Rajasthan RVUNL

Electrical Engineering

Electric Circuits

Formula Notes

IMPORTANT FORMULAS TO REMEMBER

Current: Electric current is the time rate of change of charge flow.

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}} \quad \text { (Ampere) }
$$

Charge transferred between time to and t

Sign Convention: A negative current of -5 A flowing in one direction is same a current of +5 A in opposite direction.

Voltage: Voltage or potential difference the energy required to move a unit charge through an element, measured in volts.

Power: It is time rate of expending or absorbing energy.

- Law of conservation of energy must be obeyed in any electric circuit.
- Algebraic sum of power in a circuit, at any instant of time, must be zero.
i.e. $\Sigma P=0$

Circuit Elements:

Passive element: If it is not capable of delivering energy, then it is passive element.
Example: Resistor, Inductor, and capacitor

Active element: If an element is capable of delivering energy independently, then it is called active element. Example: Voltage source, and current source.

Linear and Non-linear elements: If voltage and current across an element are related to each other through a constant coefficient then the element is called as linear element otherwise it is called as it is as non-linear.

Unidirectional and Bidirectional: When elements characteristics are independent of direction of current then element is called bi-directional element otherwise it is called as unidirectional.

- R, L \& C are bidirectional
- Diode is a unidirectional element.
- Voltage and current sources are also unidirectional elements.
- Every linear element should obey the bi-directional property but vice versa as is not necessary.

Resistor: Linear and bilateral (conduct from both direction)

- In time domain $\mathrm{V}(\mathrm{t})=\mathrm{I}(\mathrm{t}) \mathrm{R}$
- In s domain: $\mathrm{V}(\mathrm{s})=\mathrm{RI}(\mathrm{s})$

$$
R=\frac{\rho l}{A} \text { ohm }
$$

- $\quad I=$ length of conductor, $\rho=$ resistivity, $A=$ area of cross section
- Extension of wire to ' n ' times results in increase in resistance:

$$
R^{\prime}=n^{2} R
$$

- Compression of wire results in decrease in resistance:

$$
R^{\prime}=\frac{R}{n^{2}}
$$

Rajasthan RVUNL

Capacitor: All capacitors are linear and bilateral, except electrolytic capacitor which is unilateral.

- Time Domain:

$$
\mathrm{i}(\mathrm{t})=\frac{\mathrm{Cdv}(\mathrm{t})}{\mathrm{dt}} \quad \mathrm{v}(\mathrm{t})=\frac{1}{\mathrm{C}} \int_{-\infty}^{\mathrm{t}} \mathrm{i}(\mathrm{t}) \mathrm{dt}
$$

- In s-domain:

$$
I(s)=s C V(s) V(s)=\frac{1}{s C} I(s)
$$

- Capacitor doesn't allow sudden change of voltage, until impulse of current is applied.
- It stores energy in the form of electric field and power dissipation in ideal capacitor is zero.

Impedance:

$Z_{c}=-j X_{c} \Omega \& X_{c}=\frac{1}{\omega C} ; X c \rightarrow$ Capacitive reactance $; \omega=2 \pi f$
Inductor: Linear and bilinear element
Time Domain: $V(t)=L \frac{d i(t)}{d t}$

$$
\mathrm{i}(\mathrm{t})=\frac{1}{\mathrm{~L}} \int_{\infty}^{\mathrm{t}} \mathrm{v}(\mathrm{t}) \mathrm{dt}
$$

Impedance

$$
Z_{L}=j X_{L} \Omega \& X_{L}=\omega L
$$

In s-domain $\quad V(s)=s L I(s)$
$\mathrm{I}(\mathrm{s})=\frac{1}{\mathrm{sL}} \mathrm{V}(\mathrm{s})$

- Inductor doesn't allow sudden change of current, until impulse of voltage is applied. It stores energy in the form of magnetic field.
- Power dissipation in ideal inductor is zero.

Our Star Faculty

M.Tech, Thapar University Produced $50+$ Selection in GATE \& JE Exams

5+ Years of Experience

Sooraj Gopi

M.Tech, NIT Agartala

5+ Years of Experience Mentored 15,000+ Students

6+ Years of Experience Cracked IBPS PO

Indrajeet Jaiswal
4+ Years of Experience Cracked FCI, UPSSSC \& UPPSC

gradeup

Gradeup Achievers List-SSC JE 2019-20 Prelims

S.No.	Name	Branch	Roll No.	S.No.	Name	Branch	Roll No.
1	P. umadevi	Electrical	81000230821	11	PANJALA SAI TEJA	Electrical	81000410085
2	Harish	Electrical	8601312068	12	Thalapula mahendra	Electrical	10000500536
3	Ahamed	Electrical	10000685531	13	laxmi	Electrical	2404001543
4	Harsha N	Electrical	9001012056	14	SAMEER VERMA	Electrical	3206305556
5	Mandhadi pavan reddy	Electrical	8601309312	15	Vishnu Mohan	Electrical	9212000979
6	Arun kumar mishra	Electrical	6005200522	16	Naveen Kumar	Electrical	8008302829
7	Ajish A	Electrical	9211003272	17	Vageesh N	Electrical	9001004651
8	SHAFEEQUE K	Electrical	9206001395	18	Bhumika singh	Electrical	6202200442
9	Ambili Narayanan	Electrical	9206003607	19	Harsha N Varchasvi	Electrical	10000
10	TAPAS KUMAR PRADHAN	Electrical	4604007585	20	Aditya	Electrical	3206303025

More than 300+ Gradeup Students Qualified...

> 10+ Gradians Under AlR 10

FORMULAS FOR THE BASIC CIRCUIT COMPONENTS					
Circuit Element	Impedance		Volt- Amp Equations		Energy (Dissipated on R or Stored in L, C)
	Absolute Value	Complex form	instantaneous values	RMS values for sinusoidal signals	
Resistance	R	R	$\mathrm{V}=\mathrm{i} \mathrm{R}$	$\mathrm{V}_{\text {rms }}=1 \mathrm{ImsR}$	$\mathrm{E}=\mathrm{I}_{\mathrm{ms}}{ }^{2} \mathrm{Rt}$
Inductance	$2 \Pi \mathrm{fL}$	$j \omega L$	$\mathrm{V}=\mathrm{Ldi} / \mathrm{dt}$	$\begin{array}{cc} \mathrm{V}_{\mathrm{rms}}= & =\mathrm{I}_{\mathrm{fms}} \times 2 \Pi \\ \mathrm{fL} \end{array}$	$E=1 i^{2} / 2$
Capacitance	$\begin{gathered} \hline 1 /(2 \Pi \\ \mathrm{fC}) \\ \hline \end{gathered}$	1/j $\omega \mathrm{C}$	$\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}$	$\begin{gathered} \mathrm{V}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}} /(2 \Pi \\ \mathrm{fC}) \end{gathered}$	$\mathrm{E}=\mathrm{Cv}^{2} / 2$

Notes:

R- resistance in ohms, - inductance in henrys, C- capacitance in farads, f - frequency in Hertz, t - time in seconds, $\pi \approx$ 3.14159,
$\omega=2 \pi \mathrm{f}-$ angular frequency
j - imaginary unit ($\mathrm{j}^{2}=-1$)
Euler's formula: $\mathrm{e}^{\mathrm{jx}}=\cos \mathrm{x}+\mathrm{j} \sin \mathrm{x}$

EQUATIONS FOR SERIES AND PARALLEL CONNECTIONS					
Circuit Element	Series Connection		Parallel Connection		
Resistors		$\mathrm{R}_{\text {series }}=\mathrm{R} 1+\mathrm{R} 2+\ldots$		$\mathrm{R}_{\text {parallel }}=\frac{1}{(1 / \mathrm{R} 1+1 / \mathrm{R} 2+\ldots)}$	
Inductors	- $\quad 10 \times 0 \sim 0$	$L_{\text {series }}=\mathrm{L} 1+\mathrm{L} 2=\ldots$		$\mathrm{R}_{\text {parallel }}=\frac{1}{(1 / R 1+1 / \mathrm{R} 2+\ldots)}$	
Capacitors	$\stackrel{c_{1}}{\\|_{\sharp}^{c_{2}}}$	$C_{\text {series }}=\frac{1}{(1 / C 1+1 / C 2+\ldots)}$	${ }^{\mathrm{c} 1} \frac{\mathrm{~L}}{=} \mathrm{C}$	$\mathrm{C}_{\text {parallel }}=\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3 \ldots$	

Rules of series	Rules of parallel
$V_{\text {eq }}=V_{1}+V_{2}+V_{3}$	$\mathrm{i}_{\text {eq }}=\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}$
$\mathrm{Req}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$	$\mathrm{R}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$
$\mathrm{C}_{\text {eq }}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}$	$\mathrm{Ceq}=\mathrm{C} 1+\mathrm{C} 2+\mathrm{C3}$

CALCULATIONS OF EQUIVALENT RLC IMPEDANCES		
Circuit Connection	Complex Form	Absolute Value
$-\stackrel{R}{4}-\infty \quad \underset{\text { Series }}{\mathbf{L}}$	$Z=R+j \omega L+1 / \omega C$	$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}}$
	$\begin{gathered} Z=1 /(1 / R+1 / j \omega L+j \omega \\ C \end{gathered}$	$Z=\frac{1}{\sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}}$

Mesh Analysis:

- Path - A set of elements that may be traversed in order, without passing thru the same node twice
- Loop - a closed path
- Mash - A loop that does not contain any other loop within it.
- Planar Circuit - A circuit that may be drawn on a plane surface in such a way that there are no branch crossovers
- Non-Planar Circuit - A circuit that is not planar, ie. some branches pass over some other branches (cannot use Mesh Analysis)

Transformer: 4 terminal or 2-port devices.

- $\quad \mathrm{N}_{1}>\mathrm{N}_{2}$: Step down transformer

$$
\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}
$$

- $\quad \mathrm{N}_{2}>\mathrm{N}_{1}$: Step up transformer
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}$
Where $\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\mathrm{K} \rightarrow$ Turns ratio.
- Transformer does not work as amplifier because current decreases in same amount power remain constant.

Gyrator:

- $\quad \mathrm{R}_{0}=$ Coefficient of Gyrator
- $\quad \mathrm{V} 1=\mathrm{R} 0 \mathrm{I} 2$
- $\quad \mathrm{V} 2=\mathrm{Ro} \mathrm{I} 2$
- If load is capacitive then input impedance will be inductive and vice versa.
- If load is inductive then input impedance will be capacitive.
- It is used for simulation of equivalent value of inductance.

Voltage Source:

- In practical voltage source, there is small internal resistance, so voltage across the element varies with respect to current.

- Ideal voltmeter, Rv is infinite (Internal resistance)

Current Source:

- In practical current source, there is small internal resistance, so current varies with respect to the voltage across element.

- Ideal Ammeter, R_{a} is 0 (Internal resistance)
- Internal resistance of voltage source is in series with the source.
- Internal resistance of ideal voltage source is zero.
- Internal resistance of current source is in parallel with the source.
- Internal resistance of ideal current source is infinite.

Independent source: Voltage or current source whose values doesn't depend on any other parameters

- Example: Generator

Dependent Source: Voltage or current source whose values upon other parameters like current, voltage.
Dependent Source: Voltage or current source whose values upon other parameters like current, voltage.

Lumped Network: Network in which all network elements are physically separable is known as lumped network.
Distributed Network: A network in which the circuit elements like resistance, inductance etc, are not physically separate for analysis purpose, is called distributed network. Example: Transmission line.

Thevenin's Theorem: Any linear network can be replaced by an independent voltage sources in series with an impedance such that the current voltage at the terminals is unchanged.

Norton's Theorem: Identical to thevenin's statement except that the equivalent circuit is an independent current source in parallel with. $\left(Z_{s}=R_{T h}\right)$

Average Power $\begin{aligned} P_{\text {Avg }} & =\frac{V_{m}}{\sqrt{2}}-\frac{I_{m}}{\sqrt{2}} \cos (\theta) \\ & =V_{\text {rms }} I_{\text {rms }} \operatorname{Cos}(\theta) \end{aligned}$	Max. power Transfer $\begin{aligned} Z_{L} & =R L+j X L \\ & =R T h-j \times T h=Z T h \end{aligned}$
Power Factor $\begin{gathered} \mathrm{PF}=\cos (\theta) \\ \theta=\theta_{v}-\theta_{i} \end{gathered}$	True Power $P=I^{2} R$
Reactive Power $\mathrm{Q}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\mathrm{rm}} \sin (\theta)$ Measured VARs Volt Amperes Reactive $\mathrm{P}^{2}+\mathrm{Q}^{2}=\left(\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rm}}\right)^{2}$	
Apparent Power (s) $\begin{aligned} & \mathrm{S}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}=\mathrm{Va} \\ & \mathrm{~S}=\mathrm{P}+\mathrm{j} \mathrm{Q} \\ & \mathrm{~S}=\mathrm{I}^{2} \mathrm{Z} \end{aligned}$	

Root Mean Square:

Average of a signal that is symmetric about the horizontal axis:
$\mathrm{V}_{\text {rms }}=\frac{\mathrm{Vm}}{\sqrt{2}} \quad \mathrm{I}_{\text {rms }}=\frac{\mathrm{Im}}{\sqrt{2}}$
$V_{\text {eff }}=V_{\text {rms }} \quad I_{\text {eff }}=I_{\text {rms }}$

Time Domain		Frequency Domain	
$\xrightarrow[+\mathrm{v}(\mathrm{t})-]{\mathrm{i(t)}} \underbrace{R}_{i}$	$v=R i$	$\mathrm{V}=\mathrm{RI}$	
$\xrightarrow[+]{i(t)} \underbrace{L}_{v(t)})_{-}^{L}$	$\begin{gathered} V=L \frac{d i}{d t} \\ \frac{d i}{d t} \end{gathered}$	$V=j \omega L I$	$\xrightarrow[+]{\mathrm{I}}{ }_{+}^{\mathrm{jwL}} \mathbf{V}_{-}$
	$v=\frac{1}{C} \int i d t$	$v=\frac{1}{j w C} I$	$\xrightarrow[+v(t)-]{i(t)}$

राजस्थान RVUNL में EE छात्रों के लिए बड़ा मौका

करें तैयारी RUVNL AEN/JEN ऑनलाइन टेक्फिकल कोर्स के साथ

पाएं LIVE Classes और Mock Tests

START FREE TRIAL

Refosthen RVMNLElectrical Course for AEN \& JEN
Enrolment Last Date 31st March
To get unlimited access to your preferred courses Subscribe to Gradeup Super

$* \underset{\text { SUPER }}{\text { gradeup }}$

gradeup

Structured Live Courses

Green Card

India's Best
AE \& JE Faculty Team
(橉) Online Mock Tests
(8) Designed by Toppers

O
Based on Latest Exam Pattern

To get unlimited access to your preferred courses Subscribe to Gradeup Super
For More Information :
9650052904

Prepare with
 India's Best Faculty

Join Rajasthan RVUNL Technical Course for AEN \& JEN (EE) (हिंदी)

