Important Questions on Group Theory

Important Questions on Group Theory

1. Which of the following is not the symmetry element that is not present in CH_{4} ?
A. S_{4}
B. C_{2}
C. σ_{d}
D. C_{4}
2. What is the point group of $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. $\mathrm{C}_{2 \mathrm{v}}$
B. C_{3}
C. $\mathrm{C}_{3 \mathrm{~h}}$
D. C_{2}
3. Identify the Mulliken notation of the following irreducible representation.

E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}(y z)$
1	1	-1	-1

A. A_{1}
B. A_{2}
C. $\mathrm{B}_{2}{ }^{\prime}$
D. $\mathrm{A}_{1}{ }^{\prime \prime}$
4. No. of C_{2} axis in SiCl_{4} are \qquad
A. 2
B. 0
C. 3
D. 6
5. Point group of trans $\mathrm{N}_{2} \mathrm{~F}_{2}$ is:
A. $\mathrm{C}_{2 \mathrm{~h}}$
B. $\mathrm{C}_{2 \mathrm{v}}$
C. $D_{2 h}$
D. None of above
6. The character of S_{6} is:
A. 0
B. 2
C. 1
D. -1
7. The pair of non-polar point group is:
A. $\mathrm{C}_{2 \mathrm{~h}}, \mathrm{C}_{\mathrm{i}}$
B. $C_{3}, D_{4 d}$
C. $C_{1}, C_{3 v}$
D. S_{4}, D_{4}
8. What will be the final operation of $C_{2}(x) \cdot C_{2}(y) \cdot C_{2}(z) \cdot \sigma_{x z}$?
A. $C_{2}(z)$
B. $\sigma_{x z}$
C. $\mathrm{C}_{4}(\mathrm{z})$
D. I
9. For $\mathrm{H}_{2} \mathrm{O}$, the electronic transition from ground state to B_{2} symmetry is:

$C_{2 v}$	E	C_{2}	σ_{v}	$\sigma_{v^{\prime}}$	
A_{1}	1	1	1	1	Z, x^{2}, x^{2} $-y^{2}$
A_{2}	1	1	-1	-1	$X y$
B_{1}	1	-1	1	-1	$X z, x$
B_{2}	1	-1	-1	1	$Y, y z$

A. Not allowed
B. Allowed with x polarisation
C. Allowed with y polarisation
D. Allowed with z polarisation
10. Phosphorus pentachloride, PCl_{5} is a trigonal bipyramidal molecule. To what point group does it belong?
A. $D_{3 v}$
B. $D_{3 h}$
C. $\mathrm{C}_{3 \mathrm{~h}}$
D. $D_{5 h}$

Answer Key:

1. D
2. D
3. B
4. C
5. A
6. A
7. C
8. B
9. C
10. B

Solutions:

Solution 1: The point group of CH_{4} is tetrahedral.
The symmetry elements present in this are: $\mathrm{E}, 4 \mathrm{C}_{3}, 3 \mathrm{C}_{2}, 6 \sigma_{\mathrm{d}}, 3 \mathrm{~S}_{4}$.

According to the above representation, C_{4} is not present in methane.
Solution 2: In this question, the form in which $\mathrm{H}_{2} \mathrm{O}_{2}$ exists is not given. In general, we take its gauche or open book form.

It has only C_{2} axis and E symmetry operation. According to this, its point group is C_{2}.

Solution 3: For Mulliken notation, we need to see the character below the symmetry operation of a given point group. In the given table, it is symmetric w.r.t E, so, A. Since the subsidiary axis is absent, we will check the molecular plane (xz), it is antisymmetric to that, so, it will be A_{2}. Further there is no horizontal plane present due to which 'or ' will not be applied.

Solution 4: SiCl_{4} is a tetrahedral molecule, just like CH_{4}.

As shown in the above figure, there are $3 \mathrm{C}_{2}$ axes present in this which is passing through all the pair of opposite faces of SiCl_{4}.

Solution 5: The structure of trans $-\mathrm{N}_{2} \mathrm{~F}_{2}$ is given below as:

It has one C_{2} axis perpendicular to the plane of paper. This is the only axis present in the molecule. There is no other C_{2} axis present in the molecule. Also, it has a molecular plane which is also its horizontal plane. Based on symmetry operation, the molecule has a $\mathrm{C}_{2 h}$ point group.
Solution 6: $\mathrm{S}_{\mathrm{n}}: \cos \theta-\sin \theta 0$
$\sin \theta \cos \theta 0$
0-1
The character of any matrix is the sum of its diagonal elements.
Character of $\mathrm{S}_{\mathrm{n}}(\mathrm{z})=2 \cos \theta-1$
For $S_{6,} \theta=\frac{360}{6}=60^{\circ}$
$\cos 60^{\circ}=\frac{1}{2}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Character of $S_{6}(z)=2 \cos 60^{\circ}-1=0$
Solution 7: Polar molecules are those which do not have a plane of symmetry in the molecule. C_{i} has a centre of inversion so, molecule is nonpolar. $\mathrm{C}_{2 \mathrm{~h}}$ molecule has a perpendicular plane of symmetry so it is also nonpolar. In general, all the molecules which have a C_{n} point group except $C_{i}, C_{n h}$ are polar.

Solution 8: For the application of product of operations on Cartesian coordinates, we start applying from right side operations one by one.

$$
\begin{aligned}
& \sigma_{x z}(x, y, z)=(x,-y, z) \\
& C_{2}(z) \cdot(x,-y, z)=(-x, y, z) \\
& C_{2}(y) \cdot(-x, y, z)=(x, y,-z) \\
& C_{2}(x) \cdot(x, y,-z)=(x,-y, z)
\end{aligned}
$$

The final result of the product of symmetry operation on (x, y, z) will be ($x,-y, z$) which can be directly obtained by $\sigma_{x z}$.

Solution 9: Ground state is the most symmetric state so A_{1} is the ground state.

E	C_{2}	σ_{v}	$\sigma_{v^{\prime}}$
1	-1	-1	1

Direct product: $\mathrm{A}_{1}><\mathrm{B}_{2}$

This direct product resembles the B_{2}, so, this transition is Y polarised.
Solution 10: PCl_{5} has trigonal bipyramidal molecular geometry and it contains a C_{3} main rotation axis and 3 perpendicular C_{2} axes. There are $3 \sigma_{v}$ planes and a σ_{h} plane. Hence PCl_{5} belongs to the $\mathrm{D}_{3 \mathrm{~h}}$ point group.

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

