

Units, Dimension and Measurements and Physical World

Physical Quantity: The quantities by means of which we describe the laws of physics are called Physical Quantities. Measurement: The comparison of any physical quantity with its standard unit is called measurement. Unit: The 'Standard' of measurement of a physical quantity is called the unit. The magnitude of the physical quantity:

Magnitude = (Numerical value of the measure of the quantity) * (Unit of the quantity)

Systems of Units: A system of units is the complete set of units, both fundamental and derived, for all kinds of physical quantities.

- CGS System: In this system, the unit of length is centimetre, the unit of mass is gram and the unit of time is second.
- FPS System: In this system, the unit of length is foot, the unit of mass is pound and the unit of time is second.
- MKS System: In this system, the unit of length is metre, the unit of mass is kilogram and the unit of time is second.
- SI System: This system contains seven fundamental units and two supplementary fundamental units.

Fundamental Units: Those physical quantities which are independent of each other are called fundamental quantities and their units are called fundamental units. Fundamental quantities: length, mass, time, electric current, temperature, luminous intensity, and

Fundamental quantities: length, mass, time, electric current, temperature, luminous intensity, and amount of substance. Radian and steradian are two supplementary fundamental units. It measures

Radian and steradian are two supplementary fundamental units. It measures the plane angle and solid angle respectively. Derived Units: The units of other quantities which are derived from mass, length and time are called derived units.

1

START FREE TRIAL

Road to NDA | 2022

A Course for NDA Exam

Derived Units: The units of other quantities which are derived from mass, length and time are called derived units.

SI Units

Physical Quantity	Symbol	SI Unit	
length	m	metre	
mass	kg	kilogram	
time	S	second	
electric current	А	ampere	
temperature	K	kelvin	
luminous intensity	cd	candela	
amount of	mol	mole	
substance			
angle	rad	radian	
solid angle	sr	steradian	
area	m²	square metre	
volume	m ³	cubic metre	
density	kg∙m-³	kilogram per cubic	
		metre	
speed	m·s⁻¹	metre per second	
acceleration	m·s⁻²	metre per second	
	<u> </u>	squared	
concentration	mol·m ⁻³	mole per cubic metre	
energy	joule	J	
force	newton	N	
pressure	pascal	Pa	
power	watt	W	
electric charge	coulomb	С	
electric potential	volt	V	
difference			
electric resistance	ohm	W	
frequency	hertz	Hz	

Road to NDA | 2022 A Course for NDA Exam

2

START FREE TRIAL

SI prefixes

Multiple	Prefix	Symbol
10-24	yocto	у
10 ⁻²¹	zepto	Z
10 ⁻¹⁸	atto	а
10 -15	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	С
10 ⁻¹	deci	d
10	deca	da
10 ²	hecto	h
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т
10 ¹⁵	peta	Р
10 ¹⁸	exa	E
10 ²¹	zetta	Z
10 ²⁴	yotta	Y

Dimensions of a physical quantity are the powers to which the fundamental quantities must be raised to represent the given physical quantity.

3

Road to NDA | 2022 A Course for NDA Exam

START FREE TRIAL

Quantity	Dimension	Unit
length	[L]	metre
area	[L ²]	metre ²
volume	[L ³]	Metre ³
density	[ML ⁻³]	kg m ⁻³
Speed (Velocity)	[LT ⁻¹]	ms ⁻¹
acceleration	[LT ⁻²]	ms-2
Momentum or Impulse	[MLT ⁻¹]	kg ms ⁻¹
force	[MLT ⁻²]	newton (N)
pressure	[ML-1T-2]	Nm ⁻²
energy/work	[ML ² T ⁻²]	joule (J)
power	[ML ² T ⁻³]	J s ⁻¹ or watt

In mechanics, all physical quantities can be expressed in terms of mass (M), length (L) and time (T).

Homogeneity Principle: If the dimensions of the left-hand side of an equation are equal to the dimensions of the right-hand side of the equation, then the equation is dimensionally correct.

Applications of Dimensions:

- To check the accuracy of physical equations.
- To change a physical quantity from one system of units to another system of units.
- To obtain a relation between different physical quantities

4

A Course for NDA Exam

Road to NDA | 2022

START FREE TRIAL