

Target UPPCS 2021 Science

Short Notes for Quick Revision

जीव विज्ञान

विटामिन:

- सामान्य चयापचय को बनाए रखने के लिए आहार में न्यूनतम मात्रा में आवश्यक कार्बनिक यौगिक को 'विटामिन' के रूप में जाना जाता है।
- कई विटामिन एंजाइम में परिवर्तित हो जाते (या एंजाइम की भांति कार्य करते हैं) हैं; वे न तो ऊर्जा प्रदान करते हैं और न ही ऊतकों में शामिल होते हैं।
- ये शरीर में जैव-रासायनिक प्रक्रियाओं को भी नियंत्रित करते हैं।

विटामिन को दो समूहों में वर्गीकृत किया जाता है

- 1. वसा में घुलनशील विटामिन (A, D, E, K)। ये यकृत कोशिकाओं में समृद्ध हैं।
- 2. पानी में घुलनशील विटामिन (C, B-कॉम्प्लेक्स)। ये कोशिकाओं में बहुत कम मात्रा में मौजूद होते हैं। वसा में घुलनशील विटामिन:

विटामिन A:

- विटामिन ए को रेटिनॉल के रूप में भी जाना जाता है।
- विटामिन A की कमी से होने वाले रोग: रतौंधी, आँखों में लालिमा (एक्सोफ्थेल्मिया), लैक्रिअम ग्रंथियों का अध: पतन। विटामिन B:
 - विटामिन डी को 'कैल्सीफेरॉल' के रूप में भी जाना जाता है।
 - कमी से होने वाले रोग: बच्चों में रिकेट्स, वयस्कों में ओस्टियोमलेशिया।

<u>विटामिन E:</u>

- विटामिन ई को 'टोकोफेरॉल' के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: बाँझपन पोषण संबंधी नाभिकीय डिस्ट्रोफी, हृदय की मांसपेशियों में न्यूरोसिस।

विटामिन K:

- विटामिन के को 'एंटी हेमोरेजिक' के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: रक्त जमावट को रोका जाता है, निरंतर रक्तस्राव होता है।

पानी में घुलनशील विटामिन:

विटामिन 'B कॉम्प्लेक्स': विटामिन B कॉम्प्लेक्स B1, B2, B3, B5, B6, B7, B9, एवं B12 का मिश्रण है।

विटामिन B 1:

- विटामिन B 1 को थियामिन के नाम से भी जाना जाता है।
- कमी से होने वाले रोग: बेरी बेरी रोग जो पैरों को प्रभावित करता है।

<u>विटामिन B 2:</u>

- विटामिन बी 2 को राइबोफ्लेविन के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: जीभ का गहरा लाल रंग होना, जिल्द की सूजन, मुंह और होठों के कोनों पर चीलोसिस होता है। विटामिन B 3:
 - विटामिन बी 3 को पेंटोथेनिक के अम्ल के नाम से भी जाना जाता है।
 - कमी से होने वाले रोग: पैरों की जलन।

विटामिन B 5:

- विटामिन B 5 को निकोटिनिक एसिड / नियासिन के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: पेलाग्रा, जिल्द की सूजन, दस्त।

विटामिन в 6:

- विटामिन B 6 को पाइरिडोक्सीन के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: जिल्द की सूजन और आक्षेप।

विटामिन B 7:

- विटामिन B 7 को बायोटिन (विटामिन H के रूप में भी माना जाता है) के रूप में जाना जाता है।
- कमी से होने वाले रोग: जिल्द की सूजन, रक्त में कोलेस्ट्रॉल बढ़ जाना, बालों का गिरना और लकवा होना।

विटामिन B 9:

- विटामिन B 9 को फोलिक एसिड के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: एनीमिया, जीभ की सूजन, गैस्ट्रो आंत्र विकार।

विटामिन B 12:

- विटामिन B 12 को 'सिनोकोबाल एमाइन' के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: तीव्र एनीमिया, हाइपरग्लाइसेमिया।

विटामिन C:

- विटामिन C को एस्कॉर्बिक एसिड के रूप में भी जाना जाता है।
- कमी से होने वाले रोग: स्कर्वी, घाव भरने में विलंभ होना।

कवक दवारा उत्पन्न मानव रोग: -

- मिक्रोस्पोरम के कारण होने वाला दाद, लावारिस बिल्लियों एवं कुत्तों या संक्रमित व्यक्तियों द्वारा ट्राइकोफाइटन का प्रसार।
- एथलीट फुट खराब पैर की स्वच्छता के कारण ट्राइकोफाइटन के कारण होता है, जहां त्वचा लंबे समय तक गर्म और नम रहती है, इसके कारण कवक में वृद्धि होती है, त्वचा की मृत बाहरी परत पर आक्रमण करता है।

वायरस द्वारा उत्पन्न मानव रोग

- चेचक- यह वैरियोला वायरस द्वारा प्रत्यक्ष संपर्क (बूंदों), संक्रमित वस्तुओं द्वारा अप्रत्यक्ष रूप से फैलता है।
- चिकन पॉक्स वैरिकेला वायरस के कारण सीधे संपर्क (बूंदों) द्वारा संक्रमित वस्तुओं द्वारा अप्रत्यक्ष रूप से फैलता है।
- सामान्य जुखाम (Common Cold) राइनोवायरस के संपर्क में आने के कारण होता है।
- इन्फ्लुएंजा / फ्लू, प्रत्यक्ष संपर्क (बूंदों) द्वारा ओर्थीमिक्सोवायरस के कारण होता है, यह संक्रमित व्यक्तियों के श्वसन तंत्र से निर्वहन के माध्यम से फैलता है।
- कन्फ़ेड मम्प्स वायरस के प्रत्यक्ष संपर्क, लार में वायरस और नाक पर हमला लार ग्रंथियों के स्नाव से मम्प्स वायरस
 की वजह सेसे।
- कुछ घरेलू पशुओं में एन्सेफलाइटिस वायरस (अर्बोवायरस) के प्रसार द्वारा वायरल एन्सेफलाइटिस फैलता है, साथ ही यह मच्छर के काटने से भी मनुष्य में फैलता है

- पोलियोमाइलाइटिस पोलियोवायरस के संपर्क में आने के कारण फैलता है, इसके स्त्रोत हाउसफ्लाइज, पिस्सू, संक्रमित भोजन और पानी हैं।
- रेबीज (जलांतक) एक पागल क्ते के काटने द्वारा रेबीज वायरस (Rhabdovirus) से फैलता है
- डेंगू बुखार या ब्रेकबोन बुखार मच्छर (एडीज) काटने से डेंगू वायरस (arbovirus) की वजह से फैलता है।
- मानव में टी सेल के कारण एक्वायर्ड इम्म्नोडेफिशियेंसी इम्यूनोसिंड्रोम (एड्स)
- लेनिकिमिया वायरस (HTLVIII) को LAV (रेट्रोवायरस) भी कहा जाता है, यह रक्त और शुक्राणुओं द्वारा, समलैंगिकों, हेट्रोसेक्सुअल, अंतःशिरा ड्रग उपयोगकर्ताओं, हेमोफिलियाक्स, प्रोमेस व्यक्तियों और वेश्याओं के बीच फैलता है।

बैक्टीरिया के कारण मानव रोग

- स्ट्रेप्टोकोक्स के कारण गले में खराश होती है, इसमें बैक्टीरिया गले और नाक की झिल्ली को बूंदों और प्रत्यक्ष संपर्क से प्रभावित करता है।
- डिप्थीरिया बैक्टीरिया द्वारा प्रसारित अनियमित रॉड (सोरेनबैक्टेरियम डिप्थीरिया) के कारण होता है, जो श्वसन तंत्र को प्रत्यक्ष संपर्क, ड्रॉपलेट्स और दूषित खाद्य पदार्थों के माध्यम से संक्रमित होता है।
- न्यूमोनिया बैक्टीरिया द्वारा डिप्लोकॉकस निमोनिया होता है, श्वसन तंत्र में फैलता है, जिसमें छोटी बूंदों के संक्रमण से फेफड़े शामिल होते हैं।
- क्षय रोग बैक्टीरिया द्वारा अनियमित रॉड (माइकोबैक्टीरियम क्षयरोग) की वजह से होता है, और दूषित भोजन एवं
 दूध द्वारा फेफड़ों, हड्डियों और अन्य अंगों को प्रभावित करता है।
- प्लेग या ब्बोनिक रैट पिस्सू द्वारा शॉर्ट रॉड (यर्सिनिया पेस्टिस) के कारण फैलता है, यह रोग चूहे से मनुष्य में फैलता है।
- टेटनस या लॉकजॉ क्लोस्ट्रीडियम द्वारा मिट्टी में बैक्टीरिया की वजह से होता है, यह शरीर में घाव के माध्यम से प्रवेश करता है।
- टाइफाइड या एंटरिक फीवर साल्मोनेला टाइफी द्वारा प्रसारित होता है, इसके मुख्य कारण मक्खियाँ, संदूषित भोजन, पानी हैं।
- कॉलरा विब्रियो कॉलरा के कारण होता है, जब संक्रमित मिक्खयाँ एवं अन्य वाहक भोजन, मल, पानी को दूषित करते हैं।
- बेसिलरी मिक्खयों, भोजन, मल, पानी और वाहकों द्वारा छोटी छड़ (शिगेला पेचिश) के कारण होती है।
- काली खांसी छोटी छोटी रोड (हेमोफिलस पर्टुसिस) के कारण होती है, जब छींकने और खांसी के दौरान संक्रमित ड्रॉपलेट्स फैलती हैं।
- उपदंश स्पिरलशैप्ड ऑर्गैज़म (ट्रेपोनेमा पैलीडैम) के कारण होता है, जब संभोग के दौरान संक्रमित व्यक्ति के प्रत्यक्ष संपर्क में आते हैं।
- कुष्ठ माइकोबैक्टीरियम लेप्राई और संक्रमित व्यक्तियों के साथ लंबे समय तक निकट संपर्क के कारण होता है
- बोट्लिज्म क्लोस्ट्रीडियम बोट्लिनम के कारण होता है, इसमें एक जीव भोजन में जहर पैदा करता है।

प्रोटोजोआ दवारा जनित रोग

 एंटोम्बेबा हिस्टोलिटिका की वजह से अमीबिक पेचिश (अमीबायसिस) होता है, यह दूषित पेयजल, सब्जियों एवं भोजन में मौजूद कीटाणुओं द्वारा एक व्यक्ति से दूसरे व्यक्ति में संचारित होता है।

- डायरिया 'गिआरडियासीस' गिअर्डिया के कारण होता है, ह दूषित पेयजल, सब्जियों एवं भोजन में मौजूद कीटाणुओं द्वारा एक व्यक्ति से दूसरे व्यक्ति में संचारित होता है।
- मलेरिया प्लाज्मोडियम विवाक्स की वजह से होता है, यह एक संक्रमित मादा एनोफ़िलेज़ मच्छर के काटने से आदमी को प्रेषित होता है।
- स्लीपिंग सिकनेस (ट्रायपैनोसोमियासिस) ट्राइपेन्सोमा ब्रूसी के कारण होता है, जो ट्रिटिस मक्खी के काटने से फैलता है

जीव विज्ञान से संबंधित कुछ महत्वपूर्ण जानकारी और तथ्य

- 1. मेल्विन केल्विन को प्रकाश संश्लेषण पर किए गए अनुसंधान हेतु नोबेल पुरस्कार से सम्मानित किया गया
- 2. द्निया का सबसे बड़ा फूल रेफ्लेशिया है और सबसे छोटा वोल्फेशिया है।
- 3. पेनिसिलिन पेनिसिलियम नोटेटम से प्राप्त होता है।
- 4. उच्च रक्तचाप को कम करने के लिए 'सपेंटाइन' पौधे से प्राप्त रेज़पाइन का उपयोग किया जाता है।
- 5. पौधों, जो अम्लीय मिट्टी में रहते हैं, को ऑक्सालोफाइट्स कहा जाता है।
- 6. प्रकाश संश्लेषण सबसे अधिक सक्रिय नीले और लाल प्रकाश में होता है जिसमें प्रकाश ऊर्जा रासायनिक ऊर्जा में परिवर्तित हो जाती है।
- 7. सबसे छोटी हड्डी, स्टेप्स मनुष्य के कान में होती है।
- 8. एंजाइम मूल रूप से प्रोटीन होते हैं।
- 9. माइटोकॉन्ड्रिया को सेल का पावर हाउस' कहा जाता है
- 10. अग्न्याशय एक अंतःस्रावी औरदोनों है एक्सोक्राइन ग्रंथि।
- 11. 'O" रक्त समूह के व्यक्ति को यूनिवर्सल डोनर कहा जाता है, जबकि AB को यूनिवर्सल एक्सेप्टर कहा जाता है।
- 12. बीज रहित फल पार्थेनोजेनेसिस दवारा बनते हैं।
- 13. साधारण पौधे जिनमें कोई क्लोरोफिल नहीं होता है, उन्हें कवक कहा जाता है।
- 14. स्पाइरोग्रा को आमतौर पर 'पॉन्ड सिल्क' के रूप में जाना जाता है
- 15. सबसे लंबी मांसपेशी मानव शरीर में जाँघ में पाई जाती है।
- 16. एक पत्ती में, दो अग्र कोशिकाओं के बीच रंध्र होता है।
- 17. जिबरेलिन सेल बढ़ाव के लिएजिम्मेदार होते हैं।
- 18. रासायनिक क्लोरोफिलनाम कामैग्नीशियम डायहाइड्रो प्रोफिसिन है।
- 19. पित्त लीवर में उत्पन्न होता है और गॉल ब्लैडर में जमा होता है।
- 20. फुफ्फुसीय धमनी को छोड़कर सभी धमनियां ऑक्सीजन युक्त रक्त का संचार करती हैं।
- 21. म्ख्य कार्य WBC का एंटीबॉडी को उत्पादन करना है।
- 22. रेटिना आंख में कैमरे में फिल्म के रूप में कार्य करता है।
- 23. मानव आँसू में एक हल्का जीवाणुरोधी एजेंट होता है, जिसका नाम लाइसोजाइम है।
- 24. मानव शरीर में सबसे बड़ी हड्डी फीमर है।
- 25. विटामिन B 12 पौधों में लगभग कभी नहीं पाया जाता है।
- 26. एग्रोस्टोलॉजी घास का अध्ययन है।

- 27. फाइकोलॉजी एक शैवाल का अध्ययन है जबिक जीवाश्मों के अध्ययन को जीवाश्म विज्ञान कहा जाता है
- 28. हाइड्रोपोनिक्स के तहत मिट्टी का उपयोग किए बिना पौधों की खेती की जा सकती है।
- 29. पालको वनस्पति विज्ञान वनस्पति नमूने के जीवाश्म का अध्ययन है।
- 30. पेप्सिन और लैक्टोज एंजाइम पाचन तंत्र में प्रोटीन बढ़ाते हैं।
- 31. विटामिन बी और सी पानी में घुलनशील विटामिन हैं।
- 32. डीएनए अण् में एक रासायनिक परिवर्तन को उत्परिवर्तन कहा जाता है।
- 33. ग्लाइकोजन जानवरों में अल्पावधि खाद्य आरक्षित के रूप में कार्य करता है।
- 34. एस्ट्रोजन एक महिला सेक्स हार्मीन है।
- 35. एंजाइम एमाइलेज स्टार्च के पाचन में सहायता करता है।
- 36. एटीपी संश्लेषण माइटोकॉन्ड्रिया में होता है।
- 37. 70% मन्ष्य के शरीर के वजन का भाग पानी है।
- 38. आँख की गेंद को स्रक्षित रखने वाली कठोर पारदर्शी झिल्ली को कॉर्निया कहा जाता है।
- 39. कार्बोहाइड्रेट द्वारा मानव शरीर में ऊर्जा का उत्पादन किया जाता है।
- 40. चीनी प्रकाश संश्लेषण की अंधेरे प्रतिक्रियाओं का उत्पाद है।

वैज्ञानिक नियम और इनके सिद्धांत

- 1. आर्किमिडीज का सिद्धांत इसके अनुसार एक शरीर जब पूरी तरह से या आंशिक रूप से डूब जाता है, तब इसके द्वारा अपने भार के समक्ष जल को विस्थापित किया जाता है। इस प्रकार, शरीर अपने वजन का एक हिस्सा खो देता है।
- 2. आफ़बाउ का सिद्धांत यह बताता है कि एक निष्क्रिय परमाणु, इलेक्ट्रॉन न्यूनतम ऊर्जा वाले उपकक्षा में स्थित होते हैं।
- 3. एवोगैड्रो का नियम यह बताता है कि तापमान और दबाव की समान परिस्थितियों में सभी गैसों के अंतर्गत समान मात्रा में अण् होते हैं।
- 4. ब्राउनियन गति यह एक ज़िगज़ैग है, जोकि किसी तरल या गैस अणुओं द्वारा अनियमित बमबारी के कारण तरल या गैस में निलंबित होने पर छोटे ठोस कणों की अनियमित गति को प्रदर्शित करता है।
- 5. बर्नौली का सिद्धांत यह बताता है कि गतिमान द्रव, तरल या गैस की गति बढ़ने के साथ-साथ द्रव के भीतर दबाव कम होता जाता है। उदाहरण: एक हवाई जहाज के पंख पर वायुगतिकीय लिफ्ट भी इस सिद्धांत के तहत कार्य करते हैं।
- 6. बॉयलस लॉ यह बताता है कि तापमान स्थिर रहता है, गैस के दिए गए द्रव्यमान का आयतन गैस के दबाव के साथ भिन्न होता है। इस प्रकार, PV = K (स्थिर), जहां, P = दबाव और V = वॉल्यूम।
- 7. चार्ल्स का नियम यह बताता है कि दबाव स्थिर रहता है, गैस के दिए गए द्रव्यमान का आयतन बढ़ जाता है या इसकी मात्रा के 1/273 भाग से घटकर 0 डिग्री सेल्सियस पर प्रत्येक डिग्री सेल्सियस के तापमान में वृद्धि या इसके तापमान में गिरावट आती है।
- 8. क्लम्ब का नियम यह बताता है कि दो आवेशों के बीच आकर्षण या प्रतिकर्षण का बल आवेश की मात्रा के समानुपाती होता है और उनके बीच की दूरी के वर्ग के ट्युत्क्रमानुपाती होता है।

- 9. हाइजेनबर्ग सिद्धांत (अनिश्चितता सिद्धांत)- इसके तहत एक इलेक्ट्रॉन जैसे एक कण की स्थिति और गति दोनों की सटीकता को निर्धारित करना असंभव है।
- 10. गे-लुसाक नियम गैलुसाक का गैस का नियम हमें यह बताता है कि किसी गैस के लिए दाब व ताप किस प्रकार से सम्बन्धित होते है। यह नियम बताता है कि "यदि किसी भी गैस के आयतन को नियत रखा जाये तो किसी भी आदर्श गैस का दाब , इसके ताप के समान्पाती होता है। "
- 11. ग्राहम का विचलन का नियम यह बताता है कि गैसों के प्रसार की दर तापमान और दबाव की समान परिस्थितियों में उनके घनत्व के वर्गमूल के विपरीत आनुपातिक हैं।
- 12. केप्लर का नियम ग्रह को सूर्य से जोड़ने वाली रेखा समान समयान्तराल में समान क्षेत्रफल तय करती है। ग्रह द्वारा सूर्य की परिक्रमा के कक्षीय अविध का वर्ग, अर्ध-दीर्घ-अक्ष (semi-major axis) के घन के समानुपाती होता है। किसी ग्रह की कक्षीय अविध का वर्ग उसकी कक्षा के अर्ध-प्रमुख अक्ष के घन के सीधे आनुपातिक है।
- 13. फ्लोटेशन का नियम एक शरीर को तैरने के लिए, निम्नलिखित शर्तों को पूरा करना चाहिए:
 - शरीर का वजन विस्थापित पानी के वजन के बराबर होना चाहिए।
 - शरीर के ग्रत्वाकर्षण का केंद्र और तरल का विस्थापित क्षेत्र एक ही सीधी रेखा में होना चाहिए।
- 14. ऊर्जा के संरक्षण का नियम यह बताता है कि ऊर्जा को न तो बनाया जा सकता है और न ही नष्ट किया जा सकता है लेकिन इसे एक रूप से दूसरे रूप में परिवर्तित किया जा सकता है। चूंकि ऊर्जा बनाई या नष्ट नहीं की जा सकती है, ब्रह्मांड में मौजूद ऊर्जा की मात्रा हमेशा स्थिर रहती है।
- 15. न्यूटन की गति का पहला नियम यदि कोई वस्तु विरामावस्था (स्थिर अवस्था) में है तो वह तब तक विराम अवस्था में ही रहेगी जब तक उसपर कोई बाहरी बल न लगाया जायें, और गतिशील है तो तब तक एकसमान गति की अवस्था में रहेगी जब तक की उसपर बाहरी बल लगाकर उसे स्थिर न किया जाये।
- 16. न्यूटन का गति का दूसरा नियम किसी भी वस्तु के संवेग परिवर्तन की दर उसपर लगाये गये बल के समान्पाती होती है, तथा संवेग परिवर्तन की दिशा वही होती है जो बल की दिशा होती है।
- 17. न्यूटन का गति का तीसरा नियम प्रत्येक क्रिया के बराबर तथा उसके विपरीत दिशा में प्रतिक्रिया होती है।
- 18. न्यूटन के गुरुत्वाकर्षण का नियम किन्हीं दो पिंडो के बीच कार्य करने वाला आकर्षण बल पिंडो के द्रव्यमानों के गुणनफल के अनुक्रमानुपाती तथा उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है
- 19. ओम का नियम इसके अनुसार यदि ताप आदि भौतिक अवस्थायें नियत रखीं जाए तो किसी प्रतिरोधक (या, अन्य ओमीय युक्ति) के सिरों के बीच उत्पन्न विभवान्तर उससे प्रवाहित धारा के समानुपाती होता है।
- 20. पाउली अपवर्जन सिद्धांत कोई भी दो समान फर्मिऑन (fermions), एक ही समय में, एक समान प्रमात्रा स्थिति (quantum state) में नहीं रह सकते
- 21. रमन प्रभाव जब किसी पदार्थ पर फोटोन आपतित करते है तो इस पदार्थ से टकराकर ये फोटोन प्रकिर्णित हो जाते है अर्थात ये फोटोन अलग अलग दिशाओं में फ़ैल जाते है या बिखर जाते है।
- 22. टैंडल प्रभाव यह प्रभाव गैस या तरल में छोटे-छोटे निलम्बित कणों वाले विलियन द्वारा भी देखा जा सकता है।

रोग तथा इनेक द्वारा प्रभावित क्षेत्र शरीर कीपार्ट्स रोगसे प्रभावित

	<u> </u>
रोग	शरीर के प्रभावित भाग
गठिया	जोड़ों
अस्थमा	ब्रोन्कियल स्नायु
मोतियाबिंद	आंखें
मधुमेह	अग्न्याशय
गलघोंटू	गला
एक्जिमा	त्वचा
ग्लूकोमा	आंखें
घेंघा	थायराइड ग्रंथि
पीलिया	यकृत
लेकिमिया	रक्त
मलेरिया	प्लीहा
मेनिनजाइटिस	मस्तिष्क और रीढ़ की हड्डी
ओटिटिस	कान
पक्षाघात	नसें
निमोनिया	फेफड़े
पोलियो	पैर

मसूड़े में पीब पड़ने का रोग	दांत और मसूड़ों
गठिया	जोड़ों
साइनसाइटिस	साइनस अस्तर में सूजन
टॉन्सिल्लितिस	टॉन्सिल्स
ट्रेकोमा	आंखें
क्षय रोग	फेफड़े
टाइफाइड	आंत

रोग एवं उनके कारक

कारक	रोग	
जीवाणु	गलघोंटू, सूजाक, मेनिनजाइटिस, हैजा, कुष्ठ रोग, टाइफाइड, टेटनस, क्षय रोग, प्लेग, खांसी, निमोनिया	काली
वायरस	चिकन पॉक्स, चेचक, मीज़ल, मम्प्स, एड्स, पीला बुखार, इन्फ्लुएंजा, डेंगू बुखार, पोलियो-मेरिटिस फेलोबोतोमस	रेबीज
प्रोटोजुआ	मलेरिया, निद्रा संबंधी बीमारी, काला अज़र, लीशमनियासिस, अमीबा डिसेंट्री	
कवक	एथलीट फूट, दाद, मदुरा फूट, खुजली	
हेलिमन्थ	फाइलेरिया, टैपवार्म और ह्कवर्म ट्रांसिमशन	

मानव शरीर के बारे में महत्वपूर्ण जानकारी

सबसे बड़ा अंग: लिवर

• हार्ट बीट: *एक मिनट में 72 बार*

मास्टर ग्लैंड: पिट्यूटरी

www.byjusexamprep.com

• हड्डियों की संख्या: 206

• मांसपेशियों की संख्या: 640

• संख्याग्णसूत्रों की संख्या: 46 या 23 जोड़े

सामान्य रक्तचाप: 80 से 120

दांत: 32

• रक्त की मात्रा: *सामान्य शरीर में लगभग 7 लीटर या शरीर के कुल वजन का लगभग 7%।*

मानव मस्तिष्क का सबसे बड़ा हिस्साः सेरेब्रम

भौतिकी

कार्य

 कार्य तब संपन्न होता है, यदि किसी निकाय पर प्रभावशील बल वास्तव में बल की दिशा में कुछ दूरी हेतु इसे स्थानांतरित करने में सक्षम हो। इसकी SI इकाई जूल है।

<u>ऊर्जा</u>

- ऊर्जा एक स्केलर क्वांटिटी है और इसकी इकाई जूल है।
- एक पृथक प्रणाली में सभी प्रकार की ऊर्जाओं का योग हर समय स्थिर रहता है। यह ऊर्जा के संरक्षण का नियम (Law of Conservation of Energy) है।
- इसकी इकाई वाट है।
 - o 1 वाट/ घंटा = 3600 जूल
 - o 1 किलोवाट/ घंटा = 3.6 x 10⁶ जूल
 - 1 हॉर्स पॉवर = 746 वाट

गुरुत्वाकर्षण

- जिस बल के माध्यम से एक निकाय दूसरे निकाय को आकर्षित करता है, उसे गुरुत्वाकर्षण बल कहते
 है।
- पृथ्वी के गुरुत्वाकर्षण बल को गुरुत्वाकर्षण कहा जाता है।
- गुरुत्वाकर्षण के कारण निकाय में उत्पन्न वेग को त्वरण (acceleration) कहते हैं, जिसका मान 9.8
 m / s है।
- गुरुत्वाकर्षण के कारण उत्पन्न त्वरण निकाय के आकार एवं द्रव्यमान से स्वतंत्र होता है।

- पलायन वेग (Escape Velocity) एक ऐसा न्यूनतम वेग है, जिसके माध्यम से एक वस्तु पृथ्वी के
 गुरुत्वाकर्षण क्षेत्र को पार करती है और कभी नहीं लौटती है। पृथ्वी की सतह पर पलायन वेग का मान
 11. 2 km/s है।
- चंद्रमा की सतह पर पलायन वेग का मान 2.4 किमी / सेकंड है। न्यूनतम पलायन वेग के कारण चंद्रमा पर वाय्मंडल का आभाव है।
- पृथ्वी की सतह से ऊंचाई या गहराई के साथ ही गुरुत्वाकर्षण का मान घटता जाता है।
 - ० ध्रव पर अधिकतम।
 - ० भूमध्य रेखा पर न्यूनतम।
 - ० पृथ्वी के घूर्णन पर घटता है।
 - यदि पृथ्वी की कोणीय गित बढ़ती है तो यह घटता है और पृथ्वी की कोणीय गित कम हो जाती है तो इसमें वृद्धि होती है।
- चंद्रमा पर गुरुत्वाकर्षण के कारण त्वरण पृथ्वी की तुलना में एक-छठा है। तो, चंद्रमा की सतह पर एक व्यक्ति का भार भी % होगा।

<u>उपग्रह</u>

- उपग्रह (satellites) वे प्राकृतिक या कृत्रिम निकाय हैं जो गुरुत्वाकर्षण बल के तहत किसी ग्रह की
 परिक्रमा करते हैं।
- चंद्रमा एक प्राकृतिक उपग्रह है, जबिक INSAT-B पृथ्वी का एक कृत्रिम उपग्रह है।
- पृथ्वी की सतह के पास घूर्णन करने वाले उपग्रह की परिक्रमा की अविध 1 घंटा 24 मिनट (34 मिनट)
 है।
- भू-स्थिर उपग्रह 36000 किमी (लगभग) की ऊँचाई पर पृथ्वी के चारों ओर घूमता है।
- भू-स्थिर उपग्रह के घूमने की समयाविध 24 घंटे है।
- पृथ्वी अपनी धुरी पर पश्चिम से पूर्व की ओर घूमती है। इस कारण सूर्य सहित अन्य तारे आकाश में पूर्व से पश्चिम की ओर घूमते प्रतीत होते हैं।
- भूसमकालिक उपग्रह (geosynchronous satellite) भूसमकालिक कक्षा पर घूर्णन करने वाला उपग्रह
 है, जिसकी कक्षीय अविध पृथ्वी की घूर्णन गित के समान है
- भूसमें कालिक उपग्रह (geosynchronous satellite) का एक उदाहरण भूस्थिर उपग्रह है, जिसकी एक
 भूस्थिर कक्षा (पृथ्वी की की भूमध्य रेखा के ऊपर स्थित चक्रीय भूसमकालिक कक्षा)।
- भू-स्थिर उपग्रह का उपयोग टेलीकास्ट करने के लिए किया जाता है, जैसे टीवी कार्यक्रमों का विश्व के एक भाग से दूसरे भाग में प्रसारण करना, मौसम की भविष्यवाणी, बाढ़ एवं सूखे का अनुमान करने हेतु।

 ध्रुवीय उपग्रह पृथ्वी के चारों ओर 800 किमी (लगभग) की ऊंचाई पर ध्रुवीय कक्षा में घूमता है। इन उपग्रहों की समयाविध 84 मिनट है।

<u>अणु एवं परमाणु भौतिकी</u>

कैथोड किरणें

सर विलियम क्रुक द्वारा खोजी गई कैथोड किरणें और इसके गुण

- सीधी रेखाओं में यात्रा करना।
- प्रतिदीप्ति (fluorescence) उत्पन्न करना।
- धातु के पतले छिद्रों से प्रवेश कर सकते हैं तथा विद्युत और चुंबकीय दोनों क्षेत्रों द्वारा विक्षेपित हो सकती हैं।
- इनका वेग प्रकाश के कुल वेग का 1/30 वां से 1 / 10वां भाग है।

सकारात्मक या कैनाल किरणें

- इन किरणों को गोल्डस्टीन ने खोजा था।
- धनात्मक किरणों में धनात्मक आवेशित कण होते हैं।
- ये किरणें सीधी रेखा में यात्रा करती हैं।
- इन किरणों को विद्य्त और चुंबकीय क्षेत्रों द्वारा विक्षेपित किया जाता है।
- ये किरणें गैसों में आयनीकरण को उत्पन्न कर सकती हैं।

<u>एक्स-रे</u>

- एक्स-िक्रणें तरंग दैर्ध्यसाथ विद्युत चुम्बकीय तरंगें हैं, जिनकी रेंज 0.1A-100A है।
- एक्स-किरणों को रूजेन द्वारा खोजा गया था।
- एक्स-रे सीधी रेखा में यात्रा करती हैं।
- एक्स-रे के प्रति के दीर्घावधि तक अनावरण मानव शरीर के लिए हानिकारक है।
- एक्स रे का फोटोइलेक्ट्रिक प्रभाव होता है।

<u>एक्स-रे का उपयोग</u>

चिकित्सा विज्ञान में एक्स-रे का उपयोग फ्रैक्चर, रोगग्रस्त अंगों, विदेशी पदार्थ जैसे बुलेट, पत्थरों
 आदि का पता लगाने के लिए किया जाता है। इनका उपयोग कैंसर के उपचार और त्वचा रोगों में किया जाता है।

- इंजीनियरिंग में, एक्स-रे का उपयोग धातु उत्पादों और भारी धातु शीट में दोष, दरारें, इत्यादि का पता लगाने में किया जाता है।
- वैज्ञानिक कार्य में, क्रिस्टल संरचना और जटिल अणुओं के अध्ययन में एक्स-रे का उपयोग किया जाता है।
- कस्टम विभाग में एक्स-रे का उपयोग छिपाकर रखी गई प्रतिबंधित सामग्री का पता लगाने के लिए किया जाता है।

रेडियोधर्मिता

 रेडियोधर्मिता की खोज हेनरी बेकरेल, मैडम क्यूरी और पियरे क्यूरी ने की थी जिसके लिए उन्हें संयुक्त रूप से नोबेल प्रस्कार मिला था।

<u>परमाणु विखंडन</u>

- परमाणु बम परमाणु विखंडन पर आधारित है। U²³⁵ और Pu²³⁹ का उपयोग विखंडनीय सामग्री के रूप में किया जाता है।
- न्युक्लियर विखंडन का प्रदर्शन सबसे पहले हैलिन और फ्रिट्ज स्ट्रैसमैन ने किया था।

नाभिकीय संलयन

- जब दो या दो से अधिक प्रकाश नाभिक संयुक्त रूप से एक भारी नाभिक बनाते हैं तो उसे नाभिकीय संलयन (Nuclear Fusion) कहते हैं।
- परमाण् संलयन के लिए, अन्जप्त तापमान हेत् 108 K की आवश्यकता होती है।
- हाइड्रोजन बम को 1952 में अमेरिकी वैज्ञानिक द्वारा बनाया गया था । यह परमाणु संलयन पर आधारित है। यह परमाणु बम से 1000 गुना अधिक शक्तिशाली है।

परमाणु रिएक्टर

- परमाण् रिएक्टर् एक ऐसी व्यवस्था है, जिसमें नियंत्रित परमाण् विखंडन प्रतिक्रिया होती है।
- पहला परमाणु रिएक्टर शिकागो विश्वविद्यालय में प्रो एनरिको फर्मी की देखरेख में स्थापित गया किया था।
- भारी जल, ग्रेफाइट और बेरिलियम ऑक्साइड का उपयोग तेजी से बढ़ने वाले न्यूट्रॉन को धीमा करने के लिए किया जाता है। इन्हें मॉडरेट कहा जाता है।

परमाण् रिएक्टर के उपयोग

- (i) विखंडन के दौरान निकलने वाली ऊर्जा से विद्युत ऊर्जा का उत्पादन किया जाता है।
- (ii) विभिन्न समस्थानिकों का उत्पादन करने के लिए, इसका उपयोग चिकित्सा, भौतिक और कृषि विज्ञान में किया जा सकता है।

परमाणु रिएक्टर के निम्नलिखित घटक हैं, जैसे कि

- विखंडनीय ईंधन U²³⁵ या U²³⁹ का उपयोग किया जाता है।
- न्यूट्रॉन की ऊर्जा कम हो जाती है, जिससे उन्हें विखंडन प्रतिक्रिया के लिए आगे उपयोग किया जा सकता है।
- भारी पानी और ग्रेफाइट को मॉडरेटर के रूप में उपयोग किया जाता है।
- यूरेनियम नाभिक के विखंडन में उत्पन्न अतिरिक्त न्यूट्रॉन को अवशोषित करने के लिए कैडिमयम
 या बोरॉन की रोड़ का उपयोग किया जाता है, ताकि चैन रिएक्शन संपन्न हो सके।

न्युटन के गति नियम (Newton's Law of Motion)

पहला नियम: प्रत्येक निकाय गतिशील तब होती है जब कोई बाहरी बल उस पर डाला जाता है,
 अन्यथा वह स्थिर बनी रहती है। इसे गैलीलियों का नियम या जड़ता का नियम (Law of Inertia) भी कहा जाता है।

उदाहरण: एक धीमी गति से चलती ट्रेन / बस से कूदते समय गति की दिशा में न्यूनतम दूरी तय की जा सकती है।

- <u>दूसरा नियम:</u> किसी वस्तु पर कार्य करने वाला बल प्रत्यक्ष रूप से किसी वस्तु के द्रव्यमान और उत्पन्न त्वरण के अनुपात में होता है।
- <u>तीसरा नियम:</u> प्रत्येक क्रिया के लिए एक समान और विपरीत प्रतिक्रिया होती है।

उदाहरण: ट्रेनों की शंटिंग के दौरान गंभीर झटके से बचने के लिए बोगियों में बफर लगाया जाता है। गैस की नीचे की ओर प्रतिक्रिया के कारण रॉकेट ऊपर जाता है।

वृतीय गति (Circular Motion)

- जब कोई वस्तु वृताकार पथ पर चलती है, तो उसकी गति को वृतीय गति कहते हैं।
- शरीर की वृत्ताकार गति पर रेडियल रूप से कार्य करने हेतु आवश्यक बाहरी बल को केंद्राभिमुख बल (Centripetal Force) कहा जाता है।
- केन्द्रापसारक बल एक ऐसा छद्म बल है जो केंद्राभिमुख बल के समान और विपरीत है।
- क्रीम विभाजक, सेंट्रीफ्यूजल ड्रायर केन्द्रापसारक बल के सिद्धांत पर काम करते हैं।

घर्षण (Friction)

- दो निकायों के एक- दूसरे की विपरीत दिशा में टकराने से उत्पन्न बल को घर्षण कहते है।
- घर्षण के कारण, हम पृथ्वी की सतह पर चलने में सक्षम होते हैं।
- गाड़ी ब्रेक लगाने पर उत्पन्न घर्षण के कारण रूकती है।

पास्कल का दबाव का नियम

 हाइड्रोलिक लिफ्ट, हाइड्रोलिक प्रेस और हाइड्रोलिक ब्रेककेपर पास्कल के दबाव के नियम पर आधारित है।

आर्किमिडीज का सिद्धांत

- जब किसी निकाय को आंशिक रूप से या पूर्ण रूप से किसी तरल पदार्थ में डुबोया जाता है, तो शरीर के भार में कमी आती है, जो निकाय द्वारा विस्थापित तरल के भार के समकक्ष होता है।
- लोहे के गोले से विस्थापित जल का भार उसी के भार से कम होता है। जबिक जहाज के निचले भाग से विस्थापित जल उसके भार के समकक्ष होता है। अतः इसलिए लोहे की छोटी गेंद पानी में डूब जाती है, जबिक बड़े जहाज तैरते हैं।
- एक मोटा व्यक्ति पतले व्यक्ति की तुलना में जल्दी तैरना सीखेगा चूँकि वह अपने भार के समकक्ष जल को विस्थापित करेगा। अतः यह अधिक संत्लित होगा।
- हाइड्रोजन से भरा गुब्बारा हवा में तैरता है क्योंकि हाइड्रोजन हवा से हल्का होती है। एक व्यक्ति जल के भीतर अधिक वजन उठा सकता है।

तरंग (WAVE)

तरंग भी एक प्रकार की गतिविधि होती है, जो पदार्थ के एक स्थान से दूसरे स्थान पर स्थानांतरण के बिना ही ऊर्जा का प्रसार करती है।

सामान्यतः तरंगें दो प्रकार की होती हैं:

- यांत्रिक तरंग (अन्दैर्ध्य तरंग और अन्प्रस्थ तरंग)
- विद्युत चुम्बकीय तरंग
- विद्युत चुम्बकीय (गैर-यांत्रिक) तरंगें निम्न प्रकार की होती हैं-

गामा किरणें (उच्चतम आवृति)

एक्स-रे

युवी किरणें

दृश्यमान विकिरण

इन्फ्रा- रेड किरणें

लघु रेडियो तरंगें

दीर्घ रेडियो तरंगें (न्यूनतम आवृति)

सभी घटते क्रम में हैं।

निम्नलिखित तरंगें विद्युत चुम्बकीय नहीं हैं।

- a. कैथोड किरणें
- b. कैनाल किरणें
- c. अल्फ़ा किरणें
- d. बीटा किरणें
- e. ध्वनि तरंग
- f. अल्ट्रासोनिक तरंग

अनुदैध्यं तरंगें

- इस तरंग में माध्यम के कण तरंग के प्रसार की दिशा में कंपन करते हैं।
- स्प्रिंग्स में उत्पन्न तरंग या ध्विन की तरंगें अन्दैर्ध्य तरंगों के उदाहरण हैं।

अन्प्रस्थ तरंगें

- इस तरंग में, माध्यम के कण तरंग के प्रसार की दिशा में लंबवत कंपन करते हैं।
- तनाव के तहत तार पर लहरें, पानी की सतह पर लहरें अनुप्रस्थ तरंगों के उदाहरण हैं।

इलेक्ट्रोमैग्नेटिक वेव्स

- वे तरंगें, जिनके प्रसार के लिए माध्यम की आवश्यकता नहीं होती है, जो वैक्यूम के माध्यम से भी प्रसारित हो सकती हैं, उन्हें विद्युत-चंबकीय (Electromagnetic) किरणें कहा जाता है।
- प्रकाश रेडियो तरंगें, एक्स-रे आदि विद्युत चुम्बकीय तरंग के उदाहरण हैं। ये तरंगें वैक्यूम में प्रकाश के वेग से प्रसारित होती हैं।

ध्वनि तरंगें

ध्वनि तरंगें अनुदैर्ध्य यांत्रिक तरंगें हैं। आवृत्ति के आधार पर इन्हें निम्नलिखित रूप से विभाजित किया जा सकता है।

- वे ध्वनि तरंगें जिनकी आवृत्ति 20 हर्ट्ज से 20000 हर्ट्ज तक होती हैं, उन्हें श्रव्य तरंगें कहते हैं।
- 20 हर्ट्ज से कम आवृतियों वाली ध्विन तरंगों को इंफ्रासोनिक कहा जाता है
- 20000 हर्ट्ज से अधिक आवृत्ति वाली ध्विन तरंगों को अल्ट्रासोनिक तरंग कहा जाता है।
- अल्ट्रासोनिक तरंगों का उपयोग सिग्नल भेजने, गहराई को मापने, कपड़े को साफ़ करना और मशीनरी के हिस्सों इत्यादि में किया जाता है।

ध्वनि की गति

ध्विन की गित ठोस पदार्थों में अधिकतम और गैसों में न्यूनतम होती है।

- जब ध्विन एक माध्यम से दूसरे माध्यम में प्रसारित होती है, तो उसकी गित एवं लम्बाई में परिवर्तन होता है, लेकिन आवृत्ति अपरिवर्तित रहती है। दबाव की वृद्धि या कमी से ध्विन की गित अपरिवर्तित रहती है।
- िकसी माध्यम के तापमान में वृद्धि के साथ ध्विन की गित बढ़ जाती है।
- शुष्क हवा की तुलना में आर्द्र हवा में ध्विन की गित अधिक होती है क्योंकि आर्द्र हवा का घनत्व शुष्क हवा की त्लना में कम होता है।

प्रतिध्वनि (Echo): ध्वनि तरंगों के परावर्तन के कारण ध्वनि की पुनरावृत्ति को प्रतिध्वनि कहा जाता है। तीव्रता: इसे ऊर्जा के उस स्तर के रूप में परिभाषित किया जाता है, इसकी गणना प्रति यूनिट/ समय के रूप में की जाती है।

पिच: एक आवृत्ति की संवेदना को आमतौर पर ध्विन की पिच के रूप में जाना जाता है। सोनार: इसका तात्पर्य ध्विन नेविगेशन और रेंजिंग से है। इसका उपयोग समुद्र की गहराई को मापने, दुश्मन पनड्ब्बियों और जहाजों को खोजने के लिए किया जाता है।

प्रकाश (Light)

- प्रकाश ऊर्जा का एक रूप है, जिसे विद्युत चुम्बकीय तरंग के रूप में जाना जाता है।
- यह एक प्रकार का विकिरण है जो हमारी आंखों को वस्तु को 'देखने' में सक्षम बनाता है। इसकी गति
 3 x 108 m / s है। यह ऊर्जा का रूप है। यह एक अनुप्रस्थ लहर है।
- सूर्य से पृथ्वी तक प्रकाश को पहुँचने में 8 मिनट 19 सेकंड का समय लगता है, जबिक चंद्रमा से परिलक्षित प्रकाश को 1.28 सेकंड का समय लगता है।
- <u>मूलभूत रंग</u>- ब्लू, रेड, ग्रीन
- <u>गौण रंग</u>- इन्हें किन्ही दो मूलभूत रंगों को मिलाकर बनाया जाता है
- अनुपूरक रंग- जब कोई दो रंग सिम्मिलित करने पर सफ़ेद रंग का सृजन हो।
- आकाश का नीला रंग प्रकाश के प्रकीर्णन के कारण होता है।
- सूर्य के उदय और अस्त होने का गहरा लाल रंग प्रकाश के प्रकीर्णन के कारण होता है।

मानव नेत्र

- म्युनतम दृष्टि की दूरी 25 सेमी है।
- निकट दृष्टि या कम देख पाना- दूरस्थ वस्तुओं को स्पष्ट रूप से देखने में अक्षम।
- दूर दृष्टि या हाइपरमेट्रोफिया- निकटतम वस्तुओं को स्पष्ट रूप से देखने में अक्षम।
- प्रेसबायोपिया- बुजुर्ग व्यक्ति दूरस्थ एवं निकटतम वस्तुओं को स्पष्टतः नहीं देख सकते हैं।

प्रकाश का परावर्तन

 जब प्रकाश की एक किरण दो माध्यमों को पृथक करने वाली सीमा पर गिरती है और फिर उद्गम वाले माध्यम में पुनः लौटती है, तो इस घटना को प्रकाश का परावर्तन (Reflection of Light) कहा जाता है।

गोलाकार दर्पण

गोलाकार दर्पण दो प्रकार के होते हैं

- 1. अवतल दर्पण (Concave Mirror)
- 2. उत्तल दर्पण (Convex Mirror)
- उत्तल दर्पण द्वारा बनाई गई छवि हमेशा आभासी, स्तंभित और मंद होती है।
- अवतल दर्पण द्वारा निर्मित छवि आम तौर पर वास्तविक और उलटी होती है।

अवतल दर्पण के उपयोग

- (i) शेविंग मिरर के रूप में
- (ii) किसी वाहन की हेड लाइट के लिए परावर्तक के रूप में,
- (iii) नेत्रगोलक में डॉक्टरों द्वारा आंख, कान, नाक की जांच करने के लिए।
- (iv) सोलर कुकर में।

उत्तल दर्पण का उपयोग

- (i) वाहन में रियर-व्यू मिरर के रूप में क्योंकि यह रियर (पीछे खड़ी वस्त्) छवि को स्पष्ट दिखाता है।
- (ii) सोडियम परावर्तक दीपक में।

<u>प्रकाश अपवर्तन</u>

एक माध्यम से दूसरे माध्यम से गुजरने वाली प्रकाश की किरण के झुकाव को प्रकाश का अपवर्तन
(Refraction of Light) कहा जाता है। जब प्रकाश की किरण एक माध्यम से दूसरे माध्यम में प्रवेश
करती है, तो इसकी आवृत्ति और चरण में परिवर्तन नहीं होता है, लेकिन तरंगदैर्ध्य और वेग बदल
जाते हैं। पृथ्वी के वायुमंडल में अपवर्तन के कारण तारे टिमटिमाते दिखाई देते हैं।

कुल आंतरिक परावर्तन

• हीरे की चमक, मृगतृष्णा और करघे, पानी में हवा के बुलबुले की चमक और ऑप्टिकल फाइबर कुल आंतरिक परावर्तन के उदाहरण हैं।

लेंस की पॉवर

- लेंस की पॉवर में एक किरण को विचलित करने की क्षमता होती है। इसे मीटर में फोकल लंबाई के पारस्परिक के रूप में मापा जाता है।
- पाँवर की SI इकाई डायोप्टर है।

विद्युत और चुंबक

<u>आवेश (Charge)</u>

आवेश पदार्थ से संबंधित एक मूल संपत्ति है जिसके कारण यह विद्युत और चुंबकीय प्रभावों का उत्पादन करता है। इस प्रकार के आवेश एक दूसरे को विपरीत दिशा में आकर्षित करते हैं और विकर्षित करते हैं। आवेश को SI इकाई कूलम्ब (Coulomb) है।

चालक (Conductor): चालक वह वस्तु है जो विद्युत को उनसे गुजरने देते हैं। चांदी, लोहा, तांबा और पृथ्वी जैसी धात्एं एक चालक की तरह काम करती हैं। चांदी सबसे अच्छा चालक (conductor) है।

विद्युतरोधी (insulator): विद्युतरोधी वह वस्तु है जो विद्युत को उनके माध्यम से प्रवाहित नहीं होने देते हैं। लकड़ी, कागज, अभ्रक, कांच, इबोनाइट जैसे धातुएं विद्युतरोधी (insulator) हैं।

इलेक्ट्रिक करंट

- इसकी SI यूनिट एम्पीयर है। यह एक अदिश राशि है।
- एक बिजली का बल्ब टूटने पर धमाका करता है क्योंकि बिजली के बल्ब के अंदर एक वैक्यूम होता है, जब बल्ब को तोड़ा जाता है तो चारों तरफ से वायु तीव्रता के साथ खाली स्थान को भरने के लिए निष्कासित होती है। वायु का वेग सामान्यतः धमाके के रूप में एक तीव्र शोर उत्पन्न करता है।
- एक गैल्वेनोमीटर को एम्मीटर में परिवर्तित करने के लिए दो शंट को आपस में जोड़ा जाता है।
- सोडियम और पारा स्ट्रीट लैंप परमाण् उत्सर्जन के कारण प्रकाश करते हैं।
- फ्लोरोसेंट में चोक कॉइल का उद्देश्य ट्यूब में गैस को आयिनत करने के लिए उच्च वोल्टेज का उत्पादन करना है, जिसकी आवश्यकता फिलामेंट के माध्यम से प्रवाह करने के लिए उच्च करंट के प्रवाह में किया जाता है।

<u>मैग्नेटिज्म</u>

- जब किसी डायमैगनेटिक पदार्थ को चुंबकीय क्षेत्र में रखा जाता है, तो वह चुंबकीय क्षेत्र की दिशा में विपरीत चुंबकत्व शक्ति को प्राप्त करता है।
- उदाहरण- सोना, हीरा, तांबा, जल, ब्ध आदि।

- जब किसी पेरामैग्नेटिक पदार्थ को चुंबकीय क्षेत्र में रखा जाता है, तो वह चुंबकीय क्षेत्र की दिशा में निर्बल चुंबकत्व शक्ति को गृहीत करता हैं।
- उदाहरण- एल्युमीनियम, सोडियम, पारा आदि
- फेरोमैग्नेटिक पदार्थ जब चुंबकीय क्षेत्र में रखे जाते हैं, तो चुंबकीय क्षेत्र की दिशा में दृढ़ता से आकर्षित होते हैं।
- उदाहरण- लोहा, कोबाल्ट, निकल
- क्यूरी तापमान (TC), या क्यूरी बिंदु, वह तापमान है जिस पर कुछ सामग्री अपने स्थायी चुंबकीय गुणों को खो देती है, जिसे प्रेरित चुंबकत्व द्वारा प्रतिस्थापित किया जाता है।
- आइसोजोनिक रेखाएँ पृथ्वी की सतह पर स्थित वे रेखाएँ होती हैं जिनपर अधोगित समान होती है,
 और जिन रेखाओं के पर अधोगित शून्य होती है उन्हें एगोनिक रेखाएँ कहते हैं।
- आइसोक्लिनिक रेखाएँ पृथ्वी की सतह को जोड़ने वाले बिंदुओं होती हैं जहां पृथ्वी के चुंबकीय क्षेत्र का कोण एकसमान होता है।
- एक्लिनिक रेखाएँ चुंबकीय भूमध्य रेखा है, जहां चुंबकीय क्षेत्र का झुकाव न तो उत्तर या दक्षिण में है,
 अतः यह आइसोक्लिनिक रेखा की एक विशेषता है।
- आइसोडायनामिक रेखा पृथ्वी के चुंबकीय क्षेत्र की सभी बिंदुओं को जोड़ने वाली मानचित्र पर एक रेखा।

सतही तनाव और केशिका

- चिकनाई युक्त तेल विभिन्न सतहों पर न्यूनतम तनाव के कारण सरलता से फैलता है।
- पानी में डिटर्जेंट डालकर कपड़े धोते समय गंदगी हट जाती है क्योंकि पानी की सतह का तनाव कम हो जाता है।
- एक ब्लोटिंग पेपर द्वारा स्याही का अवशोषण केशिका क्रिया के कारण होता है
- एक लम्बे वृक्ष के शीर्ष पर पतियों को पानी की आपूर्ति केशिका के माध्यम से होती है।

<u> ऊष्मा (Heat)</u>

ऊष्मा की इकाई

cgs- कैलोरी

FPS- ब्रिटिश थर्मल यूनिट (B. Th. U)

- निरपेक्ष शून्य तापमान- माइनस २७३ K (-२७३ K)
- 1 कैलोरी = 4.2 J
- विशिष्ट ऊष्मा की मात्रा उष्मा की मात्रा है जो प्रति वर्ष आवश्यक होती है। तापमान को एक डिग्री सेल्सियस बढाएँ।

- न्यूटन के शीतलन के नियम में कहा गया है कि किसी वस्तु के तापमान के परिवर्तन की दर उसके स्वयं के तापमान और परिवेश के तापमान (यानी उसके आसपास के तापमान) के बीच के अंतर के समान्पाती होती है।
- होर फ्रॉस्ट (त्षार)- सबिलमेशन करने की रिवर्स प्रक्रिया है।

मापन संबंधी इकाइयाँ

- ऐंग्स्ट्रॉम: प्रकाश तरंगों की लंबाई मापने की इकाई
- बैरल : तरल पदार्थ मापने की इकाई। एक बैरल 31½ गैलन या 7,326.5 क्यूबिक इंच के समकक्ष है।
- केबल:लंबाई मापने की इकाई। इसकी लंबाई लगभग 183 मी. है।
- कैरेट: कीमती पत्थरों को मापने के लिए उपयोग किया जाता है। इसका उपयोग सोने के मिश्र धातु
 की श्द्धता के लिए भी किया जाता है।
- फैथोम: इसका उपयोग पानी की गहराई को मापने के लिए किया जाता है। एक फैथोम 4 इंच के बराबर होता है
- नॉट: जहाजों की गति मापने की इकाई

कुछ रूपांतरण कारक

द्रव्यमान और घनत्व

- 1 किलोग्राम = 1000 ग्राम = 6.02 u
- 1 स्लग = 14.6 किलोग्राम
- 1 u = 1.66 किलोग्राम

लंबाई और मात्रा

- 1 मीटर = 100 सेमी = 39.4 इंच = 3.28 फीट
- 1 मील = 1.61 किमी = 5280 फीट
- 1 इंच = 2.54 सेमी
- 1 nm = m = 10 A
- 1 pm = m = 1000 FM
- 1 प्रकाश वर्ष = 9.46 मीटर
- 1 = 1000 L = 35.3 = 264 गैल

कोणीय माप

• 1 m / s = 3.28 फीट /= 2.24 मील / घंटा

• 1 किमी / घंटा = 0.621 मील / घंटा = 0.278 m / s

बल और दबाव

- 1 lb = 4.45 N
- 1 ton = 2000 lb
- 1 Pa = 1 N/ = 10 dyne/ = 1.45 lb/
- 1 atm = $1.01 \times 10^5 \text{ Pa} = 14.7 \text{ lb/} = 76 \text{ cm} \text{Hg}$

कुछ महत्वपूर्ण वैज्ञानिक उपकरण

- एक्यूमुलेटरः विद्युत ऊर्जा संग्रहीत किया जाता है
- अल्टीमीटर:ऊंचाई मापने के लिए विमान में प्रयुक्त
- एम्मिटर:एम्पीयर में विद्युत धारा को मापने में प्रयुक्त
- एनीमोमीटर: वाय् की क्षमता को मापने में प्रय्क्त
- ऑडियोमीटर: वाय् की गति को मापने में प्रयुक्त
- ऑडियोफोन: यह सुनने की क्षमता को बढाता है।
- बैरोमीटर: वाय्मंडलीय दबाव को मापना में प्रयुक्त
- बाइनोक्युलर: एक ऑप्टिकल उपकरण जिसके माध्यम से दोनों आंखों द्वारा दूर स्थित वस्तुओं को भी देखा जा सकता है
- बोलोमीटर: ऊष्मा विकिरण को मापने में प्रयुक्त
- कार्डियोग्रामः हृदय गति को रिकॉर्ड करने में प्रयुक्त
- कैलोरीमीटर: ऊष्मा की मात्रा को मापने में प्रयुक्त
- क्रोनोमीटर: वह घड़ी जो सटीक समय दिखाती है जिसका प्रयोग समुद्र में देशांतर को निर्धारित करने हेत् किया जाता है।
- कलरमीटर: रंग की तीव्रता की तुलना करने वाला उपकरण।
- कम्यूटेटर: एक विद्युत धारा की दिशा को बदलने या निष्क्रिय करने हेतु एक उपकरण, डायनेमो में इसका उपयोग प्रत्यावर्ती धारा को प्रत्यक्ष धारा में परिवर्तित करने के लिए किया जाता है।
- साइक्लोट्रॉन: परमाणुओं को छोटे अणुओं में परिवर्तित कर उनके गुणों का अध्ययन करना।
- डायनेमो: यांत्रिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करने के लिए एक उपकरण
- डायनामोमीटर: विद्युत शक्ति को मापने के लिए एक उपकरण
- इलेक्ट्रोस्कोपः विद्युत आवेश की उपस्थिति का पता लगाने के लिए एक उपकरण।
- एंडोस्कोप: शरीर के आंतरिक भागों की जांच करने में प्रयुक्त होता है
- फथोमीटर: महासागर की गहराई मापने में प्रयुक्त होता है

- गैल्वेनोमीटर: विद्युत धारा को मापने में प्रयुक्त होता है
- हाइग्रोमीटर: आर्द्रता को मापने में प्रयुक्त
- फोनोग्राफ: ध्विन को पुनः उत्पादित करने में प्रयुक्त
- पाइरोमीटर: उच्च तापमान को मापने में प्रयुक्त
- क्वार्ट्ज घड़ी: खगोलीय अवलोकनों और अन्य सटीक कार्यों में उपयोग की जाने वाली एक अत्यधिक सटीक घड़ी
- रेडियोमीटर: विकिरण ऊर्जा का उत्सर्जन मापने के लिए एक उपकरण
- रेडियो माइक्रोमीटर: ग्रीष्म विकिरण को मापने के लिए एक उपकरण
- वर्षा गेज: वर्षा को मापने हेत् प्रयुक्त होने वाला उपकरण
- रेक्टिफायर: AC को DC में रूपांतरित करने वाला उपकरण।
- रेफ्रेक्टोमीटर: किसी पदार्थ के अपवर्तनांक को मापने में प्रयुक्त होने वाला उपकरण
- रेसिस्टेंस थर्मामीटर: कंडक्टर की विद्युत प्रतिरोधात्मक क्षमता का निर्धारण करने में प्रयुक्त होने वाला उपकरण
- सेलिनोमीटर: यह हाइड्रोमीटर का ही एक प्रकार है, जिसका उपयोग नमक के घनत्व को मापने के लिए किया जाता है
- सिसमोमीटर (सीस्मोग्राफ): भूकंप के झटके को मापने और रिकॉर्ड करने के लिए एक उपकरण
- सीक्स्टेंट: जहाजों के मार्गदर्शन या भूमि का सर्वेक्षण करने के लिए।
- स्पेक्ट्रोस्कोप: स्पेक्ट्रम विश्लेषण के लिए इस्तेमाल किया जाने वाला एक उपकरण
- स्पीडोमीटर: वाहन की गित को मापने वाला उपकरण
- स्फीयरमीटर: सतहों की वक्रता मापने वाला उपकरण
- स्फिग्मोमेनोमीटर: एक उपकरण जो मानव शरीर में रक्तचाप का पता लगाने के लिए उपयोग किया जाता है। इसे BP एपरेटस भी कहा जाता है
- स्पाईग्मोफोनः इस साधनकी सहायता से पल्स बीट ध्विन करती है
- स्प्रिंग बैलेंस: वजन मापने वाला यंत्र
- स्टीरियोस्कोपः इसका उपयोग दो आयामी चित्रों को देखने के लिए किया जाता है।
- स्टेथोस्कोप: एक उपकरण जो डॉक्टरों द्वारा हृदय और फेफड़ों की आवाज़ सुनने और विश्लेषण करने के लिए उपयोग किया जाता है।
- स्ट्रोबोस्कोप: इसका उपयोग तेजी से चलती वस्त्ओं को देखने के लिए किया जाता है।
- टैकोमीटर: हवाई विमानों और मोटर नौकाओं की गति को मापने में प्रयुक्त एक उपकरण।
- टेलीप्रिंटर: यह उपकरण एक स्थान से दूसरे स्थान पर टाइप किए गए संदेश प्राप्त करता है और भेजता है।

www.byjusexamprep.com

- टेलीस्कोप: इसकी सहायता से अंतरिक्ष में दूर की वस्तुओं को देखा जा सकता है।
- थियोडोलाइट: यह क्षैतिज और ऊर्ध्वाधर कोणों को मापता है।
- ट्रांजिस्टर: एक छोटा उपकरण जिसका उपयोग धाराओं को बढ़ाने और आमतौर पर एक थर्मिओनिक वाल्व द्वारा किए गए अन्य कार्यों को करने के लिए किया जा सकता है
- विस्कोमीटर: चिपचिपाहट को मापने के लिए
- वोल्टमीटर: दो बिंदुओं के बीच संभावित अंतर को मापने वाला यंत्र
- उडोमीटर: वर्षा को मापने में प्रयुक्त

रसायन विज्ञान

पदार्थ

सामान्य तौर पर यह अवस्थाओं में मौजूद है।

- (i) **ठो**स
- (ii) तरल
- (iii) गैस

हालिया दिन में दो और अवस्थाओं पर चर्चा होती है, जैसे कि प्लाज़मा (अति ऊर्जावान और सुपर उत्साहित कणों वाले आयनित गैसें और बोस-आइंस्टीन संघनन या BEC (बेहद कम घनत्व पर सुपर कम तापमान पर एक गैस)।

क्वथनांक

- वह तापमान जिस पर तरल वाष्प में परिवर्तित होता है उसे क्वथनांक कहा जाता है।
- पानी का क्वथनांक 100 ° C है।
- क्वथनांक अशुद्धियों की उपस्थिति में बढ़ जाता है। इसीलिए समुद्र के पानी का क्वथनांक शुद्ध पानी (पूर्वावस्था में अशुद्ध होता है) के क्वथनांक से अधिक होता है।
- यह आमतौर पर अधिक ऊंचाई पर घटता है, इसीलिए अधिक ऊंचाई पर, पानी का क्वथनांक 100° C
 से कम होता है और भोजन पकाने के लिए अधिक समय की आवश्यकता होती है।

गलनांक

- यह एक तापमान है जिस पर एक पदार्थ अपनी ठोस अवस्था से तरल अवस्था में परिवर्तित हो जाता है।
- हिम पिघलने का गलनांक 0 डिग्री सेल्सियस है; यह अशुद्धता की उपस्थिति में कमी आती है

परमाण्, अण् और तत्व

- परमाणु किसी पदार्थ का सबसे छोटा कण होता है जो रासायनिक प्रतिक्रियाओं में भाग लेता है,
 लेकिन मुक्त अवस्था में मौजूद नहीं होता है।
- एटम 43 इलेक्ट्रॉन, प्रोटॉन और न्यूट्रॉन से निर्मित होता है।
- प्रोटॉन और न्यूट्रॉन नाभिक (परमाणु का केंद्र) में मौजूद होता हैं जबिक इलेक्ट्रॉन नाभिक के चारों ओर घूमते हैं।

 परमाणु अणुओं के रूप में संयोजित होते हैं, पदार्थ का सबसे छोटा हिस्सा जो मुक्त अवस्था में मौजूद हो सकता है।

आइसोटोप और आइसोबार

- समस्थानिकों में प्रोटॉन (अर्थात परमाणु संख्या) की समान संख्या होती है, लेकिन विभिन्न संख्या
 में न्यूट्रॉन और द्रव्यमान संख्या (परमाणु संख्या + न्यूट्रॉन की संख्या), जैसे, 1111, 1H2।
- इसोबर्स का द्रव्यमान संख्या समान है लेकिन विभिन्न परमाण् संख्याएं हैं।
- उदाहरण: 18Ar40, 19K40

डेटिंग तकनीक

- रेडियोकार्बन डेटिंग का उपयोग कार्बन युक्त सामग्री जैसे लकड़ी, जानवरों के जीवाश्मों आदि की आयु ज्ञात करने में किया जाता है।
- यूरेनियम का उपयोग पृथ्वी, खिनजों और चट्टानों की आयु निर्धारित करने के लिए किया जाता है।

बैटरी

- बैटरी एक उपकरण है, जिसका उपयोग रासायनिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करने के लिए किया जाता है और यह दो प्रकार की होती हैं-
 - (i) प्राथमिक बैटरी (नॉन-रिचार्जेबल) गैल्वेनिक सेल, उदाहरण के लिए, ड्राई सेल, मरकरी सेल आदि के रूप में कार्य करती है
 - (ii) द्वितीयक बैटरियां: (रिचार्जेबल) अधिनियम गैल्वेनिक के साथ-साथ वोल्टाइक सेल जैसे, सीसा भंडारण बैटरी, निकल कैडमियम बैटरी आदि।

जंग (Corrosion)

- पर्यावरण संबंधी गतिविधियों द्वारा धातु की सतह के ऑक्सीडेटिव में परिवर्तन को जंग कहा जाता
 है, यह एक विद्युत रासायनिक प्रक्रिया है।
- लोहें को वायु में पूर्ण उजागर करने से उसकी सतह भूरी हो जाती है, इसका कारण हाइड्रेटेड फेरिक ऑक्साइड (Fe203.xH20) का सृजन है, जिसे जंग (rust) भी कहा जाता है।
- चांदी- सिल्वर सल्फाइड (Ag2S) के कारण इसकी सतह काली हो जाती है।

नवीकरणीय गैर-नवीकरणीय प्राकृतिक संसाधन

- अक्षय संसाधन में बड़ी मात्रा उपलब्ध हैं, अर्थात, कभी समाप्त नहीं होते हैं, उदाहरण के लिए, वायु, धूप आदि।
- गैर-नवीकरणीय संसाधन सीमित मात्रा में होते हैं और इनका अंत संभव है, यदि सीमित समय के बाद अत्यधिक उपयोग किया जाता है। जैसे, खनिज, कोयला, पेट्रोलियम, प्राकृतिक गैस आदि।

ईंधन

- पदार्थ, जो दहन पर गर्मी और प्रकाश उत्पन्न करते हैं, ईंधन कहलाते हैं।
- एक तीव्र गंद वाला पदार्थ, जिसे एथिल मर्कैप्टन कहा जाता है, को LPG मिलाया जाता है ताकि इसके रिसाव का पता लगाया जा सके क्योंकि LPG एक गंधहीन गैस है।

कुछ महत्वपूर्ण ईंधन और उनकी रचनाएँ

नुष्ठ महत्पपूर्ण इयम जार उमका रचनार			
ईंधन	संरचना	स्रोत	
जल गैस	कार्बन मोनोऑक्साइड (CO) + हाइड्रोजन (h2)	लाल गर्म कोक	
प्रोड्सर गैस	कार्बन मोनोऑक्साइड (CO) + नाइट्रोजन (N2)	लाल गर्म कोक पर अपर्याप्त वायु पास करके	
कोयला	हाइड्रोजन + मिथेन + एथिलीन + कार्बन डाइऑक्साइड + नाइट्रोजन	आंशिक आसवन द्वारा	
प्राकृतिक गैस	मीथेन (83%) + इथेन	पेट्रोलियम	
द्रवीभूत पेट्रोलियम गैस (एलपीजी)	ब्यूटेन (CH 4) 95%	पेट्रोलियम	
संपीडित प्राकृतिक गैस (सीएनजी)	मीथेन (CH 4) 95%	पेट्रोलियम	
बायोगैस या गोबर से गैस	मीथेन (CH4) + कार्बन डाइऑक्साइड (CO2) + हाइड्रोजन (H2) + नाइट्रोजन (N2)	जैविक कचरा	

भौतिक और रासायनिक परिवर्तन

- भौतिक परिवर्तन वे परिवर्तन होते हैं, जो केवल रंग, कठोरता, घनत्व, पिघलने बिंदु आदि जैसे भौतिक गुणों को प्रभावित करते हैं। लेकिन पदार्थ की संरचना और रासायनिक गुणों को प्रभावित नहीं करते हैं।
- एक भौतिक परिवर्तन अस्थायी है, जबिक एक रासायनिक परिवर्तन स्थायी है।
- क्रिस्टलीकरण, उच्चीकरण, उबलना, पिघलना, वाष्पीकरण, पेड़ों को काटना, पानी में चीनी या नमक को घोलना आदि भौतिक परिवर्तन हैं।
- रासायनिक परिवर्तन संरचना को प्रभावित करते हैं और साथ ही पदार्थ के रासायनिक गुणों और एक नए पदार्थ का निर्माण करते हैं।
- ईंधन का जलना, मोमबत्ती और कागज का जलना, पानी का इलेक्ट्रोलिसिस, फोटो सिंथेसिस, फलों का पकना आदि रासायनिक परिवर्तनों के उदाहरण हैं।

कोयला

- कोयला वनस्पति पदार्थ के कार्बोनाइजेशन द्वारा प्राप्त किया जाता है और विभिन्न किस्मों में उपलब्ध होता है:
 - o पीट-60% C
 - o लिग्नाइट या ब्राउन कोल 70% C
 - o बिटुमिनस 60 से 80<mark>%</mark> C
 - o एन्थ्रेसाइट कोयला 90% C
 - ० फेम

लौ में तीन भाग होते हैं

- 1. अंतरतम भाग- जो बिना जले कार्बन कणों की उपस्थिति के कारण काला होता है- इसका तापमान सबसे कम होता है।
- 2. मध्य भाग ईंधन के कम जलने के कारण इसका रंग पीला होता है।
- बाह्य भाग- जो ईंधन के पूर्ण दहन के कारण नीला होता है, सोने को गर्म करने के लिए सुनार द्वारा उपयोग किया जाता है।

अग्निशामक

 पानी आग को बुझाता है क्योंकि जैसे ही यह वाष्पित हो जाता है, वाष्प जलने वाले पदार्थ को घेर लेते हैं, ऑक्सीजन की आपूर्ति बंद हो जाती है, जिससे जलने की प्रक्रिया बाधित हो जाती है।

- बिजली या तेल (पेट्रोल) की आग के मामले में, पानी को बुझाने के रूप में इस्तेमाल नहीं किया जा सकता है। ऐसा इसलिए है क्योंकि पानी बिजली का एक चालक है और तेल की तुलना में भारी है। इस प्रकार, तेल इस पर तैरता है और जलता रहता है।
- कार्बन डाइऑक्साइड, जो एसिड के साथ बेकिंग सोडा की प्रतिक्रिया से उत्पन्न होता है, का उपयोग विद्युत या तेल की आग बुझाने के लिए किया जाता है। पेट्रोल की गुणवत्ता को ओकटाइन संख्या और डीजल की संख्या के संदर्भ में मापा जाता है।

माचिस

 माचिस की तीली पर एंटीमनी ट्रिसुलफाइड और पोटेशियम क्लोरेट का मिश्रण होता है। इसके बॉक्स के साइड में पाउडर ग्लास और फॉस्फोरस का मिश्रण होता है।

अम्ल, भस्म और लवण

अम्ल

- ये पदार्थ हैं, जिनका खट्टा स्वाद होता है और इनका रंग नीले लिटमस पर लाल होता है।
- ये जलीय घोल में विद्युत के सुचालक होते हैं।
- आचार को हमेशा ग्लास जार में रखा जाता है क्योंकि उनमें मौजूद अम्ल धातु के साथ प्रतिक्रिया
 कर हाइड्रोजन गैस का उत्पादन करता है।

भस्म

- ये पदार्थ हैं, जिनमें कड़वा स्वाद है और लाल लिटमस पर इनका नीला हो जाता है।
- वे अम्ल और क्षार संबंधी विभिन्न पदार्थों में अलग-अलग रंग का उत्पादन करते हैं।

लवण

- यह अम्ल और भस्म के बीच न्यूट्रलाइजेशन रिएक्शन का उत्पाद है।
- अम्लता / क्षारता का मापक pH है ।

अकार्बनिक और कार्बनिक रसायन विज्ञान

कार्बन डाइऑक्साइड

 यह कार्बन का एक अम्लीय ऑक्साइड है और इसका उपयोग प्रकाश संश्लेषण के लिए हरे पौधों द्वारा किया जाता है। यह जलने में मदद नहीं करता है।

वायु और हमारी सांस में कार्बन डाइऑक्साइड होता है। इस प्रकार, जब चूने के पानी को हवा में रखा जाता है या हम उसमें सांस लेते हैं, तो चूने का पानी दूधिया हो जाता है।

कार्बन मोनोऑक्साइड

• यह वायु का एक तटस्थ ऑक्साइड है और ऑक्सीजन (लगभग 200 गुना अधिक) की तुलना में हीमोग्लोबिन के प्रति अधिक आकर्षित होता है। इसीलिए कार्बन मोनोऑक्साइड के वातावरण में - जो एक गैर-जहरीली गैस है - लोग ऑक्सीजन के आभाव में मर जाते हैं।

कमरे के भीतर आग जलाकर सोना खतरनाक होता है क्योंकि आग कार्बन मोनोऑक्साइड और कार्बन डाइऑक्साइड गैसों का उत्पादन करती है।

प्लास्टर ऑफ पेरिस

यह रासायनिक रूप से कैल्शियम सल्फेट हेमीहाइड्रेट (CaSO4.1 / 2H2O) है और जिप्सम को गर्म करके तैयार किया जाता है - जो कि 373 K पर कैल्शियम सल्फेट डिहाइड्रेट (CaSO4.2H2O) है। पानी के साथ मिलाने पर, प्लास्टर ऑफ पेरिस ठोस हो जाता है। जिसे जिप्सम कहा जाता है। इस प्रकार, यह अस्थि-भंग हड्डियों को प्लास्टर करने, खिलौने बनाने, सजावट के लिए सामग्री और सतहों को चिकना बनाने के लिए उपयोग किया जाता है।

पोर्टलैंड सीमेंट

यह जिप्सम (थोड़ी मात्रा), सिलिकेट्स और कैल्शियम का एक जटिल मिश्रण है। पोर्टलैंड सीमेंट के निर्माण के लिए इस्तेमाल होने वाले कच्चे माल चूना पत्थर और मिट्टी हैं।

पोर्टलैंड सीमेंट में कैल्शियम ऑक्साइड (50-60%), एल्यूमिना (5-10%), और मैग्नीशियम ऑक्साइड (2-3%) को शामिल किया जाता है। इसे स्थिर बनाने के लिए जिप्सम को सीमेंट में जोड़ा जाता है। सीमेंट में, यदि चूना अधिक मात्रा में है, तो निर्माण के दौरान सीमेंट में दरारें आ जाती है और अगर चूना कम है, तो सीमेंट की मात्रा कम होती है।

मोर्टार रेत, सीमेंट और पानी का मिश्रण ईंटों और पलस्तर की दीवारों के निर्माण में उपयोग किया जाता है।

कंक्रीट- बजरी, रेत, सीमेंट और पानी का मिश्रण फर्श और सड़क बनाने के लिए उपयोग किया जाता है।

प्रबलित कंक्रीट सीमेंट (RCC) - इसे स्टील की सलाखों एवं तारों के साथ मिलाकर बनाया जाता है और इसका उपयोग छत, पुल और खंभों के निर्माण में किया जाता है

ग्लास

ग्लास- एक अनाकार ठोस या स्पर कूल्ड लिक्विड- जिसमें मेन्ट्ज सिलिका (Si2) मौजूद होता है।

विभिन्न पदार्थों को अलग-अलग रंग का ग्लास प्राप्त करने के लिए जोड़ा जाता है

रंग	सम्मिलित पदार्थ	
लाल	कॉपर ऑक्साइड (CuO)	
ग्रीन	क्रोमियम ऑक्साइड (Cr203)	
ब्लू	कोबाल्ट	
ब्राउन	ऑक्साइड (Co0)आयरन ऑक्साइड (Fe203)	

भारी जल (heavy water)

- भारी जल वह जल होता है जिसमें भारी मात्रा में हाइड्रोजन या इ्यूटेरियम होता है। इ्यूटेरियम आमतौर पर पानी, प्रोटियम में पाए जाने वाले हाइड्रोजन से अलग होता है, जिसमें इ्यूटेरियम के प्रत्येक परमाणु में एक प्रोटॉन और एक न्यूट्रॉन होता है। भारी पानी इ्यूटेरियम ऑक्साइड, D2O या यह इ्यूटेरियम प्रोटियम ऑक्साइड DHO से युक्त हो सकता है।
- नोट: भारी जल प्राकृतिक रूप से पाया जाता है, हालांकि इसकी मात्रा यह नियमित जल की तुलना में बहुत कम है। लगभग जल के 20 मिलियन जलीय कणों में एक कण भारी जल का होता है।

हार्ड वॉटर (कठोर जल)

- जिस पानी में घुलनशील बाइकार्बोनेट्स तेल कैल्शियम और मैग्नीशियम मौजूद होते हैं, उसे अस्थायी हाई वॉटर कहा जाता है और जिसमें घुलनशील सल्फेट्स और मैग्नीशियम और कैल्शियम के क्लोराइड मौजूद होते हैं, उसे स्थायी हाई वॉटर कहा जाता है।
- पानी की अस्थायी कठोरता को उबलते हुए या कैल्शियम हाइड्रॉक्साइड, Ca (OH) 2 क्लार्क की प्रक्रिया द्वारा हटा दिया जाता है। पानी की स्थायी कठोरता को सोडियम कार्बोनेट (Na2CO3) या कैलगन (सोडियम हेमामेटाफॉस्फेट, Na2 [Na4 (PO3) से हटा दिया जाता है।

हांईनिंग आयल (हाइड्रोजनीकरण)

 तेल, एक असंतृप्त वसा जिसे निकल उत्प्रेरक के साथ गर्म किया जाता है और हाइड्रोजन एक ठोस द्रव्यमान में परिवर्तित हो जाता है, जिसे घी, एक संतृप्त वसा कहा जाता है। इस प्रक्रिया को हांईनिंग आयल कहा जाता है और हाइड्रोजनीकरण की उपस्थिति में किया जाता है। इसके लिए उत्प्रेरक के रूप में निकल का उपयोग किया जाता है।

धात्ओं के कुछ महत्वपूर्ण अयस्क

वातुंजा के कुछ नहत्वपूर्ण जयस्क			
अयस्क- वे खनिज जिनसे धातुएँ व्यावसायिक और आर्थिक रूप से न्यूनतम क्षमता के साथ निकाली जाती उन्हें अयस्क कहते हैं।तत्वों के नाम	अयस्क •	रासायनिक फार्मूला	
1. एल्यूमिनियम (अल)	(a) बॉक्साइट (b) कोरन्डम (c) क्रयोलाइट	Al2O32H2O Al2O3 Na3AlF6	
2. आयरन (लौह)	(a) हेमाटाइट (b)मैग्नेटाइट (c) आयरन पाइराइट (d) साइड राइट	Fe2O3 Fe3O4 FeS2 FeCO3	
3. कॉपर (Cu)	(a) कॉपर पाइराइट (b) कॉपर ग्लेंस (c) मैलाकाइट	CuFeS2 Cu2S 2CuCO3Cu (OH) 2	
4. जस्ता (Zn	(a) जिंक ब्लेंड (b) कैलेमाइन	ZnS ZnCo3	
5. सोडियम) (Na)	(a) सेंधा नमक (b) सोडियम कार्बोनेट	Na2CO3	

$\underline{www.byjusexamprep.com}$

6. पोटेशियम (K)	(a) केरनालाइट (b) साल्ट पेट्रे	KCIMgCl6H2O KNO3
7. लੀਤ (Pb)	(a) गेलेना (b) एंगलसाइट	PbS PbCl2
8. टिन (Sn)	(a) टिन पाइराइट्स (b) क्लासराइट	Cu2FeSnS4 SnO2
9. सिल्वर (Ag)	(a) सिल्वर ग्लैंस	Ag2S
10. गोल्ड (Au)	(a) केल्व राइट (b) साइबे राइट	AuTe2 AgAuTe2
11. मर्करी (Hg)	(a) सिनबार (b) कैलोमल	HgS Hg2Cl2
12. मैग्नीशियम (Mg)	(a) डोलोमाइट (b) करनालिट	
13. कैल्शियम (Ca)	(a) लाइम स्टोन (b) डोलोमाइट	CaCO3 MgCO3CaCO3
14. फॉस्फोरस (P)	(a) फॉस्फोराइट (b) फ्लोरापेटाइट Ca	3 (PO4) CaFe2 3Ca3 (PO4) CaFe2

