Study Notes on Quantum Operators and Functions

QUANTUM OPERATORS \& FUNCTIONS

OPERATORS

An operator is a symbol which is used to express mathematical calculations / procedures / commands in which one function changes to another one.

Operator (Function) = New Function

Algebra of Operators

1. Addition and Subtraction of Operators: If \hat{A} and \hat{B} are two different operators and $f(x)$ is the function, then,

$$
\begin{aligned}
& (\hat{A}+\hat{B}) f(x)=\hat{A} f(x)+\hat{B} f(x) \\
& (\hat{A}-\hat{B}) f(x)=\hat{A} f(x)+\hat{B} f(x)
\end{aligned}
$$

2. Multiplication of Operators: If \hat{A} and \hat{B} are two different operators and $f(x)$ is the function, then order of the operation is very important and it can be represented as:

$$
\left.\hat{A} \hat{B}[f(x)]=\hat{A}[\hat{B} f(x)]=\hat{A}\left[f^{\prime}(x)\right]=f^{\prime \prime}(x) \quad \text { (Here, } \hat{B} f(x)=f^{\prime}(x)\right)
$$

The first operator \hat{B} operates on function $f(x)$ which produces $f^{\prime}(x)$ and then operator \hat{A} operates on function $f^{\prime}(x)$ which produces $f^{\prime \prime}(x)$.
3. Commutative Property: If two operators are such that the result of their successive applications remains same irrespective of the order of operations, then the two operators are said to be commutative.

If, $\hat{A} \hat{B} f[(x)]=\hat{B} \hat{A} f^{\prime}[(x)]$, then the two operators \hat{A} and \hat{B} commute with each other i.e., the normal product of two operators is equal to their product in reverse order.

The expression $[\hat{A} \hat{B}-\hat{B} \hat{A}]$ is called commutator and is represented as $[\hat{A} \cdot \hat{B}]$.
Commutator $=[\hat{A} \cdot \hat{B}]=\hat{A} \hat{B}[f(x)]-\hat{B} \hat{A}[f(x)]$
If the two operators commute with one another, then the value of commutator is zero, i.e.,

$$
[\hat{A} \cdot \hat{B}]=\hat{A} \hat{B}[f(x)]-\hat{B} \hat{A}[f(x)]=0
$$

Significance of Commutation: If the two operators commute, then expression will be as follows:

$$
[\hat{A} \cdot \hat{B}]=\hat{A} \hat{B}[f(x)]-\hat{B} \hat{A}[f(x)]=0
$$

If the two operators do not commute, then,

$$
[\hat{A} \cdot \hat{B}]=\hat{A} \hat{B}[f(x)]-\hat{B} \hat{A}[f(x)] \neq 0
$$

Eigen Function, Eigen Value and Eigen value Equation: If an operator \hat{A} operates on a well-behaved function $f(x)$, and gives the same function multiplied by a constant. Then, the function $f(x)$ is called the eigen function and the constant is called the eigen value of the operator. The equation formed is called as Eigen Value Equation i.e.,

$$
\frac{d}{d x}\left(e_{\substack{\text { eigen } \\ \text { function }}}^{a x}\right)=a e_{\substack{\text { eigen } \\ \text { value }}}^{a x}
$$

Some of the Common Operators used in Quantum Mechanics:

1. Laplacian Operator $\left(\nabla^{2}\right)$: It is an important differential operator used in quantum mechanics and it can be represented as:

$$
\nabla=\hat{i} \frac{\partial}{\partial \mathrm{x}}+\hat{j} \frac{\partial}{\partial \mathrm{y}}+\hat{k} \frac{\partial}{\partial \mathrm{z}}
$$

Here, $\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ are unit vectors along x, y and z axes respectively.

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \quad(\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1)
$$

2. Momentum Operator (\hat{p}) :

$$
\hat{p}_{x}=\frac{h}{2 \pi i} \frac{\partial}{\partial x}=\frac{\hbar}{i} \frac{\partial}{\partial x}=-i \hbar \frac{\partial}{\partial x} \quad\left(\text { Here, } \hbar=\frac{h}{2 \pi}\right)
$$

$$
\begin{array}{ll}
\text { Similarly, } & \hat{p}_{y}=\frac{h}{2 \pi i} \frac{\partial}{\partial y}=\frac{\hbar}{i} \frac{\partial}{\partial y}=-i \hbar \frac{\partial}{\partial y} \\
\hat{p}_{z}=\frac{h}{2 \pi i} \frac{\partial}{\partial z}=\frac{\hbar}{i} \frac{\partial}{\partial z}=-i \hbar \frac{\partial}{\partial z}
\end{array}
$$

3. Square of Momentum Operator $\left(\hat{p}^{2}\right):$

$$
\begin{aligned}
& \hat{p}_{\mathrm{x}}^{2}=\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \quad\left(i \times i=i^{2}=-1\right) \\
& \hat{p}_{\mathrm{y}}^{2}=\left(\frac{\hbar}{i} \frac{\partial}{\partial y}\right)\left(\frac{\hbar}{i} \frac{\partial}{\partial y}\right)=-\hbar^{2} \frac{\partial^{2}}{\partial y^{2}} \\
& \hat{p}_{\mathrm{z}}^{2}=\left(\frac{\hbar}{i} \frac{\partial}{\partial z}\right)\left(\frac{\hbar}{i} \frac{\partial}{\partial z}\right)=-\hbar^{2} \frac{\partial^{2}}{\partial z^{2}}
\end{aligned}
$$

4. Angular Momentum Operator (\hat{L}) : Angular momentum is given by the vector product of position (\vec{r}) and their linear momentum (\vec{p}).
$\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$
$\vec{p}=p_{x} \hat{i}+p_{y} \hat{j}+p_{z} \hat{k}$
Here, \hat{i}, \hat{j} and \hat{k} are unit vectors along x, y and z axes respectively.
Now,

$$
\begin{align*}
& \vec{L}=\vec{r} \times \vec{p} \\
& \vec{L}=(x \hat{i}+y \hat{j}+z \hat{k}) \times\left(p_{x} \hat{i}+p_{y} \hat{j}+p_{z} \hat{k}\right) \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right| \\
& \vec{L}=\hat{i}\left(y p_{z}-z p_{y}\right)-\hat{j}\left(x p_{z}-z p_{x}\right)+\hat{k}\left(x p_{y}-y p_{x}\right) \\
& \vec{L}=\hat{i}\left(y p_{z}-z p_{y}\right)+\hat{j}\left(z p_{x}-x p_{z}\right)+\hat{k}\left(x p_{y}-y p_{x}\right) \tag{3.13}
\end{align*}
$$

Also, by definition
By definition

$$
\vec{L}=L_{x} \hat{i}+L_{y} \hat{j}+L_{z} \hat{k}
$$

5. Kinetic Energy Operator $(\hat{\mathrm{T}})$:

$$
\begin{aligned}
& \hat{T}=-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \\
& \hat{T}=-\frac{\hbar^{2}}{2 m} \nabla^{2}
\end{aligned}
$$

6. Hamiltonian Operator (\hat{H}) : The total energy of a system is the sum of kinetic and potential energies. The operator which corresponds to the total energy is called Hamiltonian operator (\hat{H})

Total energy of a system containing a particle of mass ' m ' is given as:
$E=$ K.E. + P.E.
$\hat{H}=\hat{T}+\hat{V}$
$\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x, y, z)$
In quantum mechanics we deal with only Linear Hermitian Operators:

1. Linear Operators: If it is applied on the sum of two functions, then the result is equal to the sum of the operations on the two functions separately.

Let operator \hat{A} operates on two functions of f and g , then,

$$
\hat{A}[f+g]=\hat{A} f+\hat{A} g
$$

2. Hermitian Operators: Suppose ψ and ϕ are the two eigen functions of the operators \hat{A} and if $\int_{-\infty}^{+\infty} \Psi^{*}(\hat{A} \phi) \mathrm{d} \tau=\int_{-\infty}^{+\infty} \phi(\hat{A} \psi)^{*} \mathrm{~d} \tau$
then the operator \hat{A} is called Hermitian operator.
Two properties of Hermitian Operator are:
(i) Eigen Values of Hermitian Operators are Real (Positive or Negative).
(ii) Eigen Functions of a Hermitian Operator Corresponding to different Eigen values are Orthogonal.

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

CSIR NET General Aptitude Course 2021

Complete Study Plan to Boost the CSIR NET Score What to Expect?

```
- Live Classes
- Quizzes
Doubt Sessions
- PYQ Discussion
Course Language
- Bilingual
```

This Course Includes

$80+$
Live Classes
Study Notes \&
Formula Sheets

$1000+$
Practice Questions
$10+$
Mock Tests

CSIR NET Life Science 2021 Crash Gourse

Revision Plan to clear the exam
What to Expect?

- Live Classes -
- Quizzes ©
- Doubt Sessions
- PYQDiscussion *

Course Language

- English

This Course Includes

CSIR NET Chemical Science 2021 Grash Gourse

Complete Revision Plan to ACE the Exam
What to Expect?

```
- Live Classes Mock Tests
- Quizzes - Chapter-wise Tests
- Doubt Sessions - Revision Tests
- PYQDiscussion Expert faculty
```

Course Language
English

This Course Includes

$180+$
Live Classes
$200+$
Study PDFs

$3000+$
Practice Questions
$10+$
Mock Tests

