Important questions on Surface Chemistry

Important Questions on Surface Chemistry

1. In Freundlich Adsorption Isotherm, value of $1 / \mathrm{n}$ can be defined as-
A. 1 in case of chemisorption
B. 1 in case of physical Adsorption
C. Between o to 1 in all the cases
D. 0 in all the cases

2. Adsorption is

A. An exothermic process hence increases in temperature decrease adsorption in case where Vander Waals forces exist between adsorbate and adsorbent.
B. An endothermic process hence increase in temperature increases adsorption.
C. An exothermic process hence increase in temperature increases adsorption.
D. None of the above.
3. A graph plotted $\log x / m$ vs $\log p$ shows a straight line with slope $=1$ and intercept $=0.4771$. The extent of adsorption of gas at $p=2$ atm is:
A.1.4
B. 6
C. 4.1
D. 3.2
4. For $1.0 \times 10^{-4} \mathrm{M}$ aqueous solutions of n -butanoic acid $\frac{\mathrm{d} \gamma}{\mathrm{dC}}=-0.080 \mathrm{Nm}^{2} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. By using Gibb's adsorption equation, determine the average surface area available to each molecule.
A. $5.2 \times 10^{-19} \mathrm{~m}^{2}$
B. $3.9 \times 10^{-19} \mathrm{~m}^{2}$
C. $4.7 \times 10^{-19} \mathrm{~m}^{2}$
D. $6.7 \times 10^{-19} \mathrm{~m}^{2}$
5. The adsorption of a gas on a solid surface follows a Langmuir isotherm with $\mathrm{k}=3.76 \mathrm{kPa}^{-1}$, at a temperature of $25^{\circ} \mathrm{C}$. Calculate the pressure of gas required to achieve a fractional surface coverage of 10^{-1}.
A. 32 Pa
B. 27 Pa
C. 30 Pa
D. 45 Pa
6. Which gas is adsorbed to maximum extent on the given surface?
A. NH_{3}
B. H_{2}
C. N_{2}
D. O_{2}
7. The time for which the oxygen atom remains adsorbed on a tungsten surface is 0.36 s at 2550 K and 3.49 s at 2360 K . Determine the activation of desorption of oxygen atoms.
A. $432.42 \mathrm{~kJ} / \mathrm{mol}$
B. $532.30 \mathrm{~kJ} / \mathrm{mol}$
C. $326.43 \mathrm{~kJ} / \mathrm{mol}$
D. $598.29 \mathrm{~kJ} / \mathrm{mol}$
8. The mass x of a solute adsorbed per gram of a solid adsorbed is given by the Freundlich adsorption isotherm as $x=k c^{n}$, here k and n are 0.160 and 0.431 , respectively. Calculate the amount of acetic acid $\left(\mathrm{M}_{\mathrm{m}}=60.05 \mathrm{~g} \mathrm{~mol}^{-1}\right.$) that 1 kg of charcoal would adsorb from a 0.837 M vinegar solution.
A. 4.32 mol
B. 2.47 mol
C. 1.57 mol
D. 3.26 mol
9. An organic fatty acid forms a surface film on water that obeys the two-dimensional ideal gas law. If the surface tension lowering is $10 \mathrm{mN} \mathrm{m}{ }^{-1}$ at $25^{\circ} \mathrm{C}$, calculate the surface excess concentration.
A. $4.04 \times 10^{-5} \mathrm{~mol} \mathrm{~m}^{-2}$
B. $4.04 \times 10^{-6} \mathrm{~mol} \mathrm{~m}^{-2}$
C. $4.04 \times 10^{-4} \mathrm{~mol} \mathrm{~m}^{-2}$
D. $4.04 \times 10^{-3} \mathrm{~mol} \mathrm{~m}^{-2}$
10. For adsorption process, the correct thermodynamic condition is:
A. $\Delta \mathrm{H}$ must be negative
B. $\Delta \mathrm{S}$ must be negative
C. $\Delta \mathrm{G}$ must be negative
D. $\Delta \mathrm{H}, \Delta \mathrm{S}$ and $\Delta \mathrm{G}$ must be negative.

ANSWERKEY					
1. C	2.A	3. B	4.A	5. C	6.A
7. D	8. B	9.B	10.D		

SOLUTIONS

Solution 1. Freundlich equation is given as:
$\frac{X}{m}=k P^{1 / n}$
Or,
$\underline{x} \propto P^{1 / n}$
m
Taking log on both sides of equation,
$\log \frac{x}{m}=\log k+\frac{1}{n} \log P$
Case I \rightarrow at low pressure,
$\underline{1}=1$
n
Case II \rightarrow at high pressure,
$\frac{x}{m}=$ constant
Case III \rightarrow at intermediate range of pressure,
x
m
Depends on power P which is between 0 to 1 .

Solution 2. Adsorption is a Surface Phenomenon and an exothermic process hence increase in temperature decrease adsorption in case where Vander Walls's forces exist between adsorbate and adsorbent.

Solution 3. According to Freundlich Adsorption Isotherm,
$\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{1 / \mathrm{n}}$
$\log \frac{x}{m}=\log \mathrm{k}+\frac{1}{\mathrm{n}} \log \mathrm{p}$
Given,
$\frac{1}{n}=1 \log k=0.4771$
$\mathrm{k}=10^{0.4771}=3$
$\frac{x}{m}=3 \times 2=6$

Solution 4. From Gibbs adsorption equation,

$$
\Gamma_{2}=-\frac{\mathrm{C}}{\mathrm{RT}} \cdot \frac{\mathrm{~d} \gamma}{\mathrm{dC}}
$$

$\Gamma_{2}=\frac{\left(1.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right)\left(10^{3} \mathrm{dm}^{3} \mathrm{~m}^{-3}\right)}{\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})\left(-0.080 \mathrm{Nm}^{2} \mathrm{~mol}^{-1}\right)}$
$\Gamma_{2}=3.2 \times 10^{-6} \mathrm{molm}^{-2}$
Average surface area available to each molecule

$$
=\frac{1}{3.2 \times 10^{-6} \times 6.02 \times 10^{23}}=5.2 \times 10^{-19} \mathrm{~m}^{2}
$$

Solution 5. The expression to calculate pressure is:
$\mathrm{Q}=\frac{\mathrm{kp}}{1+\mathrm{kp}}$
Rearrange the above expression for p,
$\mathrm{p}=\frac{\theta}{(1-\theta) \mathrm{k}}=\frac{0.10}{(1-0.10) \times 3.76 \times \mathrm{kPa}^{-1}}=30 \mathrm{~Pa}$

Solution 6. Extent of adsorption is maximum for a polar gas over a non-polar gas due to stronger interaction in polar species than in non-polar gas.
$\mathrm{NH}_{3} \rightarrow$ Polar
$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2} \rightarrow$ non-polar

Solution 7. The expression to calculate desorption of oxygen atom is:
$\mathrm{E}_{\mathrm{a}}=\frac{\mathrm{R} \ln \left(\tau_{2} / \tau_{1}\right)\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right)}{\mathrm{T}_{1}-\mathrm{T}_{2}}$
$=\frac{\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \ln (3.49 \mathrm{~s} / 0.36 \mathrm{~s})(2550 \mathrm{~K})(2360 \mathrm{~K})}{(2550-2360) \mathrm{K}}$
$=598.29 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Solution 8. $x=k c^{n}=(0.160)(0.837)^{0.431}$ per gram of charcoal
$=\left(0.148 \mathrm{~g}\right.$ acetic acid) $(\mathrm{g} \text { charcoal) })^{-1}=\left(148 \mathrm{~g}\right.$ acetic acid) $(\mathrm{kg} \text { charcoal })^{-1}$

Solution $9 . \Gamma_{2}$ is equal to $N /\left(N_{A} A\right)$ where N is the number of molecules contained in a film of area A.

$$
\Gamma_{2}=\frac{\pi}{\mathrm{RT}}=\frac{10 \times 10^{-3} \mathrm{Nm}^{-1}}{\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(298 \mathrm{~K})}=4.04 \times 10^{-6} \mathrm{molm}^{-2}
$$

Solution 10. According to the equation,
$\Delta G=\Delta H-T \Delta S$
can be negative if $\Delta \mathrm{H}$ has sufficiently high negative value as $-\mathrm{T} \Delta \mathrm{S}$ is positive. Thus, in adsorption which is a spontaneous process, $\Delta \mathrm{S}$ is negative, $\Delta \mathrm{H}$ is sufficiently negative and as a result, $\Delta \mathrm{G}$ is also negative.

CRASH COURSES Enrol for Ongoing CSIR NET Crash Courses

CSIR NET General Aptitude Course 2021

Complete Study Pian to Boost the CSIR NET Score What to Expect?

- Live Classes Mock Tests
- Quizzes
- Chapter-wise Tests
- Doubt Sessions
- Revision Tests
- PYQ Discussion
- Expert facuity

Course Language

- Bilingual

This Course Includes

$80+$
Live Classes
Study Notes \&
Formula Sheets

$10+$
Mock Tests

CSIR NET Chemical Science 2021 Crash Course

Complete Revision Plan to ACE the Exam
What to Expect?

- Live Classes
- Quizzes
- Doubt Sessions
- PYQ Discussion

Course Language

- English

This Course Includes

$180+$
Live Classes
200+
Study PDFs

- Mock Tests
- Chapter-wise Tests
- Revision Tests
- Expert faculty

Course Language

- English

This Course Includes

200+
Live Classes
$200+$
Study PDFs

3000+
Practice Questions
$10+$
Mock Tests

$3000+$
Practice Questions
$10+$
Mock Tests

