Important Questions on Nuclear Chemistry

Important Questions on Nuclear Chemistry

1. The correct order of penetrating power of the following rays is:
A. $\gamma>\beta>a$
B. $\beta>a>\gamma$
C. $a>\beta>\gamma$
D. $\beta>\gamma>a$
2. Identify the pair of isotones from the options given below.
A. ${ }_{1} \mathrm{H},{ }^{3}{ }_{2} \mathrm{He}$
B. ${ }^{15} \mathrm{~N},{ }^{14}{ }_{6} \mathrm{C}$
C. ${ }^{14}{ }_{6} \mathrm{C},{ }^{14}{ }_{7} \mathrm{~N}$
D. ${ }_{1} \mathrm{H},{ }^{15}{ }_{8} \mathrm{O}$
3. Which of the following properties differs in nuclear isomers?
A. Neutron excess
B. Neutron
C. Protons
D. Nuclear energy states
4. What will be the charge and mass no. of antineutrino particles respectively?
A. 1,0
B. 0,0
C. 1,1
D. $-1,0$
5. What will be the binding energy per nucleon (in Mev) for ${ }^{2}{ }_{1} \mathrm{H}$ (Atomic mass $=$ 2.0141amu)?

Mass of neutron $=1.0076 \mathrm{amu}$
Mass of proton $=1.0089 \mathrm{amu}$
Mass of electron $=5.45 \times 10^{-4} \mathrm{amu}$
A. 1.15 Mev
B. 1.20 Mev
C. 1.43 Mev
D. 1.12 Mev
6. ${ }^{214} \mathrm{Bi}_{83}$ undergoes alpha emission and forms A . A further undergoes two consecutive beta emission and forms D. Which of the following is the product of reaction?
A. ${ }^{210} \mathrm{D}_{81}$
B. ${ }^{212} \mathrm{D}_{83}$
C. ${ }^{210} \mathrm{D}_{80}$
D. ${ }^{210} \mathrm{D}_{83}$
7. What will be the product of the reaction: ${ }^{225} \mathrm{~A}_{100}(\mathrm{a}, 2 \mathrm{n})$.
A. ${ }^{227} \mathrm{M}_{102}$
B. ${ }^{229} \mathrm{M}_{100}$
C. ${ }^{229} \mathrm{M}_{102}$
D. ${ }^{227} \mathrm{M}_{100}$
8. ${ }^{237} \mathrm{~Np}_{93}$ is a stable isotope, so ${ }^{235} \mathrm{~Np}_{93}$ is expected to undergo \qquad emission.
A. Beta
B. Alpha
C. Gamma
D. Positron
9. Ratio of $t_{1 / 2} / t_{a v}$ for a nuclear reaction is:
A. 2
B. $1 / 2$
C. 1/0.693
D. 0.693
10. The half-life of ${ }^{237} \mathrm{~Np}_{93}$ is 4.5×10^{9} year. What will be the activity of 1 g sample of ${ }^{237} \mathrm{~Np}_{93}$?
A. $3.91 \times 10^{-12} \mathrm{~Bq}$
B. $3.91 \times 10^{9} \mathrm{~Bq}$
C. $1.24 \times 10^{4} \mathrm{~Bq}$
D. $1.24 \times 10^{9} \mathrm{~Bq}$

Answer Key:

1. A
2. B
3. D
4. B
5. D
6. D
7. A
8. D
9. D
10. C

Solutions:

Solution 1: The correct order of penetrating power of the rays is:
$\gamma>\beta>a$ and this order is experimentally determined.
Solution 2: Isotones are those species which have the same no. of neutrons.
No. of neutrons (n) = A (Mass No.) -Z (At. No.)
In ${ }^{3} H,(n)=3-1=2$
${ }^{3}{ }_{2} \mathrm{He},(n)=3-2=1$
${ }^{15}{ }_{7} \mathrm{~N},(\mathrm{n})=15-7=8$
${ }_{14}{ }_{6} \mathrm{C},(\mathrm{n})=14-6=8$
${ }^{14}{ }_{7} \mathrm{~N},(\mathrm{n})=14-7=7$
${ }^{15}{ }_{8} \mathrm{O},(\mathrm{n})=15-8=7$
So, both ${ }^{15} \mathrm{~N},{ }^{14}{ }_{6} \mathrm{C}$ contain the same no. of neutrons, hence, they are a pair of isotones.

Solution 3: In nuclear isomers, we have the same no. of protons, same no. of electrons, neutrons and neutron excess is also the same, but energy levels contain different energies. An example is Co -58 . This species has a half-life of 17 days.

Solution 4: There are two types of particles which are emitted during the radioactive process, neutrino, and Antineutrino. These are mainly used to balance the nuclear reactions statistics, energy, and spins. The mass and charge of antineutrino is 0 and 0 respectively.

Solution 5: Mass defect $=(A-Z) m_{n}+Z m_{p}+Z m_{e}-M_{H}$
Since, the mass of the electron (m_{e}) is very less, it can be neglected.
Mass defect $=(2-1) \times 1.0076+1 \times 1.0089-2.0141=2.4 \times 10^{-3} \mathrm{amu}$
Nuclear Binding Energy (NBE) = mass defect \times 931.5 Mev
$\mathrm{NBE}=2.4 \times 10^{-3} \times 931.5=2.235 \mathrm{Mev}$
NBE per nucleon $=\frac{\text { NBE }}{\text { no. of nucleon }}=\frac{2.2356}{2}=1.12 \mathrm{Mev}$
Solution 6: ${ }^{214} \mathrm{Bi}_{83} \longrightarrow{ }^{\mathrm{x}} \mathrm{A}_{\mathrm{y}}+{ }_{2}^{4} \alpha$
On comparing,
$214=x+4$
$x=210$
$83=y+2$
$y=81$
So, ${ }^{210} \mathrm{~A}_{81}$ will be formed. This A further undergoes two beta emissions.
${ }^{210} \mathrm{~A}_{81} \longrightarrow{ }^{210} \mathrm{~B}_{82}+{ }_{-1} \beta^{0}$
${ }^{210} \mathrm{~B}_{82} \longrightarrow{ }^{210} \mathrm{D}_{83}+{ }_{-1} \beta^{0}$
Solution 7: ${ }^{225} \mathrm{~A}_{100}+{ }_{2}^{4} \alpha \longrightarrow{ }^{y} \mathrm{M}_{\mathrm{x}}+2\left({ }_{1}^{1} \mathrm{n}\right)$
On comparing both sides:
$225+4=y+2$
$Y=227$
$100+2=x=102$
So, the product of the overall reaction is ${ }^{227} \mathrm{M}_{102}$.
Solution 8: In ${ }^{237} \mathrm{~Np}_{93}$, no. of protons $(\mathrm{p})=$ no. of electrons $(\mathrm{e})=93$
No. of neutrons(n) $=237-93=144$

$$
n / p=144 / 93=1.55
$$

So, for a stable isomer, n / p should be 1.55 .
In ${ }^{235} \mathrm{~Np}_{93}, \mathrm{n}=235-93=142, \mathrm{e}=\mathrm{p}=93$
$n / p=142 / 93=1.53$
For this isomer, n / p ratio is less than that of stable isomers. To attain stability, it needs to increase its n / p ratio by converting p to n.
${ }_{1}^{1} \mathrm{p} \longrightarrow{ }_{0}^{1} \mathrm{n}+{ }_{1}^{0} \beta$.
During this process, positrons are emitted.
Solution 9: Half-life of the reaction $\left(\mathrm{t}_{1 / 2}\right)=0.693 / \lambda$

Average lifetime of a nuclear reaction $\left(\mathrm{tav}_{\mathrm{av}}\right)=1 / \lambda$
So,
$\mathrm{t}_{1 / 2} / \mathrm{t}_{\mathrm{av}}=0.693$
Solution 10: $\mathrm{t}_{1 / 2}=0.693 / \lambda=4.5 \times 10^{9}$ year
Here, $\lambda=$ disintegration constant
So, $\lambda=\frac{\left(0.693 \times 10^{-9}\right)}{(4.5 \times 365 \times 24 \times 60 \times 60)}$
No. of $\operatorname{moles}(\mathrm{n})=\mathrm{N} / \mathrm{N}_{\mathrm{A}}=$ given mass/ molar mass
Here, $\mathrm{N}_{\mathrm{A}}=$ Avogadro no.
$\frac{\mathrm{N}}{6.022 \times 10^{23}}=\frac{1}{237}$
$N=\frac{6.022 \times 10^{23}}{237}$
Activity $(A)=\lambda N$
$A=\frac{\left(0.693 \times 10^{-9} \times 6.022 \times 10^{23}\right)}{(4.5 \times 365 \times 24 \times 60 \times 60 \times 237)}$
$\mathrm{A}=1.24 \times 10^{4} \mathrm{~Bq}$
Here, $\mathrm{Bq}=$ becquerel $=1$ disintegration per second.

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

CSIR NET Life Science 2021 Crash Course

Revision Plan to clear the exam
What to Expect?

- Live Classes -
- Quizzes -
- Doubt Sessions •
- PYQ Discussion -

Course Language

- English

This Course Includes

200+
Live Classes
200+
Study PDFs

3000+
Practice Questions
10+
Mock Tests

CSIR NET General Aptitude Course 2021

Complete Study Plan to Boost the CSIR NET Score What to Expect?

- Live Classes
- Mock Tests
- Quizzes
- Chapter-wise Tests
- Doubt Sessions
- Revision Tests
- PYQ Discussion
- Expert faculty

Course Language

- Bilingual

This Course Includes

80+
Live Classes
Study Notes \&
Formula Sheets

1000+
Practice Questions
$10+$
Mock Tests

CSIR NET Chemical Science 2021 Crash Course

Complete Revision Plan to ACE the Exam
What to Expect?

- Live Classes
- Mock Tests
- Quizzes
- Doubt Sessions
- Chapter-wise Tests
- Revision Tests
- Expert faculty

Course Language

- English

This Course Includes

$180+$
Live Classes
200 +
Study PDFs

