Solution

1. Ans. C.

Total number of girls $=14+6=20$
Total weight of all the girls $=(14 \times 41.5)+(6 \times 37.25)$
$=581+223.5$
$=804.5$
Required average $=804.5 / 20=40.225$
Hence, option C is correct.
2. Ans. D.

Runs in $21^{\text {st }}$ inning $=$ Runs total after 21 innings- Runs total after 20 innings
$\rightarrow 21^{*} 43-20^{*} 42$ (in $21^{\text {st }}$ inning, average increased by 1 Run)
\rightarrow 903-840
$\rightarrow 63$
3. Ans. C.

Correct sum of 40 numbers $=40 \times 45-31+71$
$=1800+71-31$
$=1871-31$
$=1840$
\therefore Required average $=\frac{1840}{40}=46$
Option C is correct.
4. Ans. A.

1 | Page

Let the average monthly income of man be Rs. x
Man's annual income $=$ Rs. $12 X$
Man's annual expenses $=$ Rs. $\quad\left(\frac{3 x \times 12}{6}\right)=$ Rs. $6 x$.
Savings $=$ Rs. $(12 x-6 x)=$ Rs. $6 x$ Now, $6 x=7500 x=$ Rs. 1250 Option
A is correct.
5. Ans. A.

The total height of 50 students $=152 \times 50=7600 \mathrm{~cm}$
Total decrease in the height when 10 students left the class = $148 \times 10=1480 \mathrm{~cm}$

Total increase in the height when 10 students included in the class = $150 \times 10=1500 \mathrm{~cm}$

Now, total height of 50 students $=7600-1480+1500=7620 \mathrm{~cm}$
New average $=$ Sum of height of 50 students / total number of students
$=\frac{7620}{50}=152.4 \mathrm{~cm}$
6. Ans. C.

First 25 multiples of 5 are 5,10,15,20,25 .125

Sum of first 25 multiples of $5=5(1+2+3+$ \qquad $+25)$

Sum of first n natural number $=\frac{(n)(n+1)}{2}$
Sum of first 25 natural number $=\frac{(25)(25+1)}{2}=25 \times 13=325$
So Sum of first 25 multiples of $5=5(1+2+3+\ldots \ldots \ldots \ldots \ldots+25)=5 \times 325=1625$
Average $=\frac{1625}{25}=65$
2 | P a g e

7. Ans. D.

Total age of 5 members, 7 years ago $=\left(19^{\times} 5\right)=95$ years
Total age of 5 members, now $=\left(95+7^{\times}\right)=130$ years
Total age of 7 members, now $=\left(19^{\times} 7\right)=133$ years.
Sum of the ages of two children $=(133-130)=3$ years.
Let the age of elder child $=(x+2)$ years
The age of younger child $=x$ years
So, $x+x+2=3$
$2 x=1$
$X=1 / 2$
8. Ans. D.

Let the height of Q, R and P be $x \mathrm{~cm}, x \mathrm{~cm}$ and $\left(x^{-4}\right) \mathrm{cm}$ respectively. Then,

$$
\begin{aligned}
& x+x+(x-4)=(165 \times 50-164 \times 47) \\
\Rightarrow & 3 x-4=8250-7708 \\
\Rightarrow & 3 x=542+4 \\
\Rightarrow & 3 x=546 \\
\Rightarrow & x=182 \mathrm{~cm}
\end{aligned}
$$

Option D is correct response.
9. Ans. C.

Let the number of papers be x
Then, $53 \mathrm{x}+10+2=55 \mathrm{x}$
3|Page
$2 x=12$
$x=6$.
10. Ans. D.

Let the daily wage of man be x
Daily wage of women $=$ Rs. $(x+6)$
$700 x+300(x+6)=26.50 \times(700+300)$
$1000 x=26500-1800$
$1000 x=24700$
$X=24.70$
Man's daily wages = Rs. 24.70 Woman's daily wages = Rs.
30.70
11. Ans. B.

Total distance in laps $=286{ }^{\times} 4+197{ }^{\times} 1+291 \times 3$
$=1144+197+873$
$=2214$
Total laps $=4+1+3=8$
\therefore Average speed per lap $=2214 / 8=276.75=277 \mathrm{~km}$ per lap (approx)
12. Ans. B.

Let the number of girls be x .
Total consumption of boys $=16^{\times} 18=288 \mathrm{~kg}$
Total consumption of girls $=12 \times \mathrm{kg}$

4 | Page

Total consumption of group $=15(16+x)=15 x+240 \mathrm{~kg}$
$\therefore 288+12 x=240+15 x$
$\therefore 48=3 x^{\therefore} x=16$
13. Ans. A.

Let speed of boat $S_{1}=11 \mathrm{~km} / \mathrm{h}$ and speed of stream be S_{2}
In upstream 11- $\mathrm{S}_{2}=12 / \mathrm{t}_{1}$ And in downstream, $11+\mathrm{S}_{2}=12 / \mathrm{t}_{2}$
$\mathrm{t}_{2}=12 / 11+\mathrm{S}_{2} \mathrm{t}_{1}+\mathrm{t}_{2}=2+45 / 60$
$12 /\left(11-\mathrm{S}_{2}\right)+12 /\left(11+\mathrm{S}_{2}\right)=2.75 \mathrm{~S}_{2}=5 \mathrm{~km} / \mathrm{hr}$
14. Ans. C.

Let the speed of boat $=x \mathrm{~km} / \mathrm{h}$ and the speed of current $=y \mathrm{~km} / \mathrm{h}$
In downstream, Relative speed=x+y
In upstream, Relative speed=x-y Using speed=Distance/Time
$x+y=\frac{32}{6}$
$x-y=\frac{14}{6}$ \qquad

From equation (1) and (2), we get $y=1.5$

Speed of current $=1.5 \mathrm{~km} / \mathrm{hr}$
15. Ans. D.

Let the speed of the man in still water be $x \mathrm{~km} / \mathrm{hr}$ and let the speed of the stream be $\mathrm{y} \mathrm{km} / \mathrm{hr}$ Speed of the man downstream $=x+y \mathrm{~km} / \mathrm{hr}$

Speed of the man upstream $=x-y \mathrm{~km} / \mathrm{hr}$
Therefore $\quad x+y=\frac{18}{4}$
$x-y=\frac{18}{10}=1.8 \mathrm{~km} / \mathrm{h}$
Solving these equations by elimination method, we get
5 \| Page

$$
\begin{align*}
& 2 x=\frac{18}{4}+1.8=4.5+1.8=6.3=>x=3.15 \mathrm{~km} / \mathrm{h} \tag{iii}\\
& 3.15-y=1.8=>y=1.35 \mathrm{~km} / \mathrm{h} \text {.........(iv) } \tag{iv}
\end{align*}
$$

Therefore, equations (ii), (iii) and (iv) implies that all the given statements are correct Hence option (d)
16. Ans. B.

Let the speed of the stream be $v \mathrm{~km} / \mathrm{hr}$
Total time taken to travel upstream and downstream $=30 /(15-\mathrm{v})+$
$30 /(15+v)=4.5$
$900 / 4.5=15^{2}-v^{2} V=5$
17. Ans. A.

Rate in still water=[(1/2)(u+v)] km/h
Rate of current $=[(1 / 2)(u-v)] \mathrm{km} / \mathrm{h}$
Where, $\mathrm{u}=$ speed of boat in downstream
And $v=$ speed of boat in upstream
Putting the given values in the question
So, speed of boat in still water=[(1/2)(7+13)]
$\Rightarrow 10 \mathrm{~km} / \mathrm{h}$
And, speed of the stream $=[(1 / 2)(13-7)]$
$\Rightarrow 3 \mathrm{~km} / \mathrm{h}$
18. Ans. B.
rate of water flow $=3.6 \mathrm{~km} / \mathrm{hr}=3600 / 60 \mathrm{~m} / \mathrm{min}=60 \mathrm{~m} / \mathrm{min}$
Depth of river=2.5m
Width of river $=45 \mathrm{~m}$
Volume of water flowed in $1 \mathrm{~min}=$ rate of water flow \times depth of river
\times width of river $=60 \times 2.5 \times 45=6750 \mathrm{~m}^{3} \mathrm{In} 1$ minute $6750 \mathrm{~m}^{3}$ water will fall in river
19. Ans. C.

61 Page

Let the speed of man be $=b$,
And speed of current be $=c$
Downstream speed $=b+c$
Upstream speed $=b-c$
Time $=\frac{\text { Distance }}{\text { Speed }}$
$6=\frac{32}{b+c}$

$$
\begin{aligned}
& b+c=\frac{52}{6}=\frac{16}{3} \ldots \ldots(i) \\
& b-c=\frac{14}{6}=\frac{7}{3} \ldots \ldots(i i)
\end{aligned}
$$

From eqn. $(i) \&(i i)$.
$2 c=\frac{16}{3}-\frac{7}{3}$
$c=\frac{3}{2}$
$=1.5 \mathrm{kmph}$.
20. Ans. D.

Their relative speed $=(x-y) \mathrm{km} / \mathrm{h}$
Time taken to meet each other $=D /(x-y) h r$

7 | Page

Required distance travelled at ${ }^{x} \mathrm{~km} / \mathrm{h}=\mathrm{Dx} /(\mathrm{x}-\mathrm{y}) \mathrm{km}$

21. Ans. B.

Let speed of first boat $=5 x$, speed of stream $=2 x$ speed of second boat $=4 y$, speed of stream $=3 y$
But speed of stream should be same in both cases
$\Rightarrow 2 \mathrm{x}=3 \mathrm{y}$
$\Rightarrow \mathrm{x}=3 \mathrm{y} / 2$
So required Ratio $=5 \mathrm{x}: 4 \mathrm{y}=5\left(\frac{3 y}{2}\right): 4 y=15: 8$
22. Ans. B.

Let speed of boat in still water $=v_{1}$

Speed of current $=v_{2}$
Net speed of boat during downstream $=v_{1}+v_{2}$
Speed of boat during upstream $=v_{1}-v_{2}$
So $v_{1}-v_{2}=13$
Speed of current $=v_{2}=7 \mathrm{~km} / \mathrm{hr}$.
From equation (1) and (2)
$v_{1}=20 \mathrm{~km} / \mathrm{hr}$
Net speed of boat during downstream $=v_{1}+v_{2}=20+7=27 \mathrm{~km} / \mathrm{hr}$.
23. Ans. A.

Total weights of fruit bought by Anu $=6 \mathrm{~kg} 400 \mathrm{~g}+5 \mathrm{~kg}+300 \mathrm{~g}=11 \mathrm{~kg} 700 \mathrm{~g}$

8|Page

Total weights of fruit bought by Tanu $=8 \mathrm{~kg} 350 \mathrm{~g}+3 \mathrm{~kg}+175 \mathrm{~g}=11 \mathrm{~kg} 525 \mathrm{~g}$
On comparing both, $11 \mathrm{~kg} 700 \mathrm{~g}>11 \mathrm{~kg} 525 \mathrm{~g}$
Therefore, Tanu bought less fruits.
24. Ans. A.

Clearly, $\frac{10}{13}=0.769, \frac{15}{18}=0.833, \frac{18}{20}=0.9$
So, $0.769<0.833<0.9$.
So, $\frac{10}{13}<\frac{15}{18}<\frac{18}{20}$
25. Ans. D.
$\left(0.00625\right.$ of $\left.\frac{22}{5}\right)=\left(\frac{625}{100000} \times \frac{22}{5}\right)=\frac{11}{400}$
26. Ans. C.

Given expression

$$
\begin{aligned}
& \quad=\sqrt{\frac{6084}{100}}+\sqrt{\frac{6084}{10000}}+\sqrt{\frac{6084}{1000000}}+\sqrt{\frac{6084}{100000000}} \\
& =\frac{\sqrt{6084}}{10}+\frac{\sqrt{6084}}{100}+\frac{\sqrt{6084}}{1000}+\frac{\sqrt{6084}}{10000} \\
& =\frac{78}{10}+\frac{78}{100}+\frac{78}{1000}+\frac{78}{1000} \\
& =7.8+.78+.078+.0078=8.6658
\end{aligned}
$$

Option C is correct.
27. Ans. A.

$$
\frac{x}{y}=\frac{0.06}{2.5}=\frac{6}{250}=\frac{3}{125}
$$

\therefore Given exp.

$$
\frac{y-x}{y+x}=\frac{1-\frac{x}{y}}{1+\frac{x}{y}}=\frac{1-\frac{3}{125}}{1+\frac{3}{125}}=\frac{\frac{122}{125}}{\frac{128}{125}}=\frac{122}{125} \times \frac{125}{128}=\frac{61}{64}
$$

Option A is correct response.
28. Ans. C.
(1/0.00045291)
$\Rightarrow(10000 / 4.5291)$
$\Rightarrow 10000$ * ($1 / 4.5291$)
$\Rightarrow 10000$ * 0.2207
$\Rightarrow 2207$
Option C is correct response.
29. Ans. B.
$\frac{x}{y}=\frac{0.03}{1.5}=\frac{3}{150}=\frac{1}{50}$
$\left(\frac{2 y-x}{2 y+x}\right)=\frac{2-\frac{x}{y}}{2+\frac{x}{y}}$
$=\frac{2-\frac{1}{50}}{2+\frac{1}{50}}$
$=\frac{99}{101}$

10 | Page

30. Ans. C.

Let $\mathrm{x}=0.0372372372 \ldots$... (i)
Multiplying (i) by 10000 on both sides to get decimal to the right of 372 .
$10000 x=372.372372 \ldots$-> (ii)
Multiplying (i) by 10 on both sides to get decimal to the left of 372 .
$10 x=0.372372372 \ldots$-> (iii)
Subtracting (iii) from (ii)
$10000 x-10 x=372.372372 \ldots-0.372372372 \ldots$.
$\Rightarrow 9990 x=372$
=> x = 372 / 9990 Option C is correct response.
31. Ans. A.

Given expression
$(.56)^{3}-(.32)^{3}-3 \times .56 \times .32 \times(.56-.34)$
$\Rightarrow a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}$
Here, $a=.56 \& b=.34(.56-.34)^{3}=(.24)^{3}=0.013824$
Option A is the correct response.
32. Ans. A.

Given, $\left[35.7-\left(3+\frac{1}{3+\frac{1}{3}}\right)-\left(2+\frac{1}{2+\frac{1}{2}}\right)\right]$

$$
=35.7-\left(3+\frac{1}{\frac{10}{3}}\right)-\left(2+\frac{1}{\frac{5}{2}}\right)
$$

11 \| Page

$$
\begin{aligned}
& \quad=35.7-\left(3+\frac{3}{10}\right)-\left(2+\frac{2}{5}\right) \\
& =35.7-\left(\frac{33}{10}\right)-\left(\frac{12}{5}\right) \\
& =35.7-\left(\frac{33}{10}+\frac{12}{5}\right) \\
& =35.7-\frac{57}{10} \\
& =35.7-5.7 \\
& =30
\end{aligned}
$$

33. Ans. B.

Given, $\frac{54208}{352}=154 \Leftrightarrow \frac{54208}{154}=352$
Now, $\frac{54.208}{0.0154}=\frac{542080}{154}=\left(\frac{54208}{154} \times 10\right)$
$=352 \times 10$
$=3520$
34. Ans. B.

In Group, A 20 students passed in first class out of 35 students ${ }^{*}$ fraction of students getting first class $=\frac{20}{35}=\frac{4}{7}$
In Group, B 30 students passed in first class out of 42 students
\therefore fraction of students getting first class $=\frac{30}{42}=\frac{5}{7}$
Comparing the two fractions, we get $\frac{4}{7}>\frac{5}{7}$
Group B has greater fraction.
12 | Page

35. Ans. A.

Population of illiterate in the village $=(100-35) \%$ of 8500
$=(8500 \times 65) / 100$
$=5525$
Option A is correct.
36. Ans. B.

Let the total votes be x .
${ }^{*}$ winner's votes $=0.45 x$ and winning margin $=0.05 x$
\therefore Loser's votes $=0.45 x-0.05 x=0.4 x$
When 10000 votes are added to the loser, there is a tie.
$\therefore 0.45 x=0.4 x+10000^{*} 0.05 x=10000^{*} x=200000$
37. Ans. A.

Since, 14% of votes were rejected, 86% of the votes were valid. " total valid votes $=86 \%$ of $10000=8600$
Let the losing candidate get x votes.
Hence, the winning candidate got $(x+600)$ votes. ${ }^{*} x+(x+600)=8600$
$X=4000$
Required percentage $=\left(\frac{4000}{8600}\right) \times 100$
= 46.5\%
38. Ans. B.

Let the required time be n years.

13 \| Page

$\therefore 1968300 \times\left(1-\frac{20}{100}\right)^{n}$
$=51200 \times\left(1+\frac{20}{100}\right)^{n}$

$$
\therefore 1968300 \times\left(\frac{4}{5}\right)^{n}=51200 \times\left(\frac{6}{5}\right)^{n}
$$

$\left(\frac{6}{5}\right)^{n} \times\left(\frac{5}{4}\right)^{n}=\frac{1968300}{51200}$
$\left(\frac{3}{2}\right)^{n}=\frac{19683}{512}$
$\left(\frac{3}{2}\right)^{n}=\left(\frac{3}{2}\right)^{9}$
$\mathrm{N}=9$
Thus, the value of the land and house will be same after 9 years.
39. Ans. B.

Akash income be Rs. 100.
Hence, he spends Rs. 40 on food.
Amount left $=$ Rs. 60 and amount spent on education $=30 \%$ of $60=$ Rs.
18
Amount now left $=60-18=$ Rs. 42

Amount spent on the other expenditure $=25 \%$ of $42=$ Rs. 10.5^{*} savings $=42-10.5=$ Rs. 31.5
Since, actual savings $=$ Rs. 5670 , actual income $=100 / 31.5{ }^{\times} 5670=$ Rs. 18000.
40. Ans. C.

Rohit $=75=$ Mohit +10

14 \| Page

\therefore Mohit $=65$
Raj $=$ Mohit $+55=65+55=120$
Ashish $=$ Raj $-35=120-35=85$
\therefore Rajan $=$ Ashish $+44=85+44=129$
${ }^{\wedge}$ Maximum marks $=$ Rajan $+71=129+71=200$
\therefore Required percentage $=\left(\frac{129}{200}\right) \times 100=64.5 \%$
41. Ans. D.

The pen's initial price be Rs. 100 and assume that Ramesh was planning to buy only 1 pen.
*originally planned expenditure $=100{ }^{\times} 1=$ Rs. 100
New price of pen $=100 \times(1-0.04)=$ Rs. 60
Also, Ramesh now plans to buy 2 pens.
\therefore New expenditure $=60{ }^{\circ}$ 2 $=$ Rs. 120
\therefore Increase in expenditure $=120-100=$ Rs. 20
\therefore Required \% change $=\left(\frac{20}{100}\right) \times 100=20 \%$
42. Ans. C.

Females $=45000 \times 4 / 5=36000$
Males $=9000$
Educated females $=36000 \times 90 / 100=32400$
Educated males $=9000 \times 65 / 100=5850$

15 | Page

Total educated persons $=38250$
Required percent $=(38250 / 45000) \times 100=85 \%$
Option C is correct.
43. Ans. B.
$(A+B) \times 30 / 100=(A-B) \times 50 / 100$
$=>3(A+B)=5(A-B)$
$\Rightarrow 3 A+3 B=5 A-5 B$
$\Rightarrow 2 A=8 B$
$\Rightarrow A=4 B$
Therefore,
$(2 A-3 B) / A+B$
$=8 B-3 B / 4 B+B$
$=5 B / 5 B$
$=1$
Option B is correct.
44. Ans. C.

Let greater number be x
So, smaller number $=210-\mathrm{x}$

ATQ-
$(25 * x) / 100=45(210-x) / 100$
$=>5 x=9 \times 210-9 x$
$\Rightarrow 14 x=1890$
$\Rightarrow x=135$
16 | Page

So, the correct option is C .
45. Ans. D.

Let B's salary = Rs. 100
${ }^{\circ}$ C's salary $=$ Rs. 400
And A's salary = Rs. 30

$$
\text { required percentage }=\frac{30}{400} \times 100=\frac{30}{4}=7.5 \%
$$

Option D is correct.
46. Ans. C.

It means that 0.08% of $x=2$
$\Rightarrow \frac{8}{100 \times 100} \times x=2$
$\Rightarrow x=\frac{2 \times 100 \times 100}{8}=2500$
So required number $=2500$
47. Ans. D.

Let the C.P for the farmer = Rs. 1
Rate through intermediaries for customer $=$
$1 \times 1.2 \times 1.5 \times 1.25 \times 1.25=$ Rs. 2.156
Farmer sales at the same price his profit $=2.156-1=1.156$
Profit percentage of customer $=\frac{1.156}{1} \times 100=115.6 \%$
48. Ans. D.

Let CP of article $=100$ Rs.
17 | Page

According to question

$\Rightarrow 25$ units $=100 \mathrm{Rs}$.
$\Rightarrow 1$ unit $=4$ Rs.
$\Rightarrow 100$ unit $=400$ Rs.

So CP of article $=400$ Rs.
49. Ans. C.

CP of 1 articles $=\frac{1}{5} \times \frac{100}{94}=$ Rs. $\frac{10}{47}$

$$
\text { CP of } 4 \text { articles }=\text { Rs. } \frac{40}{47}
$$

$$
\text { Gain }=1-\frac{40}{47}=\frac{7}{47}
$$

Gain $\%=\frac{\left(\frac{7}{47}\right)}{\left(\frac{40}{47}\right)} \times 100=\frac{700}{40}=17.5 \%$
Option C is correct.
50. Ans. A.

18 | Page

C.P of 75 ball pens $=\frac{\frac{135 \times 100}{75}}{}=$ Rs. 180

For a gain of 25%
$S P=\frac{180 \times 125}{100}=$ Rs. 225
Rs. $225=75$ ball pens

$$
\text { Rs. } 102=\frac{75}{225} \times 102=\frac{102}{3}=34
$$

Option A is the correct response.
51. Ans. C.

Let CP of the article $=$ Rs x
According to question
Loss\% = profit\%
$\Rightarrow \frac{x-50}{x} \times 100=\frac{70-x}{x} \times 100$
$\Rightarrow 2 x=120$
$\Rightarrow x=60$

Cost price of article $=$ Rs. 60
Selling price of article $=$ Rs 50
Loss $=C P-S P=60-50=10$
Loss $\%=($ loss $/ C P) \times 100=\frac{10}{60} \times 100=16 \frac{2}{3} \%$
52. Ans. C.
M.P. of the shirt $=$ Rs. 600

19 | Page

After getting two successive discounts, C.P. $=600 \times \frac{85}{100} \times \frac{80}{100}=408 \mathrm{Rs}$ He also spent Rs 28 on fitting of shirt.

So new C.P. $=408+28=436$ Rs.
SP of the shirt = Rs 545
Profit $=545-436=109$ Rs
Profit $\%=($ profit $/$ C.P. $) \times 100=\frac{109}{436} \times 100=25 \%$
53. Ans. B.

CP of 164 items =Rs.(164x. 80)=Rs. 131.2020 items are broken out of 164 items.
Total SP = Rs. $(1.20 \times 144)=$ Rs. 172.80
Gain $=$ Rs. $(172.80-131.20)=$ Rs. 41.60

$$
\text { Gain } \%=\frac{41.60}{131.20} \times 100=31.70 \%
$$

Option B is correct.
54. Ans. D.

If a person sells two article, each at same price and on one article he gets $\mathrm{x} \%$ profit and on the other article he loses $\mathrm{x} \%$ then there is a loss of $\left(x^{2} / 100\right) \%$

Loss $\%=\frac{30^{2}}{100} \%=9 \%$
This implies that if the total cost = Rs. 100
Then total loss is 9% and total selling price will be Rs. 91
Since, total cost 120Rs. Total selling price of two articles
20 \| Page

$=\frac{91 \times 216}{9}=$ Rs. 2184
Selling price for each article $=2184 / 2=$ Rs. 1092
55. Ans. D.

Since Ashok wants an overall profit of 50%
Total S.P for Ashok $=720^{\times} 1.5=$ Rs. 1080
Assume Ashok bought 40 goods for Rs. 720
C. P per good $=720 / 40=$ Rs. 18

Ashok sold $1 / 4^{\text {th }}$ at 40% profit
Total S.P of these goods $=101.4 \quad 18=$ Rs. $X_{52} \quad X$
Total S.P of remaining 30 goods $=108-252=$ Rs. 828
C.P of 30 goods $=30^{\times} 8=$ Rs. 540

Profit on this $=828-540=$ Rs. 288
Profit $\%=288 / 540 \times 100=53.33 \%$
56. Ans. A.

Lets C.P for the shopkeeper = Rs. 100
Since, The shopkeeper marks up his price by 100%
$M . P=2 C . P=2 \times 100=R s .200$
Since, he gives the discount
$S . P=0.5 \times 200=$ Rs. 100
Since, S.P = C.P, there is no profit no loss.
21|Page

57. Ans. D.

Let the printer price of the book is Rs. X
So, after the first discount it becomes Rs. 0.8 x
Now, in additional 10% discount on $0.8 \times$ makes the
price $\frac{90}{100} \times 0.8 x=0.72 x$
But this amount gives 8% profit to the shopkeeper
So, if the cost price is Rs. Y, selling price $=$ Rs. 1.08 y
And, $1.08 y=0.72 x$

x
 $\frac{x}{y}=1.5$

Hence, the printed amount is 1.5 times the cost price i.e. 50% more than the cost price.
58. Ans. B.

The original price of jewel be Rs. P and let the profit earned by third seller be Y\%
$(100+Y) \%$ of 125% of 120% of $P=165 \%$ of P

$$
\left(\frac{100+Y}{100} \times \frac{125}{100} \times \frac{120}{100} \times P\right)=\frac{165}{100} P
$$

$100+Y=\frac{165 \times 100 \times 100}{125 \times 120}$
$Y=10 \%$
59. Ans. B.

Let the total stock be 300 units and each one is cost Rs. 100
Total C.P $=300 \times 100=30000$ Rs.
S.P of $1 / 4^{\text {th }}$ stock $=\frac{300}{4} \times 1.22 \times 100=$ Rs. 9150

22 | Page

S.P of $1 / 3^{\text {rd }}$ stock $=\frac{300}{3} \times 1.25 \times 100=$ Rs. 12500

Stock remaining $=300-(75+100)=125$ unit
S.P of remaining stock $=125 \times 1.4 \times 100=$ Rs. 17500

Total S.P $=9150+12500+17500=39150$

Profit $=39500-30000=9150$
Since, actual profit $=18300$
Actual C.P $=30000 \times \frac{18300}{9150}=$ Rs. 60000
60. Ans. B.

Let $x=3 k$ and $y=5 k$
$3 x+y=3^{X} 3 k+5 k=14 k$
$5 x-y=5^{X} 3 k-5 k=10 k$
$(3 x+y):(5 x-y)=14 k: 10 k$
$=7: 5$
61. Ans. D.
$B+C=85-25=60$
Also, let $B=2 x$ and $C=3 x$
$B+C=5 x=60 x=12$ then

Coins with $C=(3)^{X} 12=36$
62. Ans. C.

Let P's and Q's weekly income be Rs. 7x \& Rs. $5 x$ and their expenses be Rs. 3y \& Rs. $2 y$ respectively.
23|Page

Then,
$7 x-3 y=225-(i)$
$5 x-2 y=225-(i i)$
$7 x-3 y=5 x-2 y$
$2 x=y-(i i i)$

From eq. (i)
$7 x-3 y=2257 x-6 x=225 x=225$
\therefore Sum of their weekly income $=12 x=12 \times 225=$ Rs. 2700
Option C is correct.
63. Ans. A.

Let the initial number of members with Mr. Shah be 6 k and the number of members with Mr. Raheja be 5 k .
24 members went over from Mr. Shah's side to Mr. Raheja's side.

Hence, the number of members now supporting
Mr. Shah is $6 k-24$ while the number of members with Mr. Raheja is $5 k+24$.
This ratio is now 2 : 3
$\therefore(6 k-24):(5 k+24)=2: 3$
$\therefore 18 k-72=10 k+48$
$\therefore 8 \mathrm{k}=120$
$K=15$
64. Ans. A.

Annual profit of the company $=33.15$ lacs $^{\times} 12=397.8$ lacs $=3.978$ crores

24 | P a g e

Let the earnings in the four quarters be $2 x, 3 x, 7 x$, and $5 x$ respectively
Total profit $=2 x+3 x+7 x+5 x=17 x$
Profit in $3^{\text {rd }}$ quarter $=\frac{7}{17} \times 3.978=1.638$ crores.
65. Ans. B.

Let the total capital be $14 x^{*}$ total amount invested by P, Q and R is $7 x, 2 x$ and x respectively.

Also, P, Q and R invest capital for 12,2 and 4 months respectively.
Profits are divided in the ratio of investment

Ratio of profits $=7 x^{\times} 12: 2 x^{\times} 2: x^{\times}{ }_{4}=84: 4: 4$
$=21: 1: 1$
66. Ans. D.

Let the third proportional to 0.38 and 0.76 be x
Then,
$0.38: 0.76:: 0.76: x x=(0.76 \times 0.76) / 0.38 x=1.52$
Option d is correct response.
67. Ans. A.

Let the Income of P and Q be $6 x$ and $5 x$ respectively and their expenditure's be Rs. $4 y$ and Rs. $3 y$ respectively.
$6 x-4 y=1800--$ (i)
$5 x-3 y=1800---(i i)$
On multiplying eq. (i) by 3 and (ii) by 4 and subtracting we get,

```
\(18 \mathrm{x}-12 \mathrm{y}=5400\)
\(20 x-1 / 2 y=7200\)
\begin{tabular}{ll}
\((-) \quad(+)\) & \((-)\) \\
\(-2 x\) & \(=-1800\)
\end{tabular}
    \(x \quad=900\)
```

So, P's income $=6 \times 900=$ Rs. 5400
Option A is correct.
68. Ans. D.

Total age of three girls $=36 \times 3=108$ years.
Ratio of their ages $=4: 6: 8$
Age of the youngest $=108 \times 4 / 18=6 \times 4=24$ years.
Hence, the correct response is option d.
69. Ans. A.

Let the CP be Rs. 5 x .
It's SP = Rs. $6 x$
Profit $=$ Rs. $(6 x-5 x)=$ Rs. x

$$
\text { Profit percent }=\frac{x}{5 x} \times 100=20 \%
$$

Option A is correct.
70. Ans. B.
ratio before mixing of $8: 6: 1$ total weight $=150 \mathrm{~kg}$ weight of Aluminium $=150 \times(1 / 15)=10 \mathrm{~kg}$ Let $x \mathrm{~kg}$ of aluminum be mixed.
After mixing then ratio 6:4:3
$\frac{(10+x)}{150+x}=\frac{3}{13}$
$26 \mid$ Page

$\Rightarrow 130+13 x=450+3 x$
$\Rightarrow 10 x=450-130$
$\Rightarrow 10 x=320$
$\Rightarrow \mathrm{x}=32 \mathrm{~kg}$

Option B is correct response.
71. Ans. D.

Let the first part be x then the second part be (1050-X).
$(X \times 5 \times 3) / 100=[(1050-X) \times 10 \times 6] / 100$
$X=(1050-X) * 4$
$X=4200-4 X$
$5 X=4200$
$X=840$

Second part $=1050-840=$ Rs. 210
Option d is correct.
72. Ans. A.

Gain in 2 years $=[\{2500 * 15 / 2 * 2\} / 100]-[\{2500 * 3 * 2\} / 100]$
$=375-150$
$=225$
Gain in 1 year $=225 / 2=$ Rs. 112.5
Option A is correct.
73. Ans. C.

ATQ-

27 | P a g e

$P^{*}(r+4) * 4 / 100-P^{*} r^{*} 4 / 100=380$
$4 P(r+4-r)=380 \times 100$
$4 \mathrm{P} * 4=380 \times 100$
$P=(380 \times 100) / 16$
$P=R s .2375$

Option C is the right answer.
74. Ans. D.

$$
\text { SI after } 2 \text { years }=\frac{16500 \times 8 \times 2}{100}=\text { Rs. } 2640
$$

Principal for next two years = Rs. $(16500+2640)=$ Rs. 19140
SI at the end of fourth year $=\left(19140^{*} 8^{*} 2\right) / 100=3062.4$

Option D is correct.
75. Ans. D.

If the principal be X, then simple interest $=(840-X)$
principal $=\frac{S I \times 100}{R \times T}$
$\Rightarrow x=\frac{(840-x) \times 100}{15 \times 5}$
$\Rightarrow 3 x=(840-x) \times 4$
$\Rightarrow 3 x=3360-4 x$
$\Rightarrow 7 x=3360$
$\Rightarrow x=$ Rs. 480

Option D is correct.
28 | Page

76. Ans. A.

Let each installment be x.
Then,

$$
\begin{aligned}
& \quad\left(x+\frac{x \times 5 \times 1}{100}\right)+\left(x+\frac{x \times 5 \times 2}{100}\right)+\left(x+\frac{x \times 5 \times 3}{100}\right)+x=946 \\
& \left(x+\frac{x}{20}\right)+\left(x+\frac{x}{10}\right)+\left(x+\frac{3 x}{20}\right)+x=946 \\
& \frac{21 x}{20}+\frac{11 x}{10}+\frac{23 x}{20}+x=946 \\
& \frac{21 x+22 x+23 x+20 x}{20}=946
\end{aligned}
$$

$86 x=946 \times 20$
$x=11 \times 20=r s .220$
Option A is correct.
77. Ans. C.

If each amount lent be x, then
$\frac{x \times 9 \times 3}{100}+\frac{x \times 7 \times 3}{100}=840 \Rightarrow \frac{48 x}{100}=840$
$\Rightarrow x=\frac{840 \times 100}{48}=$ Rs. 1750
Option C is correct.
78. Ans. D.

Let the principle be Rs. 100, rate be 10% and the time period be 1 year
Simple interest $=\frac{100 \times 10 \times 1}{100}=10$

29 \| Page

New principle $=$ Rs. 130, new rate $=8 \%$ and new period $=4$ years
Simple interest $=\frac{130 \times 8 \times 4}{100}=41.6$
Increase in interest $=41.6-10=31.6$
Percentage increase in interest $=\frac{31.6}{10} \times 100=316 \%$
79. Ans. D.

Here the principle is placed for 3 years that means $\mathrm{n}=3$
Amount $=P\left[1+\left(\frac{R}{100}\right)\right]^{n}$
$=5000\left[1+\frac{10}{100}\right]^{3}$

80. Ans. A.

Let the rate of interest be R

Simple interest $=4126-3468=$ Rs. 658
$658=\frac{\frac{3468 \times 2 \times R}{100}}{}$
$R=9.48 \%=9.5 \%$ (approx)
81. Ans. C.
4.5\% p.A. implies $\left(\frac{9}{2}\right) \%$ p.A. and 8 months implies $\left(\frac{2}{3}\right)$ of a year.
\therefore S.I $=\frac{\left[30000 \times\left(\frac{9}{2}\right) \times\left(\frac{2}{3}\right)\right]}{100}=$ Rs. 900
\therefore amount obtained $=30000+900=$ Rs. 30,900
30 | Page

82. Ans. D.

Simple interest in first case $=\mathrm{A}-\mathrm{P}$
$=2280-2000=$ Rs. 280
$\therefore 280=\left(2000^{\times} \times{ }^{\times} 2\right) / 100$
$\therefore R=7 \%$
In the second case:
$S I=\left(9000^{\times} \quad \times 74\right) / 100=$ Rs. 2520
\therefore Amount $=9000+2520=$ Rs. 11520
83. Ans. C.

Average Speed= (total distance)/ (total time)
If we assume distance from A and B be d
Then,
Average speed $=2 \mathrm{~d} /[(\mathrm{d} / 60)+(\mathrm{d} / 100)]=(2 * 60 * 100) /(60+100)=(2 * 60 * 100) / 160=75$
Hence, (c) is the correct option.
84. Ans. C.

In this case, it is evident that the situation is one of train crossing a stationary object without length.
Applying the formula, $\mathrm{S}_{\mathrm{T}}{ }^{*} \mathrm{t}=\mathrm{L}_{\mathrm{T}}$; where $\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{\text {peed }}$ of the train \& $\mathrm{L}_{\mathrm{T}}=$ Length of train;
$\mathrm{S}_{\mathrm{T}}=200 / 8=25 \mathrm{~m} / \mathrm{s}$
$\rightarrow 25^{*}(18 / 5)=90 \mathrm{kmph}$
Hence, (C) is the correct answer.
85. Ans. D.

31 \| Page

$$
\text { Relative speed }=35-25=10 \mathrm{kmph}=10 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}
$$

Total length $=100+150=250 \mathrm{~m}$

$$
\therefore \text { Required time }=\frac{\text { sum of the length of trains }}{\text { relative speed }}=\frac{250 \times 18}{50}=90 \text { seconds }
$$

Option D is correct.
86. Ans. A.

Let length of train be $x \mathrm{~m}$.
\therefore speed of train $=\frac{(x+276)}{25}$
Also, speed of train $=\frac{x}{10}$
obviously,
$\frac{x}{10}=\frac{x+276}{25}$
$\Rightarrow 5 x=2 x+552$
$\Rightarrow 3 x=552$
$\Longrightarrow x=184 m$
Option A is correct.
87. Ans. B.

Let the length of the train be x.
According to the question,
speed of train $=\frac{x+120}{40}$
32 | Page

$\Rightarrow \frac{x}{20}=\frac{x+120}{40}$
$\Rightarrow 2 x=x+120$
$\Rightarrow x=120 \mathrm{~m}$

$$
\text { Speed of train }=\frac{120}{20}=6 \mathrm{~m} / \mathrm{s}=6 \times \frac{18}{5}=21.6 \mathrm{kmph}
$$

Option B is the correct response.
88. Ans. D.

$$
\begin{aligned}
& \text { Average speed of whole journey }=\left(\frac{2 x y}{x+y}\right) \mathrm{kmph} \\
& \frac{2 \times 45 \times 75}{120}=\frac{6750}{120}=56.25 \mathrm{kmph}
\end{aligned}
$$

Option D is correct.
89. Ans. B.

Let length of train is L meter and speed of train is $s \mathrm{~m} / \mathrm{sec}$.
Case - 1: Train crosses a pole on a platform in 10 seconds. If train crosses the pole on platform i.e. it covers the distance equal to the length of train.

We know that time= distance/speed
$\Rightarrow \frac{L}{s}=10$.
$\Rightarrow L=10 s$
Case - 2: train crosses the 300 m long platform in 25 seconds If train crosses the platform i.e. it covers the distance equal to the length of train and length of platform.

Again $\frac{L+300}{s}=25$.
33 | Page

Put Value of L from equation (2) in equation (3)
$\Rightarrow 10 s+300=25 s$
$\Rightarrow 15 \mathrm{~s}=300$
$\Rightarrow \mathrm{s}=20 \mathrm{~m} / \mathrm{sec}$.
Put value of s in equation (2)
$\mathrm{L}=10 \times 20=200 \mathrm{~m}$
the time taken by the train to cross a platform 100 m long $=$
Distance/speed = (length of platform +length of train)/speed of train
$=\frac{200+100}{20}=\frac{300}{20}=15 \mathrm{~s}$
90. Ans. A.

	SHEKHAR	BHAVYA
Ratio of Distance	2	1
Ratio of time	1	2
Ratio of speed	$2 / 1$	$1 / 2$

Speed of Bhavya:Speed of Shekhar $=1 / 2: 2 / 1=1: 4$
91. Ans. B.
let the total distance be $x \mathrm{~km}$.

$$
\begin{aligned}
& \text { Total time }=\frac{\frac{x}{3}}{20}+\frac{\frac{x}{4}}{30}+\frac{\frac{5 x}{12}}{50}=\frac{x}{60}+\frac{x}{120}+\frac{x}{120}=\frac{x}{30} \text { hours } \\
& \therefore \text { Average speed }=\frac{\text { total distance }}{\text { total time }}=\frac{x}{\frac{x}{30}}=30 \mathrm{kmph}
\end{aligned}
$$

Option B is correct.
92. Ans. D.

34 | Page

Let required distance of office from house $=x \mathrm{~km}$.
Time $=\frac{\text { Distance }}{\text { speed }}$
According to the question -
$\frac{x}{6}-\frac{x}{7}=\frac{(5+1)}{60}=\frac{6}{60}$
$\Rightarrow \frac{7 x-6 x}{42}=\frac{1}{10}$
$\Rightarrow x=4.2 \mathrm{~km}$
Option D is correct.
93. Ans. C.

Time $=18$ minutes $=\frac{18}{60}$ hour $=\frac{3}{10}$ hour

$$
\text { Speed of train }=\frac{30}{\frac{3}{10}}=100 \mathrm{kmph}
$$

New speed $=100-10=90 \mathrm{kmph}$

$$
\therefore \text { Required time }=\frac{\text { Distance }}{\text { speed }}=\frac{30}{90}=\frac{1}{3} \text { hour }
$$

$$
=\left(\frac{1}{3} \times 60\right) \text { minutes }=20 \text { minutes }
$$

Option C is correct.
94. Ans. B.

Let the required distance be xkm .
$x / 9+x / 5=5$
35 \| Page

$5 x+9 x=5 \times 45$
$14 x=5 \times 45 x=(5 \times 45) / 14 x=16.07 k m$
So, the correct response is Option B.
95. Ans. B.

Let the total journey be $x \mathrm{~km}$, then
$3 x / 20+6 x / 15+9=x$
$\Rightarrow 9 x+24 x+540=60 x$
$\Rightarrow>33 x-60 x=-540$
$\Rightarrow 27 x=540$
$\Rightarrow>x=20 \mathrm{~km}$

Option B is correct.
96. Ans. C.

Relative speed $=(45.5 / 25) * 60=109.2 \mathrm{kmph}$
Speed of car $P=109.2-55=54.2 \mathrm{kmph}$
Option C is correct.
97. Ans. D.

Originally, let there be X men.
Now, more men: less days
$(x+7): x:: 45: 36$
So,
$\frac{x+7}{x}: \frac{45}{36}=\frac{5}{4}$

36 | Page

$4 x+28=5 x$
$x=28$
Option D is correct.
98. Ans. B.

Time taken by Tasha in doing 1 work = 25 days Neha is 25% more efficient than Tasha.
Time taken by Neha $=\frac{100}{125} \times 25=4 \times 5=20$ days.

Option B is correct.
99. Ans. D.

Work done by A in 3 days $=1 / 18 * 3=1 / 6$
Remaining work $=[1-1 / 6]=5 / 6$
$(A+B)$'s 1 days' work $=[1 / 18+1 / 12]=(2+3) / 36=5 / 36$

Now, $5 / 36$ part of work done by both in 1 day. So, $5 / 6$ will be done by them in $[36 / 5 * 5 / 6]=6$
days
Hence, total time taken $=6+3=9$ days.
Option d is correct.
100. Ans. A.
$P+Q=80 \%$
$Q+R=40 \%$
$[P+Q+Q+R-(P+Q+R)=Q]$
$80+40-100=Q$
$Q=20 \%$

37 | Page

$P=80-20=60 \%$
$R=40-20=20 \%$
Hence, P is most efficient.
Option A is correct.
101. Ans. D.

Let time taken by son be x hours.
\therefore father's nd son's 1 day's work $=\frac{1}{25}+\frac{1}{x} * \frac{1}{25}+\frac{1}{x}=\frac{1}{20}$
$\Rightarrow \frac{1}{x}=\frac{1}{20}-\frac{1}{25}$
$\Rightarrow \frac{1}{x}=\frac{5-4}{100}$
$\Rightarrow x=100$ hours
Option D is correct.
102. Ans. C.

Cats Rats Days

$$
\begin{aligned}
& \left.\begin{array}{c}
\therefore 5: 80 \\
80: 5
\end{array}\right\}: 80: x \\
& \Rightarrow 5 \times 80 \times x=80 \times 80 \times 5 \\
& \Rightarrow x=\frac{80 \times 80 \times 5}{80 \times 5} \\
& \Rightarrow x=80 \text { days }
\end{aligned}
$$

Option C is correct.
103. Ans. C.
$(X+Y)$'s 1 day's work $=1 / 15$
Z's 1 day's work = 1/60
$(X+Y+Z)$'s 1 day's work $=[1 / 15+1 / 60]=5 / 60=1 / 12$---(i)
X's 1 day's work = (Y + Z)'s 1 day's work ---- (ii)
From (i) and (ii), we get
$2 \times(X$'s 1 day's work $)=1 / 12$

X's 1 day's work = 1/24
Y's 1 day's work $=[1 / 15-1 / 24]=(8-5) / 120=3 / 120=1 / 40$
So, Y alone could do the work in 40 days.
Option C is correct.
104. Ans. A.

1 man's 1 day's work = 1/112
14 men's 4 day's work $=(14 / 112) * 4=4 / 8=1 / 2$
Remaining work $=[1-1 / 2]=1 / 216$ men's 1 day's work $=16 / 112=$
1/7
$1 / 7$ work is done by them in 1 day.
So, $1 / 2$ work is done by them in $(7 \times 1 / 2)=31 / 2$ day
Option A is correct response.
105. Ans. C.

B's daily earning $=$ Rs. $(720-432)=$ Rs. 288

39 | Page

A's daily earning $=$ Rs. $(720-388)=$ Rs. 332
C's daily earning $=[720-(288+332)]=720-620=$ Rs. 100
Option C is correct.
106. Ans. B.

$$
\begin{aligned}
\frac{M_{1} D_{1} T_{1}}{W_{1}}= & \frac{M_{2} D_{2} T_{2}}{W_{2}} \\
& \Rightarrow \frac{90 \times 18 \times 11}{1}=\frac{75 \times 24 \times 9}{W_{2}} \\
& \Rightarrow W_{2}=\frac{75 \times 24 \times 9}{90 \times 18 \times 11}=\frac{10}{11} \text { parts }
\end{aligned}
$$

Option B is correct.
107. Ans. A.
A^{\prime} s 1 days ${ }^{\prime}$ work $=\frac{1}{4}$
$B^{\prime} s 1$ days ${ }^{\prime}$ work $=\frac{1}{12}$

$$
(A+B)^{\prime} \text { s } 1 \text { days }^{\prime} \text { work }=\frac{1}{4}+\frac{1}{12}=\frac{3+1}{12}=\frac{4}{12}=\frac{1}{3}
$$

$(A+B)^{r} s 2$ days r work $=\frac{2}{3}$

$$
\begin{aligned}
& \text { Remaining work }=1-\frac{2}{3}=\frac{1}{3} \\
& \quad \therefore \text { total required number of days }=\frac{1}{3} \times \frac{12}{1}+2=4+2=6 \text { days }
\end{aligned}
$$

Option A is the correct response.
108. Ans. A.

40 \| Page

Speed of train $=(54 \times 5) / 18=15 \mathrm{~m} / \mathrm{s}$
Length of train $=15 \times 16=240 \mathrm{~m}$ Required time $=(240+75) / 15=21 \mathrm{~s}$

Option A is correct.
109. Ans. A.

Speed of truck $=240 \mathrm{~m} / \mathrm{min}$.

$$
\begin{aligned}
& \text { Speed of bus }=\frac{30000}{35}=\frac{6000}{7} \mathrm{~m} / \mathrm{min} . \\
& \text { Required Ratio }=240: \frac{6000}{7}=1: \frac{25}{7}=7: 25
\end{aligned}
$$

Option A is correct.
110. Ans. C.

Since man walks at ${ }^{\frac{4}{5}}$ of actual speed, time taken will be ${ }^{\frac{5}{4}}$ of usual time. ${ }^{\frac{5}{4}}$ of usual time $=$ usual time +1 hour $\frac{5}{4}$
$\left({ }^{-}-1\right)$ of usual time $=1$
Usual time $=4$ hours
Option C is correct.

41 | Page

