Study Notes on Joule Thomson Effect

https://byjusexamprep.com

Joule - Thomson Effect

Porous Plug Experiment: When any gas is subjected from a region of higher pressure to a lower pressure through a porous plug adiabatically, cooling takes place except for H , and He . At the same conditions of temperature and pressure when these gases are subjected from a higher-pressure region to a lower pressure region through a porous plug adiabatically, heating takes place.

This effect is known as Joule-Thomson effect'. It is an isenthalpic and adiabatic process.

As Joule - Thomson effects is an adiabatic Process, therefore,
$d Q=d U+d W$
$0=d U+d W$
$-d W=d U \quad(\because d Q=0)$
From the above expression, it can be said that the work done by the gas is equal to the change in internal energy.
$-\mathrm{PdV}=\mathrm{dU}$
$-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{U}_{2}-\mathrm{U}_{1}$
$-P V_{2}+P V_{1}=U_{2}-U_{1}$
$\mathrm{U}_{1}+\mathrm{PV}_{1}=\mathrm{U}_{2}+\mathrm{PU}_{2}$
$\mathrm{H}_{1}=\mathrm{H}_{2}$
$\mathrm{H}_{2}-\mathrm{H}_{1}=0$
$\Delta H=0 \quad \Rightarrow d H=0$

H = constant
So, Joule - Thomson effect is an isenthalpic process.

Joule Thomson Coefficient:

$H=H(T, P)$
$\Rightarrow \quad d H=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P$
$\Rightarrow \quad 0=\left(\frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{P}} \mathrm{dT}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}} \mathrm{dP} \quad[\therefore$ In Joule - Thomson effect $\mathrm{dH}=0]$

$$
\begin{aligned}
& \Rightarrow \quad 0=C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \Rightarrow C_{P} d T=-\left(\frac{\partial H}{\partial P}\right)_{T} d P \Rightarrow\left(\frac{\partial T}{\partial P}\right)_{H}=-\frac{1}{C_{P}}\left(\frac{\partial H}{\partial P}\right)_{T} \\
& \Rightarrow \quad\left(\frac{\partial T}{\partial P}\right)_{H}=-\frac{1}{C_{P}}\left(\frac{\partial H}{\partial P}\right)_{T}
\end{aligned}
$$

$\left(\frac{\partial T}{\partial \mathrm{P}}\right)_{H}$ is known as Joule - Thomson coefficient and is denoted as $\mu_{\text {J.T. }}$ (Joule Thomson Coefficient)
From thermodynamics square:
$d H=T d S+V d P$
$\therefore \quad\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{S}}{\partial \mathrm{P}}\right)_{\mathrm{T}}+\mathrm{V}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$
Again,

$$
\begin{aligned}
& \left(\frac{\partial \mathrm{S}}{\partial \mathrm{P}}\right)_{T}=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{~T}}\right)_{P} \\
& \therefore \quad \mu_{\mathrm{J} . \mathrm{T}}=-\frac{1}{\mathrm{C}_{\mathrm{P}}}\left[-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{P}+\mathrm{V}\right]
\end{aligned}
$$

$$
\begin{equation*}
\mu_{\mathrm{J} \cdot \mathrm{~T}}=\frac{1}{\mathrm{C}_{\mathrm{P}}}\left[\mathrm{~T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}-\mathrm{V}\right] \tag{2}
\end{equation*}
$$

Joule - Thomson Coefficient and Ideal gas equation of state:

The expression of Joule-Thomson coefficient can be expressed as:

Joule - Thomson Coefficient and Vander Waal equation of state:
The expression for Joule - Thomson coefficient can be expressed as:
$\mu_{J . T}=\frac{1}{C_{P}}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right]$
Now, determine the value of $\left(\frac{\partial V}{\partial T}\right)_{P}$ for real gas and put it into above equation:

$$
\begin{aligned}
& \mu_{J . T}=\frac{1}{C_{P}}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right]=\frac{1}{C_{P}}\left[T\left(\frac{\partial}{\partial T} \frac{R T}{P}\right)_{P}-V\right]=\frac{1}{C_{P}}\left[\frac{R}{P} T\left(\frac{\partial T}{\partial T}\right)_{P}-V\right] \\
& =\left[\frac{T}{C_{P}} \frac{R}{P}-\frac{V}{C_{P}}\right]=\frac{V}{C_{P}}-\frac{V}{C_{P}}=\frac{1}{C_{P}}(V-V) \\
& \therefore \quad \mu_{\text {J.T }}=0 \text { for ideal gas. }
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial}{\partial T}\left[\left(P+\frac{a}{V^{2}}\right)^{\prime}(V-b)\right]_{P}=\frac{\partial}{\partial T}(R T)_{P} \\
& \Rightarrow \quad\left(P+\frac{a}{V^{2}}\right) \frac{\partial}{\partial T}(V-b)_{P}+(V-b) \frac{\partial}{\partial T}\left(P+\frac{a}{V^{2}}\right)_{P}=R\left(\frac{\partial T}{\partial T}\right)_{P}+T\left(\frac{\partial R}{\partial T}\right)_{P} \\
& \Rightarrow \quad\left(P+\frac{a}{V^{2}}\right)\left(\frac{\partial V}{\partial T}\right)_{P}-\left(\frac{\partial b}{\partial T}\right)_{P}+(V-b)\left[\left(\frac{\partial P}{\partial T}\right)_{P}+\left(\frac{\partial}{\partial T} \frac{a}{V^{2}}\right)_{P}=R\right. \\
& \Rightarrow \quad\left(P+\frac{a}{V^{2}}\right)\left[\left(\frac{\partial V}{\partial T}\right)_{P}-\left(\frac{\partial b}{\partial T}\right)_{P}\right]+(V-b)\left[\left(\frac{\partial P}{\partial T}\right)_{P}+\left(\frac{\partial a}{\partial T V^{2}}\right)_{P}\right]=R \\
& \Rightarrow \quad\left(P+\frac{a}{V^{2}}\right)\left[\left(\frac{\partial V}{\partial T}\right)_{P}-0\right]+(V-b)\left[0+\frac{-2 a}{V^{3}}\left(\frac{\partial V}{\partial T}\right)_{P}\right]=R \\
& \Rightarrow \quad\left(P+\frac{a}{V^{2}}\right)\left(\frac{\partial V}{\partial T}\right)_{P}+(V-b)-\frac{2 a}{V^{3}}\left(\frac{\partial V}{\partial T}\right)_{P} \Rightarrow\left(\frac{\partial V}{\partial T}\right)_{P}\left[\left(P+\frac{a}{V^{2}}\right)-\frac{2 a}{V^{3}}(V-b)\right]=R \\
& \Rightarrow \quad\left(\frac{\partial V}{\partial T}\right)_{P}\left[\frac{R T}{V-b}-\frac{2 a(V-b)}{V^{3}}\right]=R \\
& \quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{R T}{\frac{R}{(V-b)}\left[1-\frac{2 a(V-b)^{2}}{V^{3} R T}\right]}
\end{align*}
$$

Substitute the value of equation (2) in equation (1):
$\mu_{J . T}=\frac{1}{C_{p}}\left[\frac{T R}{\frac{R T}{V-b}\left[1-\frac{2 a V^{2}}{V^{3} R T}\right]}-V\right]=\frac{1}{C_{p}}\left[V+\frac{2 a V}{R T V}-b-\frac{2 a b}{R T V}-V\right]$
$\mu_{J . T}=\frac{1}{C_{p}}\left[(V-b)\left(1-\frac{2 a}{R T V}\right)^{-1}-V\right] \quad\left(\frac{2 a b}{R T V}\right.$ is very small may be neglected)
$\left[\right.$ so, $\left.\left(1-\frac{2 \mathrm{a}}{\text { RTV }}\right)^{-1}=\left(1+\frac{2 \mathrm{a}}{\text { RTV }}\right)\right]$
$\mu_{\mathrm{J} . \mathrm{T}}=\frac{1}{\mathrm{C}_{\mathrm{p}}}\left[\frac{2 \mathrm{a}}{\mathrm{RT}}-\mathrm{b}\right]$

Inversion temperature (T_{i}):

The temperature at which the value of $\mu_{\mathrm{J} . \mathrm{T}}$ becomes zero which means neither heating nor cooling takes place and gas behaves ideally is called inversion temperature.
$\mu_{\mathrm{J} . \mathrm{T}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{H}}=\frac{1}{\mathrm{C}_{\mathrm{P}}}\left[\frac{2 \mathrm{a}}{\mathrm{RT}}-\mathrm{b}\right]$
If $\mu_{\mathrm{J} . \mathrm{T}}=0, \mathrm{~T}=\mathrm{T}_{\mathrm{i}}$
$\Rightarrow \quad 0=\frac{1}{C_{p}}\left[\frac{2 a}{R T_{i}}-b\right] \Rightarrow \frac{2 a}{R T_{i}}-b=0 \Rightarrow \frac{2 a}{R T_{i}}=b$
$T_{i}=\frac{2 a}{R b}$

During J.T. effect:
$\mathrm{dP}=-$ ve $\quad \therefore \quad \mu_{\mathrm{J} . \mathrm{T}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{H}}$
If $\mu_{\mathrm{J} . \mathrm{T}}=$ positive then $\partial \mathrm{T}$ should negative, $\mathrm{T}_{2}<\mathrm{T}_{1}$
Thus, cooling takes place.
In experimental condition:

$$
\begin{aligned}
& \mu_{J . T}=\frac{1}{C_{p}}\left[\frac{2 a}{R T}-b\right] \quad \text { If } \mu_{J . T}=+ \text { ve means } \mu_{J, T}>0 \\
& \Rightarrow \quad 0<\frac{1}{C_{p}}\left[\frac{2 a}{R T}-b\right] ;\left(\frac{2 a}{R T}-b\right)>0 ;\left(\frac{2 a}{R T}-b\right)>0 ; \frac{2 a}{R b}>T \\
& T_{i}>T
\end{aligned}
$$

Hence, experimental temperature should be less than the inversion temperature of a gas for cooling If,
$\mu_{\mathrm{J} . \mathrm{T}}=$ negative:
Thus, $\partial \mathrm{T}$ should be positive.
$\therefore \quad \mathrm{T}_{2}-\mathrm{T}_{1}>0 ; \mathrm{T}_{2}>\mathrm{T}_{1}$ (Heating takes place)
In experimental condition:
$0>\frac{1}{C_{p}}\left[\frac{2 \mathrm{a}}{\mathrm{RT}}-\mathrm{b}\right] \Rightarrow \frac{2 \mathrm{a}}{\mathrm{RT}}<\mathrm{b} \Rightarrow \frac{2 \mathrm{a}}{\mathrm{Rb}}<\mathrm{T} \Rightarrow \mathrm{T}_{\mathrm{i}}<\mathrm{T} \quad[\mathrm{T}=$ experimental temperature $]$
If experimental temperature is greater than T , heating takes during J.T. experiment.

Note: H_{2}, and He gases have a very low $\mathrm{T}_{\mathrm{i}}\left(-80^{\circ} \mathrm{C}\right.$ and $\left.-240^{\circ} \mathrm{C}\right)$. This temperature will always remain below the experimental condition temperature; thus, heating happen.

Joule-Thomson Coefficient for a Real gas:

Joule-Thomson coefficient maybe positive or negative or zero depending upon the temperature and pressure of the gas. Since the change in pressure, dp, in Joule-Thomson experiment is always negative, it follows that dT will be negative when μ_{JT} is positive, and vice-versa.

Experimental result $\quad \mu_{J T} \quad\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$

Comments

dT negative, i.e.
$(+) \quad(-)$
Most gases, H_{2} and He at low temperature.
Cooling
dT zero, i.e. Zero Zero Ideal gas, real gas at inversion temperature
Neither heating nor cooling
dT positive i.e.,
$(-) \quad(+)$
Most gases at high temperature H_{2} and He at
Heating ordinary temperature

Calculation of various thermodynamic relation for Vander Waal's relation:

(1). Expression of W:
$d W=-p_{\text {ext }} \cdot d v$
For reversible change in volume,

$$
P_{\text {ext }}=P_{\text {int }} \pm d P \simeq P_{\text {int }}
$$

$d w=-P_{\text {int }} d v \Rightarrow \int d w=-\int_{V_{1}}^{V_{2}}\left(\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}\right) d V$
$W=-n R T \ln \frac{V_{2}-n b}{V_{1}-n b}-n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
(2). Expression of ΔU :

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

For Vander Waal gas,

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b}
$$

$\therefore \quad\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{n R T}{V-n b}-P=\frac{n R T}{(V-n b)}-\left(\frac{n R T}{(V-n b)}-\frac{n^{2} a}{V^{2}}\right)=\frac{n^{2} a}{V^{2}} \Rightarrow\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{n^{2} a}{V^{2}}$
$\because \quad U=f(T, V)$
$\therefore \quad d U=\left(\frac{\partial U}{\partial V}\right)_{V} \cdot d T+\left(\frac{\partial U}{\partial T}\right)_{V} . d V$
For Isothermal change,
$d T=0$
$\therefore \quad d U=\left(\frac{\partial U}{\partial V}\right)_{T} \cdot d V \Rightarrow \int d U=\int_{V_{1}}^{V_{2}} \frac{n^{2} a}{V^{2}} d V$
$\Rightarrow \quad \Delta \mathrm{U}=-\mathrm{n}^{2} \mathrm{a}\left(\frac{1}{\mathrm{~V}^{2}}-\frac{1}{\mathrm{~V}_{1}}\right)$

Similarly,
$q=\Delta U-w$
$\Rightarrow \quad q=n R T \ell \frac{V_{2}-n b}{V_{1}-n b}$
(3). Expression of $\Delta \mathrm{H}$:
$\because \quad \Delta H=\Delta U+\Delta(P V)$
$\Delta H=-n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)+\Delta\left[\left(\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}\right) V\right]$
$\Delta H=-n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)+n R T\left(\frac{V_{2}}{V_{2}-n b}-\frac{V_{1}}{V_{1}-n b}\right)-n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
$\Delta H=-2 n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)+n R T\left(\frac{V_{2}}{\left(V_{2}-n b\right)}-\frac{V_{1}}{\left(V_{1}-n b\right)}\right)$

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

CSIR NET General Aptitude Course 2021

Complete Study Plan to Boost the CSIR NET Score What to Expect?

\author{

- Live Classes
 - Mock Tests
 - Quizzes
 - Chapter-wise Tests
 - Doubt Sessions
 - Revision Tests
 - PYQ Discussion
 - Expert faculty
 Course Language
 - Bilingual
}

This Course Includes
$80+$
Live Classes
Study Notes \&
Formula Sheets

1000+
Practice Questions
$10+$
Mock Tests

CSIR NET Chemical Science 2021 Crash Course

Complete Revision Plan to ACE the Exam
What to Expect?

- Live Classes - Mock Tests
- Quizzes
- Chapter-wise Tests
- Doubt Sessions - Revision Tests
- PYQ Discussion
- Expert faculty

Course Language

English
This Course Includes

$180+$
Live Classes
$200+$
Study PDFs

3000+
Practice Questions
$10+$
Mock Tests

