

Rajasthan RVUNL

Electrical Engineering

Electric Circuits

Formula Notes

Sahi Prep Hai Toh Life Set Hai

www.gradeup.co

IMPORTANT FORMULAS TO REMEMBER

Current: Electric current is the time rate of change of charge flow.

$$i = \frac{dq}{dt}$$
 (Ampere)

Charge transferred between time $t_{0} \mbox{ and } t$

$$q\int_{t_0}^t idt$$

Sign Convention: A negative current of -5A flowing in one direction is same a current of +5A in opposite direction.

Voltage: Voltage or potential difference the energy required to move a unit charge through an element, measured in volts.

Power: It is time rate of expending or absorbing energy.

- Law of conservation of energy must be obeyed in any electric circuit.
- Algebraic sum of power in a circuit, at any instant of time, must be zero.
 i.e. ΣP = 0

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Circuit Elements:

Passive element: If it is not capable of delivering energy, then it is passive element.

Example: Resistor, Inductor, and capacitor

Active element: If an element is capable of delivering energy independently, then it is called active element. Example: Voltage source, and current source.

Linear and Non-linear elements: If voltage and current across an element are related to each other through a constant coefficient then the element is called as linear element otherwise it is called as it is as non-linear.

Unidirectional and Bidirectional: When elements characteristics are independent of direction of current then element is called bi-directional element otherwise it is called as unidirectional.

- R, L & C are bidirectional
- Diode is a unidirectional element.
- Voltage and current sources are also unidirectional elements.
- Every linear element should obey the bi-directional property but vice versa as is not necessary.

Resistor: Linear and bilateral (conduct from both direction)

- In time domain V(t) = I(t)R
- In s domain: V(s) = RI(s)

$$R = \frac{\rho I}{A} ohm$$

- I = length of conductor, ρ = resistivity, A = area of cross section
- Extension of wire to 'n' times results in increase in resistance:

 $R' = n^2 R$

• Compression of wire results in decrease in resistance:

$$R' = \frac{R}{n^2}$$

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Capacitor: All capacitors are linear and bilateral, except electrolytic capacitor which is unilateral.

Time Domain:

$$i(t) = \frac{Cdv(t)}{dt}$$
 $v(t) = \frac{1}{C}\int_{-\infty}^{t}i(t)dt$

In s-domain: •

$$I(s) = s CV(s) V(s) = \frac{1}{sC}I(s)$$

- Capacitor doesn't allow sudden change of voltage, until impulse of current is applied. •
- It stores energy in the form of electric field and power dissipation in ideal capacitor is zero. •

Impedance:

$$Z_c = -jX_c \Omega \& X_c = \frac{1}{\omega C}$$
; $Xc \rightarrow Capacitive reactance$; $\omega = 2\pi f$

Inductor: Linear and bilinear element

Time Domain:
$$V(t) = L \frac{di(t)}{dt}$$

 $i(t) = \frac{1}{L} \int_{\infty}^{t} v(t) dt$
Impedance $Z_L = j X_L \Omega \otimes X_L = \omega L$

In s-domain V(s) = sL I(s)

$$I(s) = \frac{1}{sL}V(s)$$

- Inductor doesn't allow sudden change of current, until impulse of voltage is applied. It • stores energy in the form of magnetic field.
- Power dissipation in ideal inductor is zero. •

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Our Star Faculty

4+ Years of Experience Mentored 10,000+ Students Produced 100+ Selection in AE & JE Exams

4+ Years of Experience Mentored 1,00,000+ Students Produced 50+ Selection in AE & JE Exams

M.Tech, Thapar University

5+ Years of Experience

Produced 50+ Selection in

GATE & JE Exams

M.Tech, NIT Agartala 5+ Years of Experience Mentored 15,000+ Students

13+ Years of Experience Produced 200+ Selection in AE & JE Exams

6+ Years of Experience Cracked IBPS PO

4+ Years of Experience Cracked FCI , UPSSSC & UPPSC

Gradeup Achievers List-SSC JE 2019-20 Prelims

S.No.	Name	Branch	Roll No.	S.No.	Name	Branch	Roll No.
1	P. umadevi	Electrical	81000230821	11	PANJALA SAI TEJA	Electrical	81000410085
2	Harish	Electrical	8601312068	12	Thalapula mahendra	Electrical	10000500536
3	Ahamed	Electrical	10000685531	13	laxmi	Electrical	2404001543
4	Harsha N	Electrical	9001012056	14	SAMEER VERMA	Electrical	3206305556
5	Mandhadi pavan reddy	Electrical	8601309312	15	Vishnu Mohan	Electrical	9212000979
6	Arun <mark>kumar mishra</mark>	Electrical	6005200522	16	Naveen Kumar	Electrical	8008302829
7	Ajish A	Electrical	9211003272	17	Vageesh N	Electrical	9001004651
8	SHAFEEQUE K	Electrical	9206001395	18	Bhumika singh	Electrical	6202200442
9	Ambili Narayanan	Electrical	9206003607	19	Harsha N Varchasvi	Electrical	10000
10	TAPAS KUMAR PRADHAN	Electrical	4604007585	20	Aditya	Electrical	3206303025

More than 300+ Gradeup Students Qualified...

Sahi Prep Hai Toh Life Set Hai

FORMULAS FOR THE BASIC CIRCUIT COMPONENTS						
	Impedance		Volt- Amp E			
Circuit Element	Absolute Value	Complex form	instantaneous values	RMS values for sinusoidal signals	Energy (Dissipated on R or Stored in L, C)	
Resistance	R	R	V = iR	V _{rms} = I _{rms} R	$E = I_{rms}^2 Rt$	
Inductance	2 ∏ fL	jωL	V = Ldi/dt	V _{rms} =I _{rms} x2∏ fL	$E = Ii^2/2$	
Capacitance	1/(2 П fC)	1/jωC	i=Cdv/dt	V _{rms} =I _{rms} /(2∏ fC)	$E = Cv^2/2$	

Notes:

R- resistance in ohms, - inductance in henrys, C- capacitance in farads, f - frequency in Hertz,

t- time in seconds, $\pi \approx 3.14159$,

 $\omega = 2 \pi f$ – angular frequency

j – imaginary unit (j²=-1)

Euler's formula: $e^{jx} = cosx + jsinx$

EQUATIONS FOR SERIES AND PARALLEL CONNECTIONS Circuit Series Parallel Element Connection Connection 0 1 **₹**R2 $R_{\text{parallel}} = \frac{1}{(1 / R1 + 1 / R2 + ...)}$ **R1 R2** Resistors **R1** $R_{series} = R1 + R2 + \dots$ 1 ရွိ ၊ 2 Ľ١ĝ $R_{parallel} = \frac{-}{(1 / R1 + 1 / R2 + ...)}$ L1 L2 Inductors $L_{series} = L1 + L2 = ...$ 1 **C1** C2 $C_{series} = \frac{1}{(1 / C1 + 1 / C2 + ...)}$: C2 Capacitors C1 : 0 ╢ -||-----0 $C_{parallel} = C1 + C2 + C3 \dots$

Rules of series	Rules of parallel
$V_{eq} = V_1 + V_2 + V_3$	$i_{eq} = i_{1+}i_2 + i_3$
$R_{eq} = R_1 + R_2 + R_3$	$R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$
$C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}}$	Ceq = C1 + C2 + C3

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

CALCULATIONS OF FOUTVALENT DLC IMDEDANCES					
CALCULATIONS OF EQUIVALENT RLC IMPEDANCES					
Circuit Connection	Complex Form	Absolute Value			
		$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$			
Series	Z=R+jωL+1/ωC				
R BL C Parallel	Z=1/(1/R+1/jωL+jω C	$Z = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}}$			

Mesh Analysis:

- Path A set of elements that may be traversed in order, without passing thru the same node twice
- Loop a closed path
- Mash A loop that does not contain any other loop within it.
- Planar Circuit A circuit that may be drawn on a plane surface in such a way that there are no branch crossovers
- Non-Planar Circuit A circuit that is not planar, ie. some branches pass over some other branches (cannot use Mesh Analysis)

Transformer: 4 terminal or 2-port devices.

• $N_1 > N_2$: Step down transformer

$$\frac{V_1}{V_2}=\frac{N_1}{N_2}$$

• $N_2 > N_1$: Step up transformer

$$\frac{I_1}{I_2} = \frac{N_2}{N_1}$$

Where $\frac{N_1}{N_2} = K \rightarrow$ Turns ratio.

 Transformer does not work as amplifier because current decreases in same amount power remain constant.

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Gyrator:

- R0 = Coefficient of Gyrator
- V1 = R0 I2
- V2 = R0 I2
- If load is capacitive then input impedance will be inductive and vice versa.
- If load is inductive then input impedance will be capacitive.
- It is used for simulation of equivalent value of inductance.

Voltage Source:

• In practical voltage source, there is small internal resistance, so voltage across the element varies with respect to current.

• Ideal voltmeter, Rv is infinite (Internal resistance)

Current Source:

• In practical current source, there is small internal resistance, so current varies with respect to the voltage across element.

- Ideal Ammeter, R_a is 0 (Internal resistance)
- Internal resistance of voltage source is in series with the source.
- Internal resistance of ideal voltage source is zero.
- Internal resistance of current source is in parallel with the source.
- Internal resistance of ideal current source is infinite.

Independent source: Voltage or current source whose values doesn't depend on any other parameters

• Example: Generator

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Dependent Source: Voltage or current source whose values upon other parameters like current, voltage.

Dependent Source: Voltage or current source whose values upon other parameters like current, voltage.

Lumped Network: Network in which all network elements are physically separable is known as lumped network.

Distributed Network: A network in which the circuit elements like resistance, inductance etc, are not physically separate for analysis purpose, is called distributed network. Example: Transmission line.

Thevenin's Theorem: Any linear network can be replaced by an independent voltage sources in series with an impedance such that the current voltage at the terminals is unchanged.

Norton's Theorem: Identical to the venin's statement except that the equivalent circuit is an independent current source in parallel with. ($Z_s = R_{Th}$)

Average Power	Max. power Transfer		
$P_{Avg} = \frac{Vm}{\sqrt{2}} - \frac{I_m}{\sqrt{2}} \cos(\theta)$ $= V_{rms}I_{rms} \cos(\theta)$	ZL = RL + jXL = RTh - jXTh =ZTh		
Power Factor			
$PF = \cos(\theta)$	True Power		
$\theta = \theta_v - \theta_i$	$P = I^2 R$		
Reactive Power	1		
$Q = V_{rms}I_{rm} \sin(\theta)$	S 1 ² X		
Measured VARs	I ² Z Q (VAR)		
Volt Amperes Reactive	(VA)		
$P^2 + Q^2 = (V_{rms}I_{rm})^2$			
Apparent Power (s)	(W)		
$S = V_{rms}I_{rms} = Va$			
S = P + j Q			
$S = I^2 Z$			

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

Root Mean Square:

Average of a signal that is symmetric about the horizontal axis:

$$V_{rms} = \frac{Vm}{\sqrt{2}} \qquad I_{rms} = \frac{Im}{\sqrt{2}}$$
$$V_{eff} = V_{rms} \qquad I_{eff} = I_{rms}$$

Time Domain		Frequency Domain		
i(t) R + v(t) −	v = Ri	V = RI	I R + V −	
i(t) L → 00000 + v(t) -	$V = L \frac{di}{dt}$ $\frac{di}{dt}$	V = jωLI	I jwL →00000 + V -	
$ \begin{array}{c} i(t) & C \\ \hline & + v(t) - \end{array} $	$v = \frac{1}{C} \int i dt$	$v = \frac{1}{jwC}I$	i(t) 1/jwC → (+ v(t) -	

Rajasthan RVUNL A Technical Course for AEN & JEN (Electrical)

