## Study Notes on Kinetics of First Order Reaction

## Kinetics of first order reaction

It is directly proportional to the concentration of a single reactant.
Let a general equation be:

$t=0 \quad a \quad 0$
$t=t \quad a-x \quad x$
The expression of rate of reaction can be written as:
$\frac{d x}{d t} \propto[A]^{1}$
$\frac{d x}{d t}=k[A]^{1}$
$\frac{d x}{d t}=k(a-x)$
$\frac{d x}{a-x}=k d t$
$\int \frac{1}{(a-x)} d x=k \int d t+c$
$\ln \frac{1}{(a-x)}=k t+c$
But initially $t=0, x=0$
$\ln \frac{1}{(a-0)}=k \cdot 0+c$
$\ln \frac{1}{a}=c$
$c^{1}=\ln \left(\frac{1}{a}\right)$
From equations (2) and (3):
$\ln \frac{1}{(a-x)}=k t+\ln \left(\frac{1}{a}\right)$
$k t=\ln \left(\frac{1}{a-x}\right)-\ln \left(\frac{1}{a}\right)$
$k t=\ln \left(\frac{\left(\frac{1}{a-x}\right)}{\left(\frac{1}{a}\right)}\right)$
$k t=\ln \left(\frac{a}{a-x}\right)$
$k t=2.303 \log \frac{a}{a-x}$
This relation is known as rate law expression.

## Half-life time for first order reactions:

For half lifetime,
$t \rightarrow t_{1 / 2} ; x \rightarrow a / 2$
From equation (7),
k. $t_{1 / 2}=2.303 \log \frac{a}{a-a / 2}$
k. $t_{1 / 2}=2.303 \log \frac{2 a}{a}$
k. $\mathrm{t}_{1 / 2}=2.303 \log 2$
$k . t_{1 / 2}=2.303 \times 0.3010$
$k=\frac{0.693}{t_{1 / 2}}$
$t_{1 / 2}=\frac{0.693}{k}$

## Unit of rate constant for first order reactions:

Unit of rate constant $=\sec ^{-1}$

## Graphical representation of first order reactions:

(i). When $\log (a-x)$ is plotted versus time $(t)$ :
$k t=\ln \frac{a}{a-x}=2.303 \log _{10} \frac{a}{(a-x)}$
$\log \left(\frac{a}{a-x}\right)=\frac{k t}{2.303}$
$2.303 \log a-2.303 \log (a-x)=k t$
$2.303 \log (a-x)=-k t+2.303 \log a$
$\log (a-x)=\frac{-k}{2.303} t+\log a$
From, $y=m x+c$
Slope $(m)=\frac{-k}{2.303}$ and intercept $(c)=\log a$

(ii). When time $(t)$ versus $\log (a-x)$

Since from equation (7),
$k t=2.303 \log a-2.303 \log (a-x)$
$t=\frac{2.303}{k} \log a-\frac{2.303}{k} \log (a-x)$
$t=\left(-\frac{2.303}{k}\right) \log (a-x)+\frac{2.303}{k} \log a$
From $y=m x+c$,
Slope $(m)=-\frac{2.303}{k}$ and intercept $(c)=\frac{2.303}{k} \log \mathrm{a}$

(iii). $-\frac{d[A]}{d t}$ versus concentration [A]:

Rate of reaction $\propto[A]^{1}$
$-\frac{d[A]}{d t}=k[A]+0$
From $y=m x+c$,
Slope $(\mathrm{m})=\mathrm{k}$ and intercept $(\mathrm{c})=0$

(iv). Concentration $\left(C_{t}\right)$ versus time $(t)$ :

|  | $A \longrightarrow$ | Product |
| :---: | :---: | :---: |
| $t=0$ | $C_{0}$ | 0 |
| $t=t$ | $C_{t}$ | $\left(C_{0}-C_{t}\right)$ |

$k t=\ln \frac{C_{0}}{C_{t}} \Rightarrow e^{k t}=e^{\ln \left(\frac{C_{0}}{C_{t}}\right) \Rightarrow e^{k t}=\frac{C_{0}}{C_{t}}}$
$C_{0}=C_{t} e^{k t}$ or $C_{t}=C_{0} e^{-k t}$


First order reaction is never completed.
Since,
$C_{t}=C_{0} e^{-k . x}$
$[t=\infty]$
$C_{t}=C_{0} .0$
$C_{t}=0$

## CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

CSIR NET General Aptitude Course 2021

Complete Study Plan to Boost the CSIR NET Score
What to Expect?
Live Classes

- Mock Tests
- Guizzes
- Chapter-wise Tests
- Doubt Sessions
- Revision Tests
- PYQ Discussion
- Expert faculty
Course Language
- Bilingual

This Course Includes

$80+$
Live Classes


1000+
Practice Questions
Study Notes \&
Formula Sheets

$10+$
Mock Tests

## CSIR NET Life Science 2021 Crash Course

Revision Plan to clear the exam
What to Expect?

- Live Classes *
- Quizzes •
- Doubt Sessions e
- PYQDiscussion e


## Course Language

* English

This Course Includes
(m)
$200+$
Live Classes
(目)
$200+$
Study PDFs

(
$3000+$
Practice Questions
$10+$
Mock Tests

CSIR NET Chemical Science 2021 Crash Gourse

Complete Revision Plan to ACE the Exam
What to Expect?

- Live Classes
- Mock Tests
- Quizzes
- Chapter-wise Tests
- Doubt Sessions
- Revision Tests
- PYQ Discussion
- Expert faculty


## Course Language

English
This Course Includes

$180+$
Live Classes

$3000+$
Practice Questions
$200+$
Study PDFs
$10+$
Mock Tests

