PHYSICS FORMULA SHEGIS FOR CLASS 9TH

Motion

Speed and Velocity

$$
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
$$

Average Speed
Average Speed $=\frac{\text { Total Distance Covered }}{\text { Total Time Elapsed }}$
Average Velocity
Average Velocity $=\frac{\text { Total Displacement Covered }}{\text { Total Time Elapsed }}$
Acceleration

$$
\text { Acceleration }=\frac{\text { Change in velocity }}{\text { Time taken }}=\frac{v_{\text {final }}-v_{\text {initial }}}{t}
$$

Three equations of Motion

$$
\begin{gathered}
v=u+a t \\
S=u t+\frac{1}{2} a t^{2} \\
v^{2}=u^{2}+2 a S
\end{gathered}
$$

Where S is the displacement, u is the initial velocity and v is the final velocity, a is the acceleration and t is time

Displacement in nth second

$$
S_{n}=u+(2 n-1) \frac{a}{2}
$$

Prep Smart. Score Better.

Force and Laws of Motion

Momentum(P)

$$
p=m v
$$

Where m is the mass of the object and v is the velocity
Newton's second law

$$
\begin{gathered}
F=\frac{m(v-u)}{t} \\
F=m a
\end{gathered}
$$

Here F is the force applied, v and u are the initial and final velocities Impulse

$$
\begin{gathered}
J=F \Delta t \\
J=m(v-u)
\end{gathered}
$$

Law of Conservation of Momentum
The law of conservation of momentum, states that
If the net external force on a system of particles is zero, the linear momentum of the system remains constant

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} u_{1}+m_{2} u_{2}
$$

Here subscripts 1 and 2 correspond to the two objects and v and u are the initial and final velocities of the respective objects
Centripetal Acceleration

$$
a_{c}=\frac{v^{2}}{r}
$$

Centripetal Force

$$
\begin{gathered}
F_{\text {centrifugal }}=-F_{\text {centripetal }} \\
F_{\text {centrifugal }}=-\frac{m v^{2}}{r}
\end{gathered}
$$

Gravitation

Universal Law of Gravitation

$$
\begin{aligned}
& F \propto \frac{M \times m}{r^{2}} \\
& \Rightarrow F=G \frac{M m}{r^{2}}
\end{aligned}
$$

Here M and m are the two masses separated by distance r and G is the gravitational constant whose value is $6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity

$$
\begin{gathered}
F=m g \\
g=\frac{G M}{d^{2}}
\end{gathered}
$$

Here d is the distance from the point of measurement to the centre of the planet
For earth $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Kepler's third law

$$
\Rightarrow \frac{r^{3}}{T^{2}}=\mathrm{constant}
$$

Here r is the distance between planet and the sun and T is the time taken to complete one revolution
For two planets in comparison

$$
\frac{r_{2}^{3}}{T_{2}^{3}}=\frac{r_{1}^{3}}{T_{1}^{2}}
$$

Thrust and Pressure

$$
\text { Pressure }=\frac{\operatorname{Force}(\mathrm{N})}{\operatorname{Area}\left(\mathrm{m}^{2}\right)}
$$

Density

$$
\rho=\frac{M}{V}
$$

Where M is the mass and v is the volume of the object
Relative Density

$$
\text { Relative Density }=\frac{\text { Density of a substance }}{\text { Density of water }}
$$

'Buoyant Force

$$
\mathrm{F}_{\mathrm{W}}=\mathrm{mg}=\rho V \mathrm{~g}
$$

Where m is density times the volume of the body ($\rho \mathrm{V}$); g is the acceleration due to gravity

$$
\mathrm{F}_{\mathrm{B}}=\text { Apparent Weight }- \text { Actual Weight }
$$

Work, Energy and Power
Work Done (W) $=$ Force (F) \times Displacement (d) Kinetic Energy

Kinetic Energy $=\frac{1}{2} m v^{2}$
m is the mass and v is the velocity
Kinetic energy and momentum

$$
K=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}=\frac{P^{2}}{2 m}
$$

Here p is the momentum
Potential energy between two points A and B

$$
U_{B}-U_{A}=m g h
$$

Where h is the distance between two points Power

$$
\begin{gathered}
\text { Power }=\frac{\text { Work }}{\text { Time }} \\
\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}
\end{gathered}
$$

Power $=\frac{\text { Energy Consumed }}{\text { Time taken }}$

$$
P=\frac{E}{t}
$$

Frequency and Time Period

$$
f=\frac{1}{T}
$$

Where f is the frequency and T is the time period
Relation between wavelength (λ), frequency (f), speed(v) and Time period(T)

$$
\begin{gathered}
\lambda=v T \\
v=\frac{\lambda}{T} \\
v=\lambda f
\end{gathered}
$$

