gradeup

Rajasthan RVUNL

Electrical Engineering

Analog Electronics

100 Days
Plan Formula Notes

ANALOG CIRCUITS (FORMULA NOTES/SHORT NOTES)

- Energy gap
$E_{G / S i}=1.21-3.6 \times 10^{-4} \mathrm{~T}$ ev
$\left.E_{G / G i}=0.785-2.23 \times 10^{-4} \mathrm{~T} \mathrm{ev}\right\}$
Energy gap depending on temperature
- $\mathrm{E}_{\mathrm{F}}=\mathrm{E}_{\mathrm{C}}-\mathrm{K} \operatorname{T} \ln \left(\frac{\mathrm{N}_{\mathrm{C}}}{\mathrm{N}_{\mathrm{D}}}\right)=\mathrm{E}_{\mathrm{V}}+\mathrm{K} \operatorname{T} \ln \left(\frac{\mathrm{N}_{\mathrm{V}}}{\mathrm{N}_{\mathrm{A}}}\right)$
- Number of electrons

$$
\mathrm{n}=\mathrm{N}_{\mathrm{V}} \mathrm{e}^{-\left(\mathrm{E}_{\mathrm{c}}-\mathrm{E}_{\mathrm{f}}\right) / R T} \quad \quad(\mathrm{KT} \text { in ev })
$$

- Number of holes $\mathrm{p}=\mathrm{N}_{\mathrm{V}} \mathrm{e}^{-\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{V}}\right) / R T}$
- Mass action law $n_{p}=n_{i}{ }^{2}=N_{c} N_{v} e^{(E G / K T)}$
- Drift velocity $\mathrm{v}_{\mathrm{d}}=\mu \mathrm{E}\left(\right.$ For si $\left.\mathrm{v}_{\mathrm{d}} \leq 10^{7} \mathrm{~cm} / \mathrm{sec}\right)$
- Hall voltage $\mathrm{v}_{\mathrm{H}}=\frac{\mathrm{BI}}{\mathrm{w}_{\mathrm{e}}}$. Hall coefficient $\mathrm{R}_{H}=\frac{1}{\rho}$.
ρ - charge density $=\mathrm{qN} 0=$ ne...
- Conductivity, $\sigma=\rho \mu ; \mu=\sigma$ нн.
- Maximum value of electric field @ junction $E_{0}=\frac{q}{\epsilon_{s i}} N_{d} \times n_{n 0}=\frac{q}{\epsilon_{s i}} N_{A} \times n_{p 0}$.
- Charge storage @ junction

$$
\mathrm{Q}_{+}=-\mathrm{Q}_{-}=\mathrm{qA} \mathrm{x}_{\mathrm{n} 0} \mathrm{~N}_{\mathrm{D}}=\mathrm{qA} \mathrm{x}_{\mathrm{p} 0} \mathrm{~N}_{\mathrm{A}}
$$

- Diffusion current densities, $J_{p}=-q D_{p} \frac{d o}{d x} \quad J_{n}=-q D_{n} \frac{d n}{d x}$
- Drift current densities $=\mathrm{q}\left(\mathrm{p} \mu_{\mathrm{p}}+\mathrm{n} \mu_{\mathrm{n}}\right) \mathrm{E}$
- $\quad \mu_{\mathrm{p}}, \mu_{\mathrm{n}}$ decrease with increasing doping concentration.
- $\frac{D_{n}}{\mu_{\mathrm{n}}}=\frac{\mathrm{D}_{\mathrm{p}}}{\mu_{\mathrm{p}}}=\frac{K T}{q} \approx 25 \mathrm{mv} @ 300 \mathrm{~K}$
- Carrier concentration in N-type silicon $\mu_{n 0}=N_{D} ; p_{n 0}=\frac{n_{i}^{2}}{N_{D}}$
- Carrier concentration in P-type silicon $\mathrm{p}_{\mathrm{p} 0}=\mathrm{N}_{\mathrm{A}} ; \mathrm{n}_{\mathrm{p} 0}=\frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{A}}}$
- Junction built in voltage $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$
- Width of depletion region
$\mathrm{W}_{\text {dep }}=\mathrm{X}_{\mathrm{p}}+\mathrm{X}_{\mathrm{n}}=\sqrt{\frac{2 \varepsilon_{\mathrm{s}}}{\mathrm{N}_{\mathrm{A}}}\left(\frac{1}{\mathrm{~N}_{\mathrm{A}}}+\frac{1}{\mathrm{~N}_{\mathrm{D}}}\right)\left(\mathrm{V}_{0}+\mathrm{V}_{\mathrm{R}}\right)} *\left(\frac{2 \varepsilon \mathrm{ft}}{\mathrm{q}}=12.93 \mathrm{~m}\right.$ for si$)$
- $\frac{x_{n}}{x_{p}}=\frac{N_{A}}{N_{D}}$
- Charge stored in depletion region
$q_{J}=\frac{a N_{A} N_{D}}{N_{A}+N_{D}} \times A \times W_{\text {dep }}$
- Depletion capacitance,
$C_{J}=\frac{\varepsilon_{S} A}{W_{\text {dep }}} ; \quad C_{j 0}=\frac{\varepsilon_{s} A}{W_{\text {dep }} / V_{R}}=0$
$C_{j}=\frac{C_{j 0}}{\left(1+\frac{V_{R}}{V_{0}}\right)^{m}}$
$C_{j}=2 C_{j 0}$ (for forward Bias)
- Forward current, $\mathrm{I}=\mathrm{I}_{\mathrm{p}}+\mathrm{I}_{\mathrm{n}}$;
$\mathrm{I}_{\mathrm{p}}=\operatorname{Aqn}_{\mathrm{i}}^{2} \frac{\mathrm{D}_{\mathrm{p}}}{L_{\mathrm{p}} \mathrm{N}_{\mathrm{D}}}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{T}}}-1\right)$
$\mathrm{I}_{\mathrm{n}}=\mathrm{Aqn}_{\mathrm{i}}^{2} \frac{\mathrm{D}_{\mathrm{n}}}{L_{\mathrm{n}} \mathrm{N}_{\mathrm{D}}}\left(\mathrm{e}^{\mathrm{v} / \mathrm{V}_{\mathrm{T}}}-1\right)$
- Saturation current,
$I_{S}=A q n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{D}}\right)$
- Minority carrier life time,
$\tau_{p}=\frac{L_{p}^{2}}{D_{p}} ; \quad \tau_{n}=\frac{L_{n}^{2}}{D_{n}}$
- Minority carrier charge storage,
$\mathrm{Q}_{\mathrm{p}}=\tau_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}, \quad \mathrm{Q}_{\mathrm{n}}=\tau_{\mathrm{p}} \mathrm{I}_{\mathrm{n}}$
$\mathrm{Q}=\mathrm{Q}_{\mathrm{p}}+\mathrm{Q}_{\mathrm{n}}=\tau_{\mathrm{T}} \mathrm{I}, \tau_{\mathrm{T}}=$ Mean transist time
- Diffusion capacitance,
$C_{d}=\left(\frac{\tau_{T}}{h V_{T}}\right) I=\tau g \Rightarrow C_{d} \propto I$.
$\tau \rightarrow$ Carrier life time, $g=$ Conductance $=\frac{I}{\eta V_{T}}$
- $\mathrm{I}_{02}=2^{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / 10} \mathrm{I}_{01}$
- Junction Barrier Voltage, $\mathrm{V}_{\mathrm{j}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{r}}$ (Open condition)
- $\quad=\mathrm{V}_{\mathrm{r}}-\mathrm{V}$ (Forward condition) $=\mathrm{V}_{\mathrm{r}}+\mathrm{V}$ (Reverse condition)
- Probability of filled states above ' E '
$f(E)=\frac{1}{1+e^{\left(E-E_{f}\right) / K T}}$
- Drift velocity of $\mathrm{e}^{-} \quad \mathrm{v}_{\mathrm{d}} \leq 10^{7} \mathrm{~cm} / \mathrm{sec}$
- Poisson equation, $\frac{d^{2} v}{d x^{2}}=\frac{-\rho}{\epsilon}=\frac{-n q}{\epsilon} \Rightarrow \frac{d v}{d x}=E=\frac{-n q x}{\epsilon}$

Transistor:

- $\quad I_{E}=I_{D E}+I_{n E}$
- $\quad I_{C}=I_{c o}-a I_{E}-$ Active region

$$
I_{C}=-\alpha I_{E}+I_{C O}\left(1-e^{V_{C} / V_{T}}\right)
$$

Common Emitter:

- $\quad \mathrm{I}_{\mathrm{C}}=(1+\beta) \mathrm{I}_{\mathrm{CO}}+\beta \mathrm{I}_{\mathrm{B}} \quad \beta=\frac{\alpha}{1-\alpha}$
- $\quad \mathrm{I}_{\text {CEO }}=\frac{\mathrm{I}_{\mathrm{Co}}}{1-\alpha} \rightarrow$ Collector current when base open
- $\quad \mathrm{I}_{\text {CEO }} \rightarrow$ Collector current when $\mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{CbO}}>\mathrm{I}_{\mathrm{Co}}$.
- $\quad V_{B E, s a t}$ or $V_{B C, \text { sat }}-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$;
$V_{\mathrm{CE}, \text { sat }} \rightarrow \frac{\mathrm{V}_{\mathrm{BE}, \text { sat }}}{10}=-0.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
- Large signal current gain, $\beta=\frac{\mathrm{I}_{\mathrm{C}}-\mathrm{I}_{\mathrm{CBO}}}{\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{CBO}}}$
- DC current gain $\beta_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}=\mathrm{h}_{\mathrm{FE}}$
- $\quad\left(\beta_{\mathrm{dc}}=\mathrm{h}_{\mathrm{FE}}\right) \approx \beta$ when $\mathrm{I}_{\mathrm{B}}>\mathrm{I}_{\mathrm{CBO}}$
- Small signal current gain

$$
\beta^{\prime}=\left.\frac{\partial \mathrm{I}_{\mathrm{C}}}{\partial \mathrm{I}_{\mathrm{R}}}\right|_{\mathrm{V}_{\mathrm{CE}}}=\mathrm{h}_{\mathrm{fe}}=\frac{\mathrm{h}_{\mathrm{FE}}}{1-\left(\mathrm{I}_{\mathrm{CBO}}+\mathrm{I}_{\mathrm{B}}\right) \frac{\partial \mathrm{h}_{\mathrm{FE}}}{\partial \mathrm{I}_{\mathrm{C}}}}
$$

- Over drive factor $=\frac{\beta_{\text {active }}}{\beta_{\text {forced } \rightarrow \text { under saturation }}}$

$$
\because \quad I_{C, s a t}=\beta_{\text {forced }} I_{B, \text { sat }}
$$

Conversion Formula:

$C C \leftrightarrow C E$

- $\quad h_{i c}=h_{i e} ; h_{r c}=1 ; h_{f c}=-\left(1+h_{f e}\right) ; h_{o c}=h_{\text {oe }}$
$C B \leftrightarrow C E$
- $\quad h_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}}}{1+\mathrm{h}_{\mathrm{fe}}} ; \mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{h}_{\mathrm{ie}} \mathrm{h}_{\mathrm{oe}}}{1+\mathrm{h}_{\mathrm{fe}}}-\mathrm{h}_{\mathrm{re}} ; \mathrm{h}_{\mathrm{fb}}=\frac{-\mathrm{h}_{\mathrm{fe}}}{1+\mathrm{h}_{\mathrm{fe}}} ; \mathrm{h}_{\mathrm{ob}}=\frac{\mathrm{h}_{\mathrm{oe}}}{1+\mathrm{h}_{\mathrm{fe}}}$

Specifications of An Amplifier:

- $A_{I}=\frac{-h_{f}}{1+h_{0} Z_{L}} \quad Z_{i}=h_{i}+h_{e} A_{I} Z_{L} \quad A_{v s}=\frac{A_{V} Z_{i}}{Z_{i}+R_{s}}=\frac{A_{I} Z_{L}}{Z_{i}+R_{S}}=\frac{A_{I_{S}} Z_{L}}{R_{S}}$

$$
A_{V}=\frac{A_{I} Z_{L}}{Z_{i}} \quad Y_{0}=h_{0}-\frac{h_{f} h_{r}}{h_{i}+R_{s}} \quad A_{I s}=\frac{A_{V} R_{s}}{Z_{i}+R_{s}}=\frac{A_{v S} R_{s}}{Z_{L}}
$$

Choice of Transistor Configuration:

- For intermediate stages CC can't be used as $A v<1$.
- CC can be used as output stage as it has low output impedance.
- CC/CB can be used as i/p stage because of i/p consideration.

Stability and Biasing:

Should be as min as possible

- For $\mathrm{S}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{CO}}}\right|_{\mathrm{V}_{\mathrm{BO}, \beta}} \quad \mathrm{S}^{\prime}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{V}_{\mathrm{BE}}}\right|_{\mathrm{I}_{\mathrm{CO}, \beta}} \quad \mathrm{S}^{\prime \prime}=\left.\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \beta}\right|_{\mathrm{V}_{\mathrm{BE}, \mathrm{ICO}}}$

$$
\Delta \mathrm{I}_{\mathrm{C}}=\mathrm{S} \times \Delta \mathrm{I}_{\mathrm{CO}}+\mathrm{S}^{\prime} \Delta \mathrm{V}_{\mathrm{BE}}+\mathrm{S}^{\prime \prime} \Delta \beta
$$

- For fixed bias $S=\frac{1+\beta}{1-\beta \frac{d I_{B}}{{d I_{C}}_{C}}}=1+\beta$
- Collector to Base bias

$$
S=\frac{1+\beta}{1+\beta \frac{R_{C}}{R_{C}+R_{B}}} \quad 0<S<1+\beta=\frac{1+\beta}{1+\beta\left(\frac{R_{C}+R_{E}}{R_{C}+R_{E}+R_{B}}\right)}
$$

- Self bias,

$$
S=\frac{1+\beta}{1+\beta \frac{R_{E}}{R_{E}+R_{t h}}} \approx 1+\frac{R_{\text {th }}}{R_{e}} \quad \beta R_{E}>10 R_{2}
$$

- $\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{CC}} R_{\text {th }}}{\mathrm{V}_{\mathrm{th}}} ; \mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{CC}} R_{\mathrm{th}}}{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{th}}}$
- For thermal stability
$\left[V_{C C}-2 I_{C}\left(R_{c}+R_{E}\right)\right]\left[0.07 I_{c o} \times S\right]<\frac{1}{\theta} ; V_{C E}<\frac{V_{C C}}{2}$
Hybrid - pi(n) - Model:

$$
\mathrm{g}_{\mathrm{m}}=\frac{\left|\mathrm{I}_{\mathrm{c}}\right|}{\mathrm{V}_{\mathrm{T}}}
$$

$$
r_{b^{\prime} e}=\frac{h_{f e}}{g_{\mathrm{m}}}, \quad r_{\mathrm{b}^{\prime} \mathrm{b}}=h_{\mathrm{ie}}-r_{\mathrm{b}^{\prime} \mathrm{e}}, r_{\mathrm{b}^{\prime} \mathrm{c}}=\frac{r_{\mathrm{b}^{\prime} e}}{h_{\mathrm{re}}}
$$

$$
g_{c e}=h_{o e}-\left(1+h_{f e}\right) g_{b^{\prime} c}
$$

- 3 Configurations are used on BJT, CE, CB and CC

COMPRESSION		
	BE	BC
SATURATION	f / b	f / b
ACTIVE	f / b	r / b
CUT OFF	r / b	r / b

AMPLIFIER COMPARISON			
	CB	CE	CF
R_{i}	LOW	MED	HIGH
A_{I}	A_{I}	β	$\beta+1$
$\mathrm{~A}_{V}$	High	High	<1
R_{0}	High	High	Low

For CE:

- $f_{\beta}=\frac{g_{b^{\prime} e}}{2 \pi\left(C_{e}+C_{c}\right)}=\frac{g_{m}}{h_{f e} 2 \pi\left(C_{e}+C_{c}\right)}$
- $f_{T}=h_{f_{e}} f_{\beta} ; \quad f_{H}=\frac{1}{2 \pi r_{b^{\prime} e} C}=\frac{g_{b^{\prime} e}}{2 \pi C}$,

$$
\mathrm{C}=\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{c}}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{L}}\right)
$$

$\mathrm{f}_{\mathrm{T}}=\mathrm{SC}$ current gain bandwidth product
$f_{H}=$ Upper cutoff frequency

For CC:

- $f_{H}=\frac{1+g_{m} R_{L}}{2 \pi C_{L} R_{L}} \approx \frac{g_{m}}{2 \pi C_{L}}=\frac{f_{T} C_{e}}{C_{L}}=\frac{g_{m}+g_{b^{\prime} e}}{2 \pi\left(C_{L}+C_{e}\right)}$

For CC:

- $f_{\alpha}=\frac{1+h_{f e}}{2 \pi r_{b^{\prime} e}\left(C_{c}+C_{e}\right)}=\left(1+h_{f e}\right) f_{\beta}=(1+\beta) f_{\beta}$
- $f_{T}=\frac{\beta}{1+\beta} f_{\alpha} \quad f_{\alpha}>f_{T}>f_{\beta}$

Ebress moll model:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=-\alpha_{\mathrm{N}} \mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{CO}}\left(1-\mathrm{e}^{\mathrm{V} / \mathrm{V}_{T}}\right) \\
& \mathrm{I}_{\mathrm{E}}=-\alpha_{\mathrm{I}} \mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{EO}}\left(1-\mathrm{e}^{\mathrm{V} / \mathrm{V}_{T}}\right)
\end{aligned}
$$

Multistage Amplifiers:

- $f_{H}^{*}=f_{H} \sqrt{2^{1 / n}-1} ; \quad f_{H}^{*}=\frac{f_{L}}{\sqrt{2^{1 / n}-1}}$
- Rise time $r_{r}=\frac{0.35}{f_{H}}=\frac{0.35}{B W}$
- $r_{r}^{*}=1.1 \sqrt{t_{r 1}^{2}+t_{r 2}^{2}+\ldots}$
- $r_{\mathrm{L}}^{*}=1.1 \sqrt{\mathrm{t}_{\mathrm{L} 1}^{2}+\mathrm{t}_{\mathrm{L} 2}^{2}+\ldots}$
- $\frac{1}{f_{\mathrm{H}}^{*}}=1.1 \sqrt{\mathrm{f}_{\mathrm{H} 1}^{2}+\mathrm{f}_{\mathrm{H} 2}^{2}+\ldots}$

Differential Amplifier:

- $\quad \mathrm{Z}_{\mathrm{i}}=\mathrm{h}_{\mathrm{ie}}+\left(1+\mathrm{h}_{\mathrm{fe}}\right) 2 \mathrm{R}_{\mathrm{e}}=2 \mathrm{~h}_{\mathrm{fe}} \mathrm{Re}_{\mathrm{e}} \approx 2 \beta \mathrm{R}_{\mathrm{e}}$
- $g_{m}=\frac{\alpha_{0}\left|\mathrm{I}_{\mathrm{EE}}\right|}{4 \mathrm{~V}_{\mathrm{T}}}=\frac{\mathrm{I}_{\mathrm{C}}}{4 \mathrm{~V}_{\mathrm{T}}}=\mathrm{g}_{\mathrm{m}}$ of $\frac{\mathrm{BJT}}{4}\left(\alpha_{0} \rightarrow\right.$ DC value of $\left.\alpha\right)$
- $\quad \mathrm{CMRR}=\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{h}_{\mathrm{ie}}} ; \mathrm{R}_{\mathrm{e}} \uparrow, \rightarrow \mathrm{Z}_{\mathrm{i}} \uparrow, \mathrm{A}_{\mathrm{d}} \uparrow \& \mathrm{CMRR} \uparrow$

Darlington Pair:

- $\quad A_{I}=\left(1+\beta_{1}\right)\left(1+\beta_{2}\right) ; A_{v} \approx 1(<1)$
- $\mathrm{Z}_{\mathrm{i}}=\frac{\left(1+\mathrm{h}_{\mathrm{fe}}\right)^{2} \mathrm{R}_{\mathrm{ez}}}{1+\mathrm{h}_{\mathrm{fe}} \mathrm{h}_{\mathrm{oc}} \mathrm{R}_{\mathrm{e} 2}} \Omega$
[If Q_{1} and Q_{2} have same type] = $\mathrm{A}_{\mathrm{I}} \mathrm{Re}_{\mathrm{e}}$
- $\mathrm{R}_{\mathrm{o}}=\frac{\mathrm{R}_{\mathrm{S}}}{\left(1+\mathrm{h}_{\mathrm{fe}}\right)}+\frac{2 \mathrm{~h}_{\mathrm{ie}}}{\left(1+\mathrm{h}_{\mathrm{fe}}\right)}$
- $\quad g_{m}=\left(1+\beta_{2}\right) g_{m 1}$

Tuned Amplifiers: (Parallel Resonant ckts used):

- $f_{0}=\frac{1}{2 \pi \sqrt{L C}} \quad Q \rightarrow$ ' Q ' factor of resonant ckt which is very high
- $\quad B W=\frac{f_{0}}{Q}$
- $f_{L}=f_{0}-\frac{\Delta B W}{2}$
- $f_{H}=f_{0}-\frac{\Delta B W}{2}$
- For double tuned amplifier 2 tank circuits with same f_{0} used. $f_{0}=\sqrt{f_{L} f_{H}}$.

FIELD EFFECT TRANSISTOR, FET IS UNIPOLAR DEVICE

- \quad S = Source, G = Gate, D = Drain
- GS Junction in Reverse Bias Always
- $\quad \mathrm{V}_{\mathrm{gs}}$ Controls Gate Width
- VI Characteristics

- Shockley equation
- $I_{d}=I_{d s s}\left(1-\frac{V_{g s}}{V_{p}}\right)^{2}, \quad g_{m}=g_{m 0}\left(1-\frac{V_{g s}}{V_{p}}\right)$

MOSFET (Metal Oxide Semiconductor FET, IGFET)

Enhancement Mosfet

- Depletion Type MOSFET can work width $\mathrm{V}_{\mathrm{gs}}>0$ and $\mathrm{V}_{\mathrm{gs}}<0$
- Enhancement MOSFET operates with $\mathrm{V}_{\mathrm{gs}}>\mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{t}}=$ Threshold Voltage
- NMOSFET formed in p-substrate
- If $V_{G S} \geq V_{t}$ channel will be induced and i_{D} (Drain \rightarrow Source)
- $\quad \mathrm{V}_{\mathrm{t}} \rightarrow+\mathrm{ve}$ NMOS
- $\quad i_{D} \propto\left(V_{G S}-V_{t}\right)$ for small $V_{D S}$
- $\quad \mathrm{V}_{\mathrm{DS}} \uparrow \rightarrow$ channel width @ drain reduces.
- $\quad V_{D S}=V_{G S}-V_{t}$ channel width $\approx 0 \rightarrow$ pinch off further increase no effect.
- For every $\mathrm{V}_{G S}>\mathrm{V}_{\mathrm{t}}$ there will be $\mathrm{V}_{\mathrm{DS} \text {,sat }}$
- $\quad \mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) \mathrm{V}_{\mathrm{DS}}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS}}^{2}\right]\left(\frac{\mathrm{W}}{\mathrm{L}}\right) \rightarrow$
triode region $\left(\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$
$K_{n}^{\prime}=\mu_{n} C_{o x}$
- $\quad \mathrm{i}_{\mathrm{D}}=\frac{1}{2} \mathrm{~K}_{\mathrm{n}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left[\mathrm{V}_{\mathrm{DS}}^{2}\right] \rightarrow$ saturation
- $\quad \mathrm{r}_{\mathrm{DS}}=\frac{1}{\mathrm{~K}_{\mathrm{n}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)} \rightarrow$ Drain to source resistance in triode region

PMOS:

- Device operates in similar manner except $V_{G S}, V_{D S}, V_{t}$ are -Ve
- id enters @ source terminal \& leaves through Drain.
$\mathrm{V}_{\mathrm{GS}} \leq \mathrm{V}_{\mathrm{t}} \rightarrow$ induced channel, $\mathrm{V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} \rightarrow$ Continuous channel
$\mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{p}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)^{2}-\frac{1}{2} \mathrm{~V}_{\mathrm{DS}}^{2}\right] \mathrm{K}_{\mathrm{p}}^{\prime}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}$
$\mathrm{V}_{\mathrm{DS}} \leq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}} \rightarrow$ Pinched off channel.
- NMOS devices can be made smaller and thus operates faster. Required low power supply.
- Saturation region \rightarrow amplifier.
- For switching operation Cutoff and triode region are used.

NMOS	PMOS	
$V_{G S} \geq V_{t}$	$V_{G S} \leq V_{t}$	\rightarrow Induced channel
$V_{G S}-V_{D S}>V_{t}$	$V_{G S}-V_{D S}<V_{t}$	\rightarrow Continuous channel $($ Triode region $)$
$V_{D S} \geq V_{G S}-V_{t}$	$V_{D S} \leq V_{G S}-V_{t}$	\rightarrow Pinchoff (Saturation)

Depletion Type MOSFET:

[Channel is physically implanted. io flows with $\mathrm{V}_{G S}=0$]

- For n-channel
$\mathrm{V}_{\mathrm{GS}} \rightarrow+\mathrm{ve} \rightarrow$ enhances channel
$\rightarrow-\mathrm{ve} \rightarrow$ depletes channel
- $\quad i_{D}-V_{D S}$ characteristics are same except that V_{t} is -ve for n-channel.
- Value of Drain current obtained in saturation when $\mathrm{V}_{\mathrm{GS}}=0 \Rightarrow \mathrm{I}_{\mathrm{DSS}}$.

$$
\because I_{D S S}=\frac{1}{2} K_{n}^{\prime}\left(\frac{W}{L}\right) V_{t}^{2} .
$$

MOSFET as Amplifier:

- For saturation $\mathrm{V}_{\mathrm{D}}>\mathrm{V}_{\mathrm{Gs}}-\mathrm{V}_{\mathrm{t}}$
- \quad To reduce non linear distortion $\mathrm{Vgs}_{\mathrm{gs}} \ll 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$
- $\quad \mathrm{i}_{\mathrm{D}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) \mathrm{v}_{\mathrm{gs}} \Rightarrow \mathrm{g}_{\mathrm{m}}=\mathrm{K}_{\mathrm{n}}^{\prime}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)$
- $\frac{v_{d}}{v_{g s}}=-g_{m} R_{D}$
- Unity gain frequency, $f_{T}=\frac{g_{m}}{2 \pi\left(C_{g s}+C_{g d}\right)}$

JEET:

- $\quad V_{G S} \leq V_{p} \Rightarrow i_{D}=0 \rightarrow$ Cut off
- $\quad \mathrm{V}_{\mathrm{p}} \leq \mathrm{V}_{\mathrm{GS}} \leq 0, \mathrm{~V}_{\mathrm{DS}} \leq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{p}}$
- $\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left[2\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{V}_{\mathrm{p}}}\right)\left(\frac{\mathrm{V}_{\mathrm{DS}}}{-\mathrm{V}_{\mathrm{p}}}\right)-\left(\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{V}_{\mathrm{p}}}\right)^{2}\right] \rightarrow$ Triode
- $\quad \mathrm{V}_{\mathrm{p}} \leq \mathrm{V}_{\mathrm{GS}} \leq 0, \mathrm{~V}_{\mathrm{DS}} \geq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{p}}$

$$
\left.\begin{array}{l}
\mathrm{i}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{p}}}\right)^{2} \Rightarrow \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{p}}\left(1-\sqrt{\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{DSS}}}}\right) \\
\mathrm{g}_{\mathrm{m}}=\frac{2 \mathrm{I}_{\mathrm{DSS}}}{\left|\mathrm{~V}_{\mathrm{p}}\right|}\left(1-\frac{\mathrm{V}_{\mathrm{GS}}}{\mathrm{~V}_{\mathrm{p}}}\right)=\frac{2 \mathrm{I}_{\mathrm{DSS}}}{\left|\mathrm{~V}_{\mathrm{p}}\right|}\left(1-\sqrt{\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{DSS}}}}\right)
\end{array}\right\} \rightarrow \text { Saturation }
$$

Operational Amplifier: (VCVS)

- Fabricated with VLSI by using epitaxial method.
- High input impedance, Low output impedance, High gain, Bandwidth, slew rate.
- FET is having high input impedance compared to op-amp.
- Gain Bandwidth product is constant.
- Closed loop voltage gain
$A_{C L}=\frac{A_{O L}}{1 \pm \beta A_{\mathrm{OL}}} \beta \rightarrow$ Feed back factor
- $\quad \Rightarrow V_{0}=\frac{-1}{R C} \int V_{i} d t \rightarrow$ LPF acts a integrator:
- $\Rightarrow \mathrm{V}_{0}=\frac{-\mathrm{R}}{\mathrm{L}} \int \mathrm{v}_{\mathrm{i}} \mathrm{dt} ; \quad \mathrm{V}_{0}=\frac{-\mathrm{L}}{\mathrm{R}} \frac{\mathrm{d} \mathrm{v}_{\mathrm{i}}}{\mathrm{dt}}(\mathrm{HPF})$
- For OP-amp integrator, $\mathrm{V}_{0}=\frac{-\mathrm{R}}{\mathrm{L}} \int \mathrm{V}_{\mathrm{i}} \mathrm{dt}$;

Differentiator, $V_{0}=-\tau \frac{d v_{i}}{d t}$

- Slew rate $\mathrm{SR}=\frac{\Delta \mathrm{v}_{0}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{v}_{0}}{\Delta \mathrm{t}} \times \frac{\Delta \mathrm{v}_{\mathrm{i}}}{\Delta \mathrm{t}}-\mathrm{A} \times \frac{\mathrm{d} \mathrm{v}_{\mathrm{i}}}{\Delta \mathrm{t}}$
- Maximum operating frequency
$f_{\max }=\frac{\text { Slew rate }}{2 \pi \Delta V_{0}}=\frac{\text { Slew rate }}{2 \pi \times \Delta V_{i} \times A}$
- In voltage follower voltage series feedback.
- In non inverting mode voltage series feedback.
- In inverting mode voltage shunt feed back.
- $\mathrm{V}_{0}=-\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{RI}_{0}}\right)$
- $\mathrm{V}_{0}=-\mathrm{V}_{\mathrm{BE}}=-\eta \mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{RI}_{\mathrm{CO}}}\right)$
- Error in differential \%error $=\frac{1}{\operatorname{CMRR}}\left(\frac{V_{c}}{V_{d}}\right) \times 100 \%$

Power Amplifier:

- Fundamental power delivered to load
$P_{1}=\left(\frac{B_{2}}{\sqrt{2}}\right)^{2} R_{L}=\frac{B_{1}^{2}}{2} R_{L}$
- Total Harmonic power delivered to load,
$P_{T}=\left[\frac{B_{1}^{2}}{2}+\frac{B_{2}^{2}}{2}+\ldots\right] R_{L}=P_{1}\left[1+\left(\frac{B_{2}}{B_{1}}\right)^{2}+\left(\frac{B_{3}}{B_{1}}\right)^{2}+\ldots\right] \mathrm{P}_{\mathrm{T}}=\left[1+\mathrm{D}^{2}\right] \mathrm{P}_{1}$

Where, $D=\sqrt{+D_{2}^{2}+\ldots+D_{n}^{2}}, \quad D_{n}=\frac{B_{n}}{B_{1}}$
$D=$ Total harmonic distortion.

Class A operation:

- Output Ic flows for entire $360 .^{\circ}$
- ' Q ' point located @ centre of DC load line i.e., $V_{c e}=\frac{V_{c C}}{2} ; \quad \eta=25 \%$
- Min Distortion, min noise interference, eliminates thermal run way.
- Lowest power conversion efficiency and introduce power drain.
- $\quad P_{T}=I_{C} V_{C E}-I_{C} V_{c e}$ if $i_{c}=0$, it will consume more power.
- $\quad P_{\mathrm{T}}$ is dissipation in single transistors only (single ended).

Class B:

- Ic flows for 180°, ' Q^{\prime} located @ cutoff; $\eta=78.5 \%$; eliminates power drain.
- Higher Distortion, more noise interference, introduce cross over distortion.
- Double ended. i.e., 2 transistors. Ic $=0$ [transistors are connected in that way]
$\mathrm{P}_{\mathrm{T}}=\mathrm{i}_{\mathrm{c}} \mathrm{V}_{\mathrm{ce}}$
- $\quad \mathrm{P}_{\mathrm{T}}=\mathrm{i}_{\mathrm{c}} \mathrm{V}_{\mathrm{ce}}=0.4 \mathrm{P}_{0}, \mathrm{P}_{\mathrm{T}} \rightarrow$ power dissipated by 2 transistors.

Class AB operation:

- Ic flows for more than 180° and less than 360°.
- ' Q^{\prime} located in active region but near to cutoff; $\eta=60 \%$.
- Distortion and Noise interference less compared to class ' B^{\prime} but more in compared to class ' A '.
- Eliminates cross over Distortion.

Class 'C' Operation:

- Ic flows for $<180^{\circ}$; ' Q^{\prime} located just below cutoff; $\eta=87.5 \%$.
- Very rich in Distortion; noise interference in high.

Oscillators:

- For RC phase shift oscillator, $f=\frac{1}{2 \pi R C \sqrt{6+4 K}}$
$\mathrm{h}_{\mathrm{fe}} \geq 4 \mathrm{k}+23 \frac{29}{\mathrm{k}}, \quad$ wherek $=\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{R}}$

$$
\mathrm{f}=\frac{1}{2 \pi \mathrm{RC} \sqrt{6}}, \quad \mu>29
$$

- For op-amp $R C$ oscillator, $f=\frac{1}{2 \pi R C \sqrt{6}}\left|A_{f}\right| 29 \Rightarrow R_{f} \geq 29 R_{1}$

Wein Bridge Oscillator:

$$
f=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

$$
\text { If } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}, \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}
$$

$$
f=\frac{1}{2 \pi R c}, A=\frac{1}{\beta}=3
$$

Hartley Oscillator:

$$
\begin{aligned}
& f=\frac{1}{2 \pi \sqrt{\left(L_{1}+L_{2}\right) C}} \quad\left|h_{\mathrm{fe}}\right| \geq \frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}} \\
& |\mu| \geq \frac{L_{2}}{\mathrm{~L}_{1}}, \quad|A| \geq \frac{L_{2}}{L_{1}} \rightarrow \frac{R_{f}}{R_{1}}
\end{aligned}
$$

Colpits Oscillator:

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \pi \sqrt{L\left(\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}\right)}} \quad\left|\mathrm{h}_{\mathrm{fe}}\right| \geq \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \\
& |\mu| \geq \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}, \quad|\mathrm{~A}| \geq \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}
\end{aligned}
$$

Phase Shift Oscillator:

FET MODEL

$$
f=\frac{1}{2 \pi \sqrt{6 R C}}, \quad A=29,
$$

Minimum RC sections 3

BJT MODEL

$$
f=\frac{1}{2 \pi R C \sqrt{6+\left(\frac{4 R_{C}}{R}\right)}}, A=29,
$$

Minimum RC sections 3.

Comparisons	
BJT	FET
Current controlled	Voltage controlled
High gain	Med gain

Bipolar	Unipolar
Temp sensitive	Little effect of T
High GBWP	Low GBWP

MOSFET	JPET
High, $\mathrm{R}_{\mathrm{i}}=10^{10}$	-10^{8}
$\mathrm{R}_{0}=50 \mathrm{k} \Omega$	$\geq 1 \mathrm{~m} \Omega$
Depletion enhancement mode	Depletion mode
Delicate	Rugged

Rectifiers:

Comparisons:

	HW	FE CT	FW BR
$\mathrm{V}_{\text {DC }}$	$\frac{\mathrm{V}_{\mathrm{m}}}{\pi}$	$\frac{2 \mathrm{~V}_{\mathrm{m}}}{\pi}$	$\frac{2 \mathrm{~V}_{\mathrm{m}}}{\pi}$
$\mathrm{V}_{\mathrm{rms}}$	$\frac{\mathrm{V}_{\mathrm{m}}}{2}$	$\frac{\mathrm{~V}_{\mathrm{m}}}{\sqrt{2}}$	$\frac{\mathrm{~V}_{\mathrm{m}}}{\sqrt{2}}$
γ (Ripple factor)	1.21	0.482	0.482
η $($ R ipple factor $)$	40.6%	81%	81%
PIV Peak Inverse Voltage	V_{m}	$2 \mathrm{~V}_{\mathrm{m}}$	V_{m}
