_{a}+R_{s}\right)$
(c) $I_{s f}=\frac{V_{x}}{R_{f}}=$ Shunt field current
(d) The equivalent effective shunt field current for this machine is given by

$$
I_{s f}=I_{s f}+\frac{N_{s e}}{N_{f}} I_{a}-\left(\frac{\text { Armature reaction MMF }}{N_{f}}\right)
$$

Where, $\mathrm{N}_{\mathrm{se}}=$ No. of series field turns

$$
N_{f}=\text { No of shunt field turns }
$$

- Differentially compounded DC generator: (long shunt)
(a) $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{f}}+\mathrm{I}_{\mathrm{L}}$
(b) $V_{t}=E_{a}-I_{a}\left(R_{a}+R_{s}\right)$
(c) $I_{s f}=\frac{V_{x}}{R_{f}}=$ Shunt field current
(d) The equivalent effective shunt field current for this machine is given by

$$
I_{s f}=I_{\text {sf }}-\frac{N_{s e}}{N_{f}} I_{a}-\left(\frac{\text { Armature reaction MMF }}{N_{f}}\right)
$$

Where, $\mathrm{N}_{\mathrm{se}}=$ No. of series field turns
$N_{f}=$ No of shunt field turns

Shunt Motor:

- For a shunt generator with armature induced voltage E_{a}, armature current I_{a} and armature resistance R_{a}, the terminal voltage V is:
$\mathrm{V}=\mathrm{E}_{\mathrm{a}}+\mathrm{I}_{\mathrm{a}} \mathrm{Ra}_{\mathrm{a}}$
The field current If for a field resistance R_{f} is: $I_{f}=\frac{V}{R_{f}}$
- The armature induced voltage E_{a} and torque T with magnetic flux Φ at angular speed ω are:
$\mathrm{E}_{\mathrm{a}}=\mathrm{k}_{\mathrm{f}} \Phi \omega=\mathrm{k}_{\mathrm{m}} \omega$
$\mathrm{T}=\mathrm{k}_{\mathrm{f}} \Phi \mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{m}} \mathrm{I}_{\mathrm{a}}$
Where, k_{f} and k_{m} are design coefficients of the machine.
Note that for a shunt motor:
- Induced voltage is proportional to speed.
- Torque is proportional to armature current.
- The airgap power P e for shunt generator is:
$P_{e}=\omega T=E_{a} I_{a}=k_{m} \omega I_{a}$
- The speed of the shunt motor, $\omega=\frac{\mathrm{V}}{\mathrm{k} \varnothing}-\frac{\mathrm{R}_{\mathrm{a}}}{(\mathrm{K} \varnothing)^{2} \mathrm{~T}}$ where, $\mathrm{K}=\frac{\mathrm{PZ}}{2 \pi \mathrm{~A}}$

Series Motor:

- For a series motor with armature induced voltage E_{a}, armature current I_{a}, armature resistance R_{a} and field resistance R_{f}, the terminal voltage V is:
$V=E_{a}+\left(I_{a} R_{a}+I_{a} R_{f}\right)=E_{a}+I_{a}\left(R_{a}+R_{f}\right)$
The field current is equal to the armature current.
- The armature induced voltage E_{a} and torque T with magnetic flux Φ at angular speed ω are:
$E_{a}=k_{f} \Phi \omega I_{a}=k_{m} \omega I_{a} \quad T=k_{f} \Phi I_{a}^{2}=k_{m} I_{a}^{2}$
Where k_{f} and k_{m} are design coefficient of the machine.
Note that for a series motor:
- Induced voltage is proportional to both speed and armature current.
- Torque is proportional to the square of armature current.
- Armature current is inversely proportional to speed for a constant E_{a}
- The airgaps power P e for a series motor is:

$$
P_{e}=\omega T=E_{a} I_{a}=k_{m} \omega I_{a}^{2}
$$

Losses:

- Constant losses $\left(P_{k}\right)=P_{w f}+P_{i o}$
where, $\mathrm{P}_{\mathrm{io}}=$ No of load core loss
- Variables losses $\left(P_{v}\right)=P_{c}+P_{s t}+P_{b}$

Where, $\mathrm{P}_{\mathrm{c}}=$ Copper losses $=\mathrm{I}_{\mathrm{a}}^{2} \mathrm{R}_{\mathrm{a}}$
$\mathrm{P}_{\text {st }}=$ Stray load loss $=\mathrm{aI}_{2}$
$\mathrm{P}_{\mathrm{b}}=$ Brush contact drop $=\mathrm{V}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}$, where, $\mathrm{V}_{\mathrm{b}}=$ Brush voltage drop

- The total machine losses, $\mathrm{P}_{\mathrm{L}}=\mathrm{P}_{\mathrm{k}}+\mathrm{V}_{\mathrm{b}} \mathrm{I}_{\mathrm{a}}+\mathrm{K}_{\mathrm{v}} \mathrm{I}_{\mathrm{a}}{ }^{2}$

Efficiency:

- The per unit efficiency η of an electrical machine with input power Pin, output power Pout and power loss Ploss is:
$\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{P_{\text {out }}}{\left(P_{\text {out }}+P_{\text {loss }}\right)}=\frac{\left(P_{\text {in }}-P_{\text {loss }}\right)}{P_{\text {in }}}$
- Rearranging the efficiency equations:

$$
\begin{aligned}
& P_{\text {in }}=P_{\text {out }}+P_{\text {loss }}=\frac{P_{\text {out }}}{\eta}=\frac{P_{\text {loss }}}{(1-\eta)} \\
& P_{\text {out }}=P_{\text {in }}-P_{\text {loss }}=\eta P_{\text {in }}=\frac{\eta P_{\text {loss }}}{(1-\eta)} \\
& P_{\text {loss }}=P_{\text {in }}-P_{\text {out }}=(1-\eta) P_{\text {in }}=\frac{(1-\eta) P_{\text {out }}}{\eta}
\end{aligned}
$$

Temperature Rise:

- The resistance of copper and aluminum windings increases with temperature, and the relationship is quite linear over the normal range of operating temperatures. For a linear relationship, if the winding resistance is R_{1} at temperature θ_{1} and R_{2} at temperature θ_{2}, then:
$\frac{R_{1}}{\left(\theta_{1}-\theta_{0}\right)}=\frac{R_{2}}{\left(\theta_{2}-\theta_{0}\right)}=\frac{\left(R_{2}-R_{1}\right)}{\left(\theta_{2}-\theta_{1}\right)}$
where θ_{0} is the extrapolated temperature for zero resistance.
- The ratio of resistances R_{2} and R_{1} is:
$\frac{R_{2}}{R_{1}}=\frac{\left(\theta_{2}-\theta_{0}\right)}{\left(\theta_{1}-\theta_{0}\right)}$
- The average temperature rise $\Delta \theta$ of a winding under load may be estimated from measured values of the cold winding resistance R_{1} at temperature θ_{1} (usually ambient temperature) and the hot winding resistance R_{2} at temperature θ_{2}, using:
$\Delta \theta=\theta_{2}-\theta_{1}=\frac{\left(\theta_{1}-\theta_{0}\right)\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)}{\mathrm{R}_{1}}$
- Rearranging for per-unit change in resistance $\Delta R_{p u}$ relative to R_{1} :

$$
\Delta R_{p u}=\frac{\left(R_{2}-R_{1}\right)}{R_{1}}=\frac{\left(\theta_{2}-\theta_{1}\right)}{\left(\theta_{1}-\theta_{0}\right)}=\frac{\Delta \theta}{\left(\theta_{1}-\theta_{0}\right)}
$$

Copper Windings:

- The value of θ_{0} for copper is $-234.5^{\circ} \mathrm{C}$, so that:

$$
\Delta \theta=\theta_{2}-\theta_{1}=\left(\theta_{1}+234.5\right) \frac{\left(R_{2}-R_{1}\right)}{R_{1}}
$$

- If θ_{1} is $20^{\circ} \mathrm{C}$ and $\Delta \theta$ is 1 degC:
$\Delta R_{p u}=\frac{\left(R_{2}-R_{1}\right)}{R_{1}}$
$=\frac{\Delta \theta}{\left(\theta_{1}-\theta_{0}\right)}=\frac{1}{254.5}=0.00393$
- The temperature coefficient of resistance of copper at $20^{\circ} \mathrm{C}$ is 0.00393 per degC.

Aluminium Windings:

- The value of θ_{0} for aluminium is $-228^{\circ} \mathrm{C}$, so that:
$\Delta \theta=\theta_{2}-\theta_{1}=\left(\theta_{1}+228\right) \frac{\left(R_{2}-R_{1}\right)}{R_{1}}$
- If θ_{1} is $20^{\circ} \mathrm{C}$ and $\Delta \theta$ is 1 deg C :
$\Delta \mathrm{R}_{\mathrm{pu}}=\frac{\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right)}{\mathrm{R}_{1}}=\frac{\Delta \theta}{\left(\theta_{1}-\theta_{0}\right)}=\frac{1}{248}=0.00403$
- The temperature coefficient of resistance of aluminium at $20^{\circ} \mathrm{C}$ is 0.00403 per deg C .

Dielectric Dissipation Factor:

- If an alternating voltage V of frequency f is applied across an insulation system comprising capacitance C and equivalent series loss resistance R_{s}, then the voltage V_{R} across R_{s} and the voltage V_{c} across C due to the resulting current I are:
$\mathrm{V}_{\mathrm{R}}=\mathrm{I} \mathrm{R}_{\mathrm{S}}$
$V_{c}=I X_{c}$
$V=\left(V_{R}{ }^{2}+V_{C}\right)^{1 / 2}$
- The dielectric dissipation factor of the insulation system is the tangent of the dielectric loss angle δ between V_{c} and V :
$\tan \delta=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}_{\mathrm{C}}}=\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{X}_{\mathrm{c}}}=2 \pi \mathrm{fCR}_{\mathrm{S}}$
$\mathrm{R}_{\mathrm{S}}=\mathrm{X}_{\mathrm{C}} \tan \delta=\frac{\tan \delta}{2 \pi \mathrm{fC}}$
- The dielectric power loss P is related to the capacitive reactive power Q_{c} by:

$$
\mathrm{P}=\mathrm{I}^{2} \mathrm{Rs}=\mathrm{I}^{2} \mathrm{X} \operatorname{ctan} \delta=\text { Qctan } \delta
$$

- The power factor of the insulation system is the cosine of the phase angle ϕ between V_{R} and V :
$\cos \phi=\frac{V_{R}}{V}$
So that δ and ϕ are related by:
$\delta+\phi=90^{\circ}$
- tan δ and $\cos \phi$ are related by:
$\tan \delta=\frac{1}{\tan \phi}=\frac{\cos \phi}{\sin \phi}=\frac{\cos \phi}{\left(1-\cos ^{2} \phi\right)^{1 / 2}}$
So that when $\cos \phi$ is close to zero,
$\tan \delta \approx \cos \phi$

3. Synchronous Machines:

- Principle of operation:

Whenever a conductor cuts the magnetic flux, an emf is induced in that conductor"
-Faraday's law of electromagnetic induction.

- Coil span ($\boldsymbol{\beta}$): It is the distance between two sides of the coil. It is expressed in terms of degrees, pole pitch, no. of slots / pole etc.
- Pole pitch: It is the distance between two identical points on two adjacent poles. Pole pitch is always $180^{\circ} \mathrm{e}=$ slots $/$ pole.
- $\theta_{\text {elec }}=\frac{P}{2} \theta_{\text {mech }}$
- Slot pitch or slot angle: (T) Slot angle is the angle for each slot.
- For a machine with ' P ' poles and ' s ' no. of slots, the slot angle $=Y=\frac{P\left(180^{\circ}\right)}{d}$
$Y=\frac{\left(180^{\circ}\right)}{(\mathrm{s} / \mathrm{p})}$
- Pitch factor or coil span factor or chording factor :- (K_{P})
$K_{P}=\frac{\text { The emf induced | Coil in short pitched winding }}{\text { The emf induced | Coil in full pitched winding }}$
$=\frac{\text { The vector sum of indeed emf } \mid \text { Coil }}{\text { Arithmetic sum of induced emf } \mid \text { Coil }}$
$\mathrm{K}_{\mathrm{p}}=\frac{2 \mathrm{E} \cos \propto / 2}{2 \mathrm{E}}=\cos \frac{\alpha}{2}$
- Pitch factor for $\mathrm{n}^{\text {th }}$ harmonic i.e., $\mathrm{K}_{\mathrm{p}_{\mathrm{n}}}=\frac{\cos \mathrm{n} \propto}{2}$
- Chording angle to eliminate $\mathrm{n}^{\text {th }}$ harmonics
$(\alpha)=\frac{180^{\circ}}{n}$.
- Coil spam to eliminate $\mathrm{n}^{\text {th }}$ harmonics, $(\beta)=180\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)$.
- Distribution factor | Spread factor | belt factor | breadth factor (kd):
$K_{d}=\frac{\text { The emf induced when the winding is distributed }}{\text { The emf induced when the winding is concentrated }}$
$=\frac{\text { Vector sum of emf induced }}{\text { Arithmetic sum of emf induced }}$
$\mathrm{K}_{\mathrm{d}}=\frac{\sin \frac{m Y}{2}}{m \sin \frac{Y}{2}}$
- The distribution factor for uniformly distributed winding is
$\mathrm{kd}_{4}=\frac{\sin \frac{\mathrm{mr}}{2}}{\frac{\mathrm{mr}}{2} \times \frac{\pi}{180}}$
For $n^{\text {th }}$ harmonic, $k d_{n}=\frac{\sin \frac{m n r}{2}}{m \sin \frac{n y}{2}}$
- To eliminate $n^{\text {th }}$ harmonics phase spread $(m y)=\frac{360^{\circ}}{n}$
- Generally, KVA rating, power output $\propto \mathrm{kd}$ and E_{ph} (induced emf) $\propto \mathrm{k}_{\mathrm{d}} \times \mathrm{T}_{\mathrm{ph}}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{KVA}_{60}(3-\phi)}{\mathrm{KVA}_{120}(3-\phi)}=\frac{\text { Pout }_{60}(3 \phi)}{\text { Pout }_{120}(3 \phi)}=\frac{\mathrm{kd}_{60}}{\mathrm{kd}_{120}} \\
& =\frac{\sin \frac{60}{2}}{\sin \frac{120}{2}} \times \frac{\mathrm{m}_{120}}{\mathrm{~m}_{60}}=\frac{\sin 30^{\circ}}{\sin 60^{\circ}} \times \frac{120}{60}=1.15
\end{aligned}
$$

$$
\frac{\mathrm{KVA}_{60}(3 \phi)}{\mathrm{KVA}_{120}(2 \phi)}=\frac{\operatorname{Pout}_{60}(3 \phi)}{\text { Pout }_{90}(2 \phi)}=\frac{\mathrm{kd}_{60}}{\mathrm{kd}_{90}}=\frac{\sin \frac{60}{2}}{\sin \frac{90}{2}} \times \frac{90}{60}=1.06
$$

$$
\frac{\mathrm{KVA}_{60}(3 \phi)}{\mathrm{KVA}_{180}(1 \phi)}=\frac{\operatorname{Pout}_{60}(3 \phi)}{\operatorname{Pout}_{180}(1-\phi)}=\frac{\mathrm{kd}_{60}}{\mathrm{kd}_{180}}=\frac{\sin \frac{60}{2}}{\sin \frac{180}{2}} \times \frac{180}{60}=1.5
$$

$$
\frac{\text { KVA }_{90}(2-\phi)}{\mathrm{KVA}_{180}(1-\phi)}=\frac{\text { Pout }_{90}}{\text { Pout }_{180}}=\frac{\mathrm{kd}_{90}}{\mathrm{kd}_{180}}=\frac{\sin \frac{90}{2}}{\sin \frac{180}{2}} \times \frac{180}{90}=1.414
$$

- Speed of space harmonics of order $(6 k \pm 1)$ is $\frac{1}{(6 k \pm 1)} N_{s}$
where $N_{s}=$ Synchronous speed $=\frac{120 f}{p}$
The order of slot harmonics is $\left(\frac{2 s}{p} \pm 1\right)$
where $S=$ No. of slots, $P=$ No. of poles
- Slot harmonics can be eliminated by skewing the armature slots and fractional slot winding. The angle of skew $=\theta_{s}=Y$ (slot angle) $=2$ harmonic pole pitches $=1$ slot pitch.
- Distribution factor for slot harmonics,
$k_{d}\left(\frac{2 s}{p} \pm 1\right)$
Is $k d_{1}=\frac{\sin \frac{m y}{2}}{m \sin \frac{y}{2}}$ i.e., same that of fundamental
- Pitch factor for slot harmonics, $\mathrm{k}_{\mathrm{p}}\left(\frac{2 \mathrm{~s}}{\mathrm{p}} \pm 1\right)=\mathrm{k}_{\mathrm{p}_{1}}=\cos \frac{\propto}{2}$
- The synchronous speed N_{s} and synchronous angular speed of a machine with p pole pairs running on a supply of frequency f_{s} are:
$\omega_{\mathrm{s}}=\frac{2 \pi \mathrm{f}_{\mathrm{s}}}{\mathrm{p}}$
- Slip $\mathrm{S}=\frac{\mathrm{N}_{\mathrm{S}}-\mathrm{N}}{\mathrm{N}_{\mathrm{S}}}$

Where $N_{S}=\frac{120 f}{p}=$ synchronous speed

- The magnitude of voltage induced in a given stator phase is $E_{a}=\sqrt{2} \pi N_{c} \varnothing f=K \varnothing \omega$ Where $K=$ constant
- The output power Pm_{m} for a load torque T_{m} is:
$P_{m}=\omega_{s} T_{m}$
- The rated load torque T_{m} for a rated output power P_{m} is:
$T_{M}=\frac{P_{M}}{\omega_{s}}=\frac{P_{M} p}{2 \pi f_{s}}=\frac{120 P_{M}}{2 \pi N_{s}}$

Synchronous Generator:

- For a synchronous generator with stator induced voltage E_{s}, stator current I_{s} and synchronous impedance Z_{s}, the terminal voltage V is:
$V=E-I_{s} Z_{s}=E_{s}-I_{s}\left(R_{s}+j X_{s}\right)$
where R_{s} is the stator resistance and X_{s} is the synchronous reactance

Rajasthan RVUNL

$E=\sqrt{\left(V \cos \phi+I_{a} R_{a}\right)^{2}+\left(V \sin \phi \pm I_{a} X_{s}\right)^{2}}$
$+\Rightarrow$ lag p.f.
$-\Rightarrow$ leading p.f.

Synchronous Motor:

- For a synchronous motor with stator induced voltage E_{s}, stator current I_{s} and synchronous impedance Z_{s}, the terminal voltage V is:
$V=E_{s}+I_{s} Z_{s}=E_{s}+I_{s}\left(R_{s}+j X_{s}\right)$
where R_{s} is the stator resistance and X_{s} is the synchronous reactance

Voltage regulation:

- $\%$ regulation $=\frac{|E|-|V|}{|V|} \times 100$
$\mathrm{E}-\mathrm{V}=\mathrm{I}_{\mathrm{a}} \mathrm{Z}_{\mathrm{s}}$
$\therefore \%$ regulation $=\frac{\mathrm{E}-\mathrm{V}}{\mathrm{V}}=\frac{\mathrm{I}_{\mathrm{a}} \mathrm{Z}_{\mathrm{s}}}{\mathrm{V}} \times 100$
\therefore regulation $\propto \mathrm{Z}_{\mathrm{s}}$
\therefore As Z_{s} increases, voltages regulation increases.
- Condition for zero \mid min. voltage regulation is, $\cos (\theta+\varphi)=-\frac{I_{a} Z_{s}}{2 V}$
- Condition for max. Voltage regulation is, $\varphi=\theta$
- Short circuit ratio (SCR)
$\frac{I_{f_{m}}}{I_{f_{\mathrm{a}}}}=\frac{1}{\left.Z_{\mathrm{s}}(\text { adjusted })\right|_{\text {unit }}}=\frac{1}{\left.X_{\mathrm{s}}(\text { adjusted })\right|_{\text {unit }}}$
$\mathrm{SCR} \propto \frac{1}{\mathrm{X}_{\mathrm{a}}} \propto \frac{1}{\text { Armature reaction }}$
Voltage regulation \propto Armature reaction
$\therefore \mathrm{SCR} \propto \frac{1}{\text { Voltage reaction }}$
\therefore Small value of SCR represents poor regulation.
$\varphi_{\mathrm{a}}=\frac{\text { Armature mmf }}{\text { Reluctance }}$
But reluctance \propto Air gap
$\therefore \varphi_{\mathrm{a}}=\frac{\text { Armature } \mathrm{mmf}}{\text { Airgap }}$
$\varphi_{\mathrm{a}} \propto \frac{1}{\text { Airgap length }}$
Armature reaction $\propto \varphi_{\mathrm{a}} \propto \frac{1}{\text { Airgap length }}$
$\therefore \mathrm{SCR} \propto \frac{1}{\text { Armature reaction }} \propto$ Airgap length
Air gap length \propto SCR
\therefore Machine size \propto SCR Cost \propto SCR
Power $=\frac{E V}{X_{a}} \sin \delta \Rightarrow \mathrm{P} \propto \frac{1}{X_{\mathrm{s}}} \propto \mathrm{SCR}$
Power \propto SCR
\therefore Large value of SCR represents more power output.
- Synchronizing power coefficient or stability factor $P_{\text {sy }}$ is given as
$P_{s y}=\frac{d p}{d \delta}=\frac{d}{d \delta}\left(\frac{E V}{X_{s}} \sin \delta\right)=\frac{E V}{X_{s}} \cos \delta$
$P_{s y}$ is a measure of stability
\therefore Stability $\propto \mathrm{P}_{\mathrm{sy}}$
But, $\mathrm{P}_{\mathrm{sy}} \propto \frac{1}{\mathrm{X}_{\mathrm{s}}} \propto \mathrm{SCR}$
\therefore Stability \propto SCR
Stability \propto SCR \propto air gap length
\therefore Stability \propto air gap length
- When the stator mmf is aligned with the d - axis of field poles then flux φd per pole is set up and effective reactance offered by the alternator is X_{d}.
$X_{d}=\frac{\text { Maximum voltage }}{\text { Minimum current }}=\frac{\left(V_{t}\right) \text { line }\left(\text { at min, } I_{a}\right)}{\sqrt{3} I_{a}(\min)}=$ Direct axis reactance
- When the stator $m m f$ is aligned with the q - axis of field poles then flux φ_{q} per pole is set up and the effective reactance offered by the alternator is X_{q}.
$\mathrm{X}_{\mathrm{q}}=\frac{\text { Minimum voltage }}{\text { Maximum current }}=\frac{\left(\mathrm{V}_{\mathrm{t}}\right) \text { line }\left(\text { at } \min , \mathrm{I}_{\mathrm{a}}\right)}{\sqrt{3} \mathrm{I}_{\mathrm{a}}(\max)}=$ Quadrature axis reactance
- Cylindrical rotor Synchronous machine,

The per phase power delivered to the infinite bus is given by $P=\frac{E_{f} V_{t}}{X_{s}} \sin \delta$

- Salient pole synchronous machine,

The per phase power delivered to the infinite bus is given by

$$
P=\frac{E_{f} V_{t}}{X_{d}} \sin \delta+\frac{V_{t}^{2}}{2}\left[\frac{1}{X_{q}}-\frac{1}{X_{d}}\right] \sin 2 \delta
$$

Condition for max. power:

- For cylindrical rotor machine:

At constant V_{t} and E_{f}, the condition for max. power is obtained by putting $\frac{d p}{d \delta}=0$
$\therefore \frac{\mathrm{dp}}{\mathrm{d} \delta}=\frac{\mathrm{E}_{\mathrm{f}} \mathrm{V}_{\mathrm{t}}}{\mathrm{X}_{\mathrm{s}}} \operatorname{cod} \delta=0$
$\cos \delta=0$
$\delta=90^{\circ}$
Hence maximum power occurs at $\delta=90^{\circ}$

- For salient - pole synchronous machine:
$\frac{d p}{d \delta}=0$
$\Rightarrow \frac{V_{t} E_{f}}{X_{d}} \operatorname{cod} \delta+V_{t}^{2}\left(\frac{1}{X_{q}}-\frac{1}{x_{d}}\right) \cos 2 \delta=0$
$\cos \delta=-\frac{\mathrm{E}_{\mathrm{f}} \mathrm{X}_{\mathrm{q}}}{4 \mathrm{~V}_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{d}}-\mathrm{X}_{\mathrm{q}}\right)} \pm \sqrt{\frac{1}{2}+\left[\frac{\mathrm{E}_{\mathrm{f}} \mathrm{X}_{\mathrm{q}}}{4 \mathrm{~V}_{\mathrm{t}}\left(\mathrm{X}_{\mathrm{d}}-\mathrm{X}_{\mathrm{q}}\right)}\right]^{2}}$ The value of load angle is seed to be less
than 90°.
\therefore Maximum power occurs at $\delta<90^{\circ}$
- Synchronizing power $=\mathrm{P}_{\mathrm{sy}} . \Delta \delta .=\frac{\mathrm{EV}}{\mathrm{X}_{\mathrm{s}}} \operatorname{cod} \delta \delta \Delta \delta$
- \quad Synchronizing torque $=\frac{\text { Synchronizing power }}{\omega}$

Power flow in Alternator:

- Complex power $=\mathrm{S}=\mathrm{P}+\mathrm{jQ}=\mathrm{VI}_{\mathrm{a}}{ }^{*}$

Where Active power flow $(P)=\frac{E V}{Z_{s}} \cos (\theta-\delta)-\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{s}}} \cos \theta$;
Reactive power flow $(Q)=\frac{E V}{Z_{2}} \sin (\theta-\delta)-\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{s}}} \sin \theta$;

- Condition for max. power output:
$\mathrm{P}=\frac{\mathrm{EV}}{\mathrm{Z}_{\mathrm{s}}} \cos (\theta-\delta)-\frac{\mathrm{V}^{2}}{\mathrm{Z}_{2}} \cos \theta$
$\frac{\mathrm{dp}}{\mathrm{d} \delta}=0$ for max power condition
i.e. $\theta-\delta=0$
$\theta=\delta$
If $R_{a}=0 ; \theta=\delta=90^{\circ}$; then max power is given by

$$
P_{\max }=\frac{E V}{Z_{s}}-\frac{V^{2}}{Z_{s}} \cos \theta
$$

4. Induction Machines:

- The power flow diagram of $3-\phi$ induction motor is

The slip of induction machine is
$(\mathrm{S})=\frac{\mathrm{n}_{\mathrm{s}}-\mathrm{n}_{\mathrm{r}}}{\mathrm{n}_{\mathrm{s}}}=\frac{\mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}}{\mathrm{N}_{\mathrm{s}}}$
Where N_{s} is synchronous speed in rpm n_{s} is synchronous speed in rps
$\Rightarrow \mathrm{N}_{\mathrm{r}}=\mathrm{N}_{\mathrm{s}}(1-\mathrm{s})$
$\Rightarrow \mathrm{N}_{\mathrm{s}}-\mathrm{N}_{\mathrm{r}}=\mathrm{sN} \mathrm{s}_{\mathrm{s}}$
\therefore Rotor frequency,
$f_{2}=\frac{P \times S N_{s}}{120}=S \frac{P N_{s}}{120}=S f_{1}$
For an induction machine with rotor resistance R_{r} and locked rotor leakage reactance X_{r}, the rotor impedance Z_{r} at slip s is:
$Z_{r}=R_{r}+j s X_{r}$
The stator circuit equivalent impedance $Z_{\text {rf }}$ for a rotor/stator frequency ratio s is:
$Z_{\text {rf }}=\frac{R_{r s}}{s+j X_{r s}}$
For an induction motor with synchronous angular speed ω_{s} running at angular speed ω_{m} and slip s, the airgap transfer power P_{t}, rotor copper loss P_{r} and gross output power P_{m} for a gross output torque T_{m} are related by:
$P_{t}=\omega_{s} T_{m}=\frac{P_{r}}{s}=\frac{P_{m}}{(1-s)}$
$\operatorname{Pr}=s P_{t}=\frac{s P_{m}}{(1-s)}$
$P_{m}=\omega_{m} T_{m}=(1-s) P_{t}$
The power ratios are:
$P_{t}: P_{r}: P_{m}=1: s:(1-s)$
The gross motor efficiency η_{m} (neglecting stator and mechanical losses) is:

$$
\eta_{m}=\frac{P_{m}}{P_{t}}=1-s
$$

Rotor emf, Current Power:

At stand still, the relative speed between rotating magnetic field and rotor conductors is synchronous speed Ns; under this condition let the per phase generated emf in rotor circuit be E_{2}.
$\therefore \frac{\mathrm{E}_{2}}{\mathrm{ph}}=4.44 \mathrm{~N}_{\mathrm{phr}} \varphi_{1} \mathrm{f}_{1} \mathrm{~K}_{\mathrm{dr}} \mathrm{K}_{\mathrm{pr}}$
$\frac{\mathrm{E}_{2}}{\mathrm{ph}}=4.44 \mathrm{~N}_{\mathrm{phr}} \varphi_{1} \mathrm{f}_{1} \mathrm{~K}_{\mathrm{wr}}$
$K_{w r}=$ Rotor winding factor

- But during running conditions the frequency of the rotor becomes, running with speed N_{r}

$$
\frac{P\left(N_{s}-N_{r}\right)}{120}=\frac{P_{s} N_{s}}{120}=s f_{1}
$$

$\therefore \mathrm{fr}_{\mathrm{r}}=\mathrm{sf}_{1}$
\therefore Emf under running conditions is
$\mathrm{E}=\sqrt{2} \pi \mathrm{f}_{\mathrm{r}} K \mathrm{w}_{2} \mathrm{~N}_{\mathrm{phr}} \phi_{1}=\mathrm{sE} \mathrm{E}_{2}$

- Rotor leakage reactance $=2 \pi$ (Rotor frequency) (Rotor leakage Inductance)
\therefore Rotor leakage reactance at stand still $=2 \pi f_{1} l_{2}=\mathrm{x}_{2} \Omega$
- Rotor leakage reactance at any slips $=2 \pi f_{2} l_{2}=s x_{2} \Omega$
- Rotor leakage impedance at stand still $=\sqrt{r_{2}^{2}+x_{2}^{2}}$
- At any slip s, rotor $=\sqrt{r_{2}^{2}+x_{2}^{2}}$
- Per phase rotor current at any slip s is given by
$I_{2}=\frac{s E_{2}}{\sqrt{r_{2}^{2}+\left(s x_{2}\right)^{2}}}=\frac{E_{2}}{\sqrt{\left(r_{1} / s\right)^{2}+x_{2}^{2}}}$
- The rotor current I_{2} lags the rotor voltage E_{2} by rotor power factor angle θ_{2} given by $\theta_{2}=\tan ^{-1} \frac{\mathrm{Sx}}{\mathrm{r}_{2}} \mathrm{r}_{2}$
- Per phase power input to rotor is
$P_{g}=E_{2} I_{2} \cos \theta_{2}$
$\cos \theta_{2}=\frac{\text { Per phase rotor resistance }}{\text { Per phase rotor impedance }}=\frac{r_{2} / s}{\sqrt{\left(r_{2} / s\right)^{2}+\left(x_{2}\right)^{2}}}$
$\therefore P_{g}=E_{2} I_{2} \times \frac{r_{2} / s}{\sqrt{\left(r_{2} / s\right)^{2}+\left(x_{2}\right)^{2}}}=\frac{E_{2}}{\sqrt{\left(r_{2} / s\right)^{2}+\left(x_{2}\right)^{2}}} \times I_{s} \frac{r_{2}}{s}=I_{2}^{2} \frac{r_{2}}{s}$
- P_{g} is the power transferred from stator to rotor across the air gap. Therefore, P_{g} is called air gap power
$P_{g}=I_{2}^{2} \frac{r_{2}}{s}=I_{2}^{2} r_{2}+I_{2}^{2} r_{2}\left[\frac{1-s}{s}\right]$
$P_{g}=($ Rotor ohmic loss $)+$ Internal mechanical power developed in rotor $\left(P_{m}\right)=s P_{g}+(1-s) P_{g}$
$\therefore \mathrm{P}_{\mathrm{m}}=(1-\mathrm{s}) \mathrm{P}_{\mathrm{g}}=\mathrm{I}_{2}^{2} \mathrm{r}_{2}\left[\frac{1-\mathrm{s}}{\mathrm{s}}\right]$
Rotor ohmic loss $=\left[\frac{s}{1-s}\right] P_{m}=s P_{g}$
- Internal (or gross) torque developed per phase is given by
$T_{e}=\frac{\text { Internal mechanical power developed in rotor }}{\text { Rotor speed in mechanical radian per sec }}$
$\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{m}}}{\omega_{\mathrm{r}}}=\frac{(1-\mathrm{S}) \mathrm{P}_{\mathrm{g}}}{(1-\mathrm{S}) \omega_{\mathrm{s}}}=\frac{\mathrm{P}_{\mathrm{g}}}{\omega_{\mathrm{s}}}$
- Electromagnetic torque T_{e} can also be expressed as
$\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{g}}}{\omega_{\mathrm{s}}}=\frac{1}{\omega_{\mathrm{s}}} \times \frac{\mathrm{I}_{2}^{2} \mathrm{r}_{2}}{\mathrm{~s}}=\frac{\text { Rotor ohmic loss }}{\left(\omega_{\mathrm{s}}\right) \text { slip }}$
$\therefore \mathrm{T}_{\mathrm{e}}=\frac{\text { Rotor ohmic loss }}{\left(\omega_{\mathrm{s}}\right) \mathrm{slip}}$
- Power available at the shaft can be obtained from P_{g} as follows. Output or shaft power, $P_{s h}=P_{m}-$ Mechanical losses
- Mechanical losses imply frication and windage losses.
$P_{s h}=P_{g}-$ Rotor ohmic loss - Friction and windage losses $=$ Net mechanical power output or net power output output or shaft torque
$T_{\text {sh }}=\frac{P_{\text {sh }}}{\text { Rotor speed }}=\frac{P_{\text {sh }}}{(1-s) \omega_{s}}$
- If the stator input is known. Then air gap power P_{g} is given by $\mathrm{P}_{\mathrm{g}}=$ stator power input - stator $I^{2} \mathrm{R}$ loss - stator core loss.
- Ratio of Rotor input power, rotor copper losses and gross mechanical output is
$\frac{I_{r}^{2} R_{2}}{s}: I_{r}^{2} R_{2}: I_{r}^{2} R_{2}\left[\frac{1}{s}-1\right]$
$\Rightarrow 1: \mathrm{s}:(1-\mathrm{s})$
\therefore Rotor copper losses $=\mathrm{s} \times$ Rotor input
Gross Mechanical output $=(1-s) \times$ Rotor input.
Rotor copper losses $=($ Gross mechanical output $) \times \frac{\mathrm{s}}{1-\mathrm{s}}$
Efficiency of the rotor is approximately equal to
$\eta_{\text {rotor }}=\frac{\text { Gross mechanical power output }}{\text { Rotor input }}$
$\frac{(1-s) \text { Rotor input }}{\text { Rotor input }}=1-s=1-\frac{N_{s}-N}{N_{s}}=\frac{N}{N_{s}}$
$\eta_{\text {rotor }} \simeq \frac{N}{N_{s}}$

Total torque is
$T_{e}=\frac{m}{\omega_{s}} \times \frac{V_{e}^{2}}{\left[R_{e}+\frac{r_{2}}{s}\right]^{2}+\left(x_{2}+X_{e}\right)^{2}} \times \frac{r_{2}}{s} N m$
m is the number of stator phases. Torque equation can be written as
$\mathrm{T}_{\mathrm{e}}=\frac{\mathrm{m}}{\omega_{\mathrm{s}}} \times \mathrm{I}_{2}^{2} \times \frac{\mathrm{r}_{2}}{\mathrm{~s}}=\frac{\mathrm{m}}{\omega_{\mathrm{s}}} \times$ rotor input per phase.
Thus, the slip $\mathrm{Sm}_{\mathrm{mt}}$ at which maximum torque occurs is given by

$$
S_{m T}=\frac{r_{2}}{\sqrt{R_{e}^{2}+x^{2}}}
$$

Substituting the value of maximum slip in the torque equation, gives maximum torque
$\mathrm{T}_{\mathrm{em}}=\frac{\mathrm{m}}{\omega_{\mathrm{s}}} \times \frac{\mathrm{V}_{\mathrm{e}}^{2}}{2 \mathrm{X}_{2}}$
If stator parameters are neglected then applying maximum transfer theorem to $\frac{r_{2}}{s}$ then $\frac{r_{2}}{s}=x_{2}$
Slip corresponding to maximum torque is
$S_{m}=\frac{r_{2}}{x_{2}}$ (Breakdown slip)
$N_{m}=N_{s}\left(1-S_{m}\right)$
$\Rightarrow \mathrm{N}_{\mathrm{m}}=\mathrm{N}_{\mathrm{s}}\left(1-\frac{\mathrm{R}_{2}}{\mathrm{X}_{2}}\right)$
N_{m} is the stalling speed at the maximum torque.

Starting Torque:

At starting, slip $S=1.00$, starting torque is given by
Test $=\frac{m V_{e}^{2}}{\omega_{s}} \times \frac{r_{2}}{\left(R_{e}+r_{2}\right)^{2}+x_{2}}$

Motor Torque in terms of $\mathrm{Tem}_{\mathrm{em}}$

- The torque expression of an induction motor can also be expressed in terms of maximum torque T_{em} and dimension less ratio $\frac{\mathrm{S}}{\mathrm{S}_{\mathrm{mT}}}$. In order to get a simple and approximate expression, stator resistance r_{1}, or the stator equivalent resistance R_{e}, is neglected.

$$
\therefore \frac{\mathrm{T}_{\mathrm{e}}}{\mathrm{~T}_{\mathrm{em}}}=\frac{2 \mathrm{X}}{\left(\frac{\mathrm{r}_{2}}{\mathrm{~s}}\right)^{2}+\mathrm{X}^{2}} \times \frac{\mathrm{r}_{2}}{\mathrm{~s}}
$$

- Since r_{1} or R_{e} is neglected

$$
\frac{T_{e}}{T_{\mathrm{em}}}=\frac{2 X}{\left(\frac{r_{2}}{s}\right)^{2}+X^{2}} \times \frac{r_{2}}{s}
$$

- The slip at which maximum torque occurs is

$$
\begin{aligned}
& S_{m T}=\frac{r_{2}}{X} \quad \therefore r_{2}=S_{m T} X \\
& \therefore \frac{T_{e}}{T_{e m}}=\frac{2 X}{\left[\frac{S_{m T} X}{S}\right]^{2}+X^{2}} \times \frac{S_{m T} X}{S} \\
& \Rightarrow \frac{T_{e}}{T_{e m}}=\frac{2}{\frac{S_{m T}}{S}+\frac{S}{S_{m T}}} \\
& T_{e}=\frac{2 T_{e m}}{\frac{S_{m T}}{S}+\frac{S}{S_{m T}}}
\end{aligned}
$$

Losses and Efficiency:

There are three cases in iron losses.
Case (i): If the ratio of voltage to frequency is constant and flux is also constant then:
Iron loss $=$ Hysteresis loss + eddy current loss
$P_{h}=K_{h}+B_{m}{ }^{1.6}, P_{e}=K_{e} f^{2} B_{m}{ }^{2}$
Given: $\frac{v}{f}$ is constant. As $B_{m} \propto \frac{v}{f}$
$\Rightarrow B_{m}$ is constant.

$$
\therefore \quad P_{h} \propto f \text { and } \quad P_{e} \propto f^{2}
$$

Case (ii): If the ratio of voltage to frequency is not constant and flux is also not constant

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{v}}{\mathrm{f}} \neq \text { const } \quad \phi \neq \text { const } \\
& \mathrm{P}_{\mathrm{h}}=\mathrm{K}_{\mathrm{h}} f \mathrm{~B}_{\mathrm{m}}^{1.6} \quad \mathrm{Pe}_{\mathrm{e}}=\mathrm{K}_{\mathrm{e}} \mathrm{f}^{2} \mathrm{Bm}^{2} \\
& \therefore \mathrm{P}_{\mathrm{h}} \propto \mathrm{v}^{1.6} \mathrm{f}^{-0.6} \quad \quad \mathrm{P}_{\mathrm{e}} \propto \mathrm{v}^{2}
\end{aligned}
$$

Case (iii): If frequency is constant and voltage is variable then:

$$
\begin{aligned}
& P_{h}=K_{h} f B_{m}^{1.6} \quad P_{e}=K_{h} f^{2} B_{m}^{2} \\
& =K_{h} f\left(\frac{v}{f}\right)^{1.6}
\end{aligned}
$$

$$
P_{h} \propto v^{1.6} \quad P_{e} \propto v_{1}^{2}
$$

- Short circuit current with normal voltage applied to stator is
$\mathrm{I}=\mathrm{I}_{\mathrm{br}} \times \frac{\mathrm{V}}{\mathrm{V}_{\mathrm{br}}}$
I = Short circuit current with normal voltage
$\mathrm{I}_{\mathrm{br}}=$ Short circuit current with voltage V_{b},
- Power factor on short circuit is found from

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{br}}=\sqrt{3} \mathrm{~V}_{\mathrm{br}} \mathrm{I}_{\mathrm{br}} \cos \phi_{\mathrm{br}} \\
& \Rightarrow \cos \phi_{\mathrm{br}}=\frac{\mathrm{P}_{\mathrm{br}}}{\sqrt{3} \mathrm{~V}_{\mathrm{br}} \mathrm{I}_{\mathrm{br}}}
\end{aligned}
$$

- As Pbr is approximately equal to full load cooper losses

$$
\mathrm{R}_{\mathrm{br}}=\frac{\mathrm{P}_{\mathrm{br}}}{\mathrm{I}_{\mathrm{br}}}
$$

The blocked rotor impedance is
$Z_{b r}=\frac{V_{b r}}{I_{b r}}$
\therefore Blocked rotor reactance $=X_{b r}=\sqrt{Z_{b r}^{2}-R_{b r}^{2}}$
Efficiency of induction machines:
Generally, efficiency $=\frac{\text { Output power }}{\text { Input power }}$
\therefore Efficiency of induction motor $=\frac{\text { Net mechanical output }}{\text { Electrical power input }}$
\therefore Efficiency of induction generator $=\frac{\text { Net electrical output }}{\text { Mechanical power input }}$
$\therefore \frac{\mathrm{GD}}{\mathrm{GF}}=\frac{\mathrm{P}_{\mathrm{sc}}-3 \mathrm{I}_{\mathrm{sc}}^{2} \mathrm{r}_{1}}{3 \mathrm{I}_{\mathrm{sc}}^{2} \mathrm{r}_{1}}$
Wound rotor: $\frac{G D}{G F}=\frac{I_{2}^{2} r_{2}}{I_{1}^{2} r_{1}}=\frac{r_{2}}{r_{1}}\left(\frac{I_{2}}{I_{1}}\right)^{2}$

Direct-on line (across the line) starting:

- The relation between starting torque and full load torque is

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{e}}=\frac{1}{\omega_{\mathrm{s}}} \times \mathrm{I}_{2}^{2} \frac{\mathrm{r}_{2}}{\mathrm{~s}} \\
& \therefore \frac{\mathrm{~T}_{\mathrm{e}, \mathrm{st}}}{\mathrm{~T}_{\mathrm{e}, \mathrm{f} 1}}=\frac{\mathrm{I}_{2, \mathrm{st}}^{2} \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}}{\mathrm{I}_{2, \mathrm{ft}}^{2} \frac{\mathrm{r}_{2}}{\mathrm{~S}_{\mathrm{r}_{1}}}}=\left[\frac{\mathrm{I}_{2, \mathrm{st}}}{\mathrm{I}_{2, \mathrm{f} 1}}\right]^{2} \times \mathrm{S}_{\mathrm{f} 1}
\end{aligned}
$$

The above equation valid for rotor resistance remains constant.
$\frac{T_{e, s t}}{T_{e, f 1}}=\left[\frac{I_{s t}}{I_{f l}}\right]^{2} \times S_{f 1}$
Where,
$\frac{I_{s t}}{I_{f 1}}=\frac{(\text { Effective rotor to stator turns ratio }) I_{2, s t}}{(\text { Effective rotor to stator turns ratio }) I_{2, s 1}}$

- Per phase short - circuit current at stand still (or at starting) is,

$$
I_{\mathrm{sc}}=\frac{\mathrm{v}_{1}}{\mathrm{Z}_{\mathrm{sc}}}
$$

Where, $Z_{s c}=\left(r_{1}+r_{2}\right)+j\left(x_{1}+x_{2}\right)$
Here shunt branch parameters of equivalent circuit are neglected.

- Therefore, for direct switching.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{st}}=\mathrm{I}_{\mathrm{sc}}=\frac{\mathrm{v}_{1}}{\mathrm{Z}_{\mathrm{sc}}} \\
& \therefore \frac{\mathrm{~T}_{\text {est }}}{\mathrm{T}_{\text {esf }}}=\left[\frac{\mathrm{I}_{\mathrm{sc}}}{\mathrm{I}_{\mathrm{f} 1}}\right]^{2} \mathrm{~S}_{\mathrm{f} 1}
\end{aligned}
$$

Stator resistor (or reactor) starting:

Since per phase voltage is reduced to $x v$, the per phase starting current $I_{s t}$ is given by $I_{s t}=\frac{X v_{1}}{Z_{\text {sc }}}=X I_{\text {sc }}$ As be fore $\therefore \frac{T_{\text {est }}}{T_{\text {esf }}}=\left[\frac{I_{s c}}{I_{f 1}}\right]^{2} S_{f 1}=\left[\frac{x I_{s c}}{I_{f 1}}\right]^{2} S_{f 1}$

- In an induction motor, torque $\propto(\text { Voltage })^{2}$
$\therefore \frac{\text { Starting torque with reactor starting }}{\text { Starting torque with direct switching }}=\left[\frac{\mathrm{xv}_{1}}{\mathrm{v}_{1}}\right]^{2}=\mathrm{x}^{2}$

Auto transformer starting:

- Per phase starting current from the supply mains is $I_{s t}=x^{2} I_{s c}$
$\frac{\mathrm{T}_{\mathrm{e}, \mathrm{st}}}{\mathrm{T}_{\mathrm{e}, \mathrm{f} 1}}=\frac{\text { Per phase starrting current in motor winding }}{\text { Per phase motor full load current }} \times \mathrm{S}_{\mathrm{f} 1}$
$\frac{T_{e, s t}}{T_{e, f 1}}=\frac{I_{s t} I_{s c}}{I_{f 1}^{2}} \times S_{f 1}$
$\frac{\mathrm{T}_{\mathrm{e}, \mathrm{st}} \text { with an auto transformer }}{\mathrm{T}_{\mathrm{e}, \mathrm{st}} \text { with direct switching }}=\left[\frac{\mathrm{xv}_{1}}{\mathrm{v}_{1}}\right]^{2}=\mathrm{x}^{2}$

Star - Delta method of Starting:

- $\frac{\text { Starting torque with star delta starter }}{\text { Starting torque with direct switching in delta }}=\frac{\left[\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}\right]^{2}}{\left[\mathrm{~V}_{L}\right]^{2}}=\frac{1}{3}$
\therefore Star delta starter also reduces the starting torque to one-third of that produce by direct switching in delta.
- With star - delta starter, a motor behaves as if it were started by an auto transformer starter with $x=\frac{1}{\sqrt{3}}=0.58$ i.e. with 58% tapping.
- $\frac{\text { Starting torque with star delta starter, } \mathrm{T}_{\mathrm{e}, \mathrm{st}}}{\text { Starting torque with direct switching in delta, } \mathrm{T}_{\text {efld }}}=\frac{\frac{1}{\mathrm{w}_{\mathrm{s}}}\left(\mathrm{I}_{\mathrm{st}, \mathrm{y}}\right)^{2} \frac{\mathrm{r}_{2}}{1}}{\frac{1}{\mathrm{w}_{\mathrm{s}}}\left(\mathrm{I}_{\mathrm{st}, \mathrm{d}}\right)^{2} \frac{\mathrm{r}_{2}}{\mathrm{~S}_{\mathrm{f} 1}}}$

$$
=\frac{\left[\frac{1}{\sqrt{3}} I_{s t, d}\right]^{2}}{\left(I_{f 1, d}\right)^{2}} \times S_{f 1}=\frac{1}{3}\left[\frac{I_{s c} d}{I_{f 1}}\right]^{2} \times S_{f 1}
$$

