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Chapter-1 

Basics of Communication System 

1. INTRODUCTION 

Communication is the process of establishing connection or link between two points for 

information exchange. 

OR 

Communication is simply the basic process of exchanging information. 

communication system. 

Typical examples of communication system are line telephony and line telegraphy, radio 

telephony and radio telegraphy, radio broadcasting, point to point communication and mobile 

communication, computer communication, radar communication, television broadcasting, radio 

telemetry, radio aids to navigation, radio aids to aircraft landing etc. 

2. THE COMMUNICATION PROCESS: ELEMENTS OF A COMMUNICATION SYSTEM 

The whole idea of presenting the model of communication is to analysis the key concepts used 

in communication in isolated parts and them combining them to form the complete picture. 

 

3. CONCEPT OF BANDWIDTH & FREQUENCY SPECTRUM 

Bandwidth: Different types of passband signals such as voice signal, music signal, TV signal, 

etc. Each of these signals will have its own frequency range. This frequency range of a signal 

is known as its bandwidth. 

Thus, we write  BW = f2 – f1 

The bandwidth of different signals has been listed in table 1. 

 

 

 

 

 

 

COMMUNICATION SYSTEM (FORMULA NOTES) 
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TABLE 1 

S. No. Type of the signal Range of frequency in Hz Bandwidth in Hz 

1. 
Voice signal (speech) for 

telephony 
300 – 3400 3,100 

2. Music signal 20 – 15000 14, 980 

3. TV signals (picture) 0 – 5 MHz 5 MHz 

4. Digital data 

300 – 3400 

(If it is using the telephone 

line for its transmission) 

3,100 

Frequency Spectrum: Frequency spectrum may be defined as the presentation of a signal in 

the frequency domain. It can be obtained by using either Fourier series or Fourier transform. 

It consists of the amplitude and phase spectrums of the signal. 

4. CLASSIFICATION OF COMMUNICATION SYSTEM 

It shows that the electronic communication system may be basically categorised into three 

groups based on: 

(i) Whether the system is unidirectional or bidirectional. 

(ii) Whether it uses an analog or digital information signal. 

(iii) Whether the system uses baseband transmission or uses some kind of modulation. 

 

Classification of Electronic Communication Systems 

5. CLASSIFICATION BASED ON THE NATURE OF INFORMATION SIGNAL 

 

Classification based on analog or digital communication 
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6. ANALOG COMMUNICATION  

The modulation system or techniques in which one of the characteristics of the carrier is varied 

in proportion with the instantaneous value of modulating signal is called as analog modulation 

system. 

Advantages of analog communication 

Some of the advantages of analog communication are as under: 

(i) Transmitters and receivers are simple. 

(ii) Low bandwidth requirement 

(iii) FDM (frequency division multiplexing) can be used. 

Drawbacks of analog communication 

Some of the drawbacks are as under: 

(i) Noise affects the signal quality 

(ii) It is not possible to separate noise and signal. 

(iii) Repeaters cannot be used between transmitters and receivers. 

7. DIGITAL COMMUNICATION 

The modulation system or technique in which the transmitted signal is in the form of digital 

pulses of constant amplitude, constant frequency and phase is called as digital modulation 

system. 

Advantages of digital communication 

Some of the advantages of digital communication are as under: 

(i) Due to the digital nature of the transmitted signal, the interference of additive noise does 

not introduce many errors. Hence, digital communication has a better noise immunity. 

(ii) Due to the channel coding techniques used in digital communication, it, is possible to detect 

and correct the errors introduced during the data transmission. 

(iii) Repeaters can be used between transmitter and receiver to regenerate the digital signal. 

This improves the noise immunity further. 

Drawbacks of digital communication 

Some of the important drawbacks of digital communication arc as under: 

(i) The bit rates of digital systems are high. Therefore, they require a larger channel bandwidth 

as compared to analog systems. 

(ii) Digital modulation needs synchronization in case of synchronous modulation. 

8. BASEBAND AND BANDPASS SIGNALS 

Baseband Signal 

The information or the input signal to a communication system can be analog i.e. sound, picture 

or it can be digital e.g. the computer data. The electrical equivalent of this original information 

signal is known as the baseband signal. 
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Bandpass signal 

It may be defined as a signal which has a non-zero lowest frequency in its spectrum. This means 

that the frequency spectrum of a bandpass signal extends from f1 to f2 Hz. The modulated signal 

is called as the bandpass signal. 

9. MODULATION  

In the modulation process, two signals are used namely the modulating signal and the carrier 

signal. The modulating signal is nothing but the baseband signal or information signal while 

carrier is a high frequency sinusoidal signal. 

 

Need of Modulation 

i. To avoid the mixing of signals  

ii. To decrease the length of transmitting and receiving antenna  

iii. To allow the multiplexing of signals 

10. COMPARISION BETWEEN ANALOG & DIGITAL COMMUNICATION 

Table 2 

S. 

No. 
Analog modulation Digital modulation 

(i) 
Transmitted modulated signal 

is analog in nature. 

Transmitted signal is digital, i.e. train of 

digital pulses. 

(ii) 

Amplitude, frequency or phase 

variations in the transmitted 

signal represent the 

information or message. 

Amplitude, width or position of the 

transmitted pulses is constant. The 

message is transmitted in the form of 

code words. 

(iii) 
Noise immunity is poor for AM, 

but improved for FM and PM. 
Noise immunity is excellent. 
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(iv) 

It is not possible to separate 

out noise and signal. 

Therefore, repeaters cannot be 

used. 

It is possible to separate signal from 

noise. Therefore, repeaters can be 

used. 

(v) Coding is not possible. 
Coding techniques can be used to 

detect and correct the errors. 

(vi) 

Bandwidth required is lower 

than that for the digital 

modulation methods. 

Due to higher bit rates, higher channel 

bandwidth is required. 

(vii) FDM is used for multiplexing. TDM is used for multiplexing. 

(viii) 

Not suitable for transmission of 

secret information in military 

applications. 

Due to coding techniques, it is suitable 

for military applications. 

(ix) 
Analog modulation systems 

are AM,FM, PM, PAM, PWM etc. 

Digital modulation systems are PCM, 

DM, ADM, DPCM, etc. 

 

Chapter-2 

Amplitude Modulation 

1. AMPLITUDE MODULATION 

Amplitude modulation is defined as a process in which the amplitude of the carrier wave 

c(t) is varied linearly with the message signal m(t) keeping other parameters constant.  

Time-Domain Description 

The standard form of an amplitude-modulated (AM) wave is defined by 

x(t) = AC [1 + kam(t)] cos(2πfct) 

Where ka is a constant called the amplitude sensitivity of the modulator. The modulated 

wave so defined is said to be a “standard” AM wave, because its frequency content is fully 

representative of amplitude modulation. 

• The amplitude of the time function multiplying cos(2πfct) is called the envelope of the AM 

wave s(t). Using a(t) to denote this envelope, we may thus write 

a(t) = Ac |1 + ka m(t)| 

• Two cases arise, depending on the magnitude of ka m(t), compared to unity. 

Case 1: 

|ka m(t)| ≤ 1, for all t 

Under this condition, the term 1 + ka m(t), is always non-negative. We may therefore simplify 

the expression for the envelope of the AM wave by writing 

a(t) = Ac(1 + kam(t)), for all t 

Case 2:  

|kam(t)| > 1, for all t 
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The maximum absolute value of kam(t) multiplied by 100 is referred to as the percentage 

modulation. Accordingly, case 1 corresponds to a percentage modulation less than or equal 

to 100%, whereas case 2 corresponds to a percentage modulation in excess of 100%. 

 

AM waveform for sinusoidal modulating signal 

 

2. FREQUENCY DOMAIN DESCRIPTION 

To develop the frequency description of the AM wave, we take the Fourier transform of both 

sides. Let S(f) denote the Fourier transform of s(t), and M(f) denote the Fourier transform of 

the message signal m(t); we refer to M(f) as the message spectrum. Accordingly, using the 

Fourier transform of the cosine function AC cos(2πtct) and the frequency-shifting property of 

the Fourier transform. we may write 

c a c
c c c c

A k A
S(t) [ (f f ) (f f )] [M(f – f ) M(f f )]

2 2
=  − +  + + + +  
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B.W = (fc + fm) – (fc – fm) 

B.W = 2fm  Hz or kHz 

B.W = 2ωm rad/sec 

3. SINGLE TONE AMPLITUDE MODULATION 

Let carrier signal, 

x(t) = AC cos ωct 

And the message signal, 

m(t) = Am cos ωmt 

then after modulation, we get 

AM C c a c c m a C c m

Full carrier USB LSB

1 1
X (t) A cos t m A cos( )t m A cos( )t

2 2
=  +  +  +  −   

 

4. SPECTRUM OF SINUSOIDAL AM SIGNAL 
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2Am = Vmax – Vmin 

⇒ max min
m

V V
A

2

−
=  

max min
C

V V
A

2

+
=  

Finally, we get, 

max minm
a

C max min

V VA
m modulation index

A V V

−
= = →

+
 

• % modulation = ma × 100 

5. OVER MODULATION 

When ma > 1 i.e. Am > AC, over modulation takes place and the signal gets distorted. 

Because, the negative part of waveform gets cut from the waveform leaving behind a 

“square wave type” of signal, which generates infinite number of harmonics. This type of 

distortion is known as “Non-linear distortion” or “Envelope distortion” 
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(a) Under modulated AM wave (b) Over modulated AM wave 

6. POWER RELATIONS IN AM 

The Total Power in AM  

The total power in an AM wave is given by, 

  Pt = [Carrier Power] + [Power in USB] + [Power in LSB] 

∴ 

2 22
USB LSB

t

E EE
P

R R R
= + +  

Where E, EUSB and ELSB are the RMS values of the carrier and sideband amplitudes and R is the 

characteristic resistance of antenna in which the total power is dissipated. 

Carrier Power (Pc) 

The carrier power is given by 

2 22
c C

c

[E / 2] EE
P

R R 2R
= = =  

 Power in the sidebands 

• The power in the two sidebands is given as 

2
SB

USB LSB

E
P P

R
= =  

• As we know the peak amplitude of each sideband is a cm E

2
 

2 2 2
a c a c

USB LSB

[m E /2 2] m E
P P

R 8R
= = =  

2 2
a c

USB LSB

m E
P P

4 2R
= =   

2
a

USB LSB c

m
P P P

4
= =  

Total Power: The total power is given by 

Pt = Pc + PUSB + PLSB = 

2 2
a a

c c c

m m
P P P

4 4
+ +  
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∴ 
2
a

t c

m
P 1 P

2

 
= + 
  

 

or, 

2
t a

C

P m
1

P 2
= +  

7. TRANSMISSION EFFICIENCY 

• Transmission efficiency of an AM wave is the ratio of the transmitted power which contains 

the information (i.e. the total sideband power) to the total transmitted power. 

∴ 

2 2
a a

c 2 2
LSB USB a a

2 22
t a aa

C

m m
P

4 4P P m /2 m

P m 2 mm
11 P

22

 
+ 

+   
 = = = =

  +
++ 

  

 

• The percentage transmission efficiency is given by 

2
a

2
a

m
% 100%

2 m
 = 

+
 

8. AM POWER IN TERMS OF CURRENT 

Assume IC to be the RMS current corresponding to the unmodulated carrier and It to be the RMS 

current AM wave. 

• AM wave. 

2 2
c c t tP I R and P I R= =  

∴   

22
t t t

2
c cc

P I IR

P R II

 
=  =  

 
 

2
t a

c

P m
1

P 2

 
= + 
  

 

2 2
t a

c

I m
1

I 2

  
= +  
    

 

1/2
2
a

t c

m
I I 1

2

 
= + 

  
 

9. MULTIPLE SINGLE TONE AMPLITUDE MODULATION 

Let us assume that there are two modulating signals. 

      x1(t) = Em1 cosωm1t 

and x2(t) = Em2 cosωm2t 
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m1 m2
AM c m1 m2 c

c c

E E
e E 1 cos t cos t cos t

E E

 
= +  +   

 

 

Where, m1
1

c

E
m

E
=   and      m2

2

c

E
m

E
=  

Use the following identity to simplify equation 

1 1
cosAcosB cos(A B) cos(A B)

2 2
= + + −  

1 c 1 c
AM c c c m1 c m1

m E m E
e E cos t cos( )t cos( )t

2 2
=  +  +  +  −   

2 c 2 c
c m2 c m2

m E m E
cos( )t cos( )t

2 2
+  +  +  −   

Total Power in AM Wave 

The total power is given as, 

Pt = Pc + PUSB1 + PLSB1 + PUSB2 +PLSB2 

Extending the concept to the AM wave with n number of modulating signals with modulating 

indices m1, m2…mn the total power is given by, 

2 2 2
1 2 n

t c

m m m
P P 1 ...

2 2 2

 
= + + + + 

  

 

Effective Modulation Index (mt) 

We know that 
2
t

t c

m
P P 1

2

 
= + 

  

 

1/2
2 2 2

t 1 2 nm m m ...m = + +
 

 

10. GENERATION OF AM WAVES USING NONLINEAR PROPERTY 

The circuit that generates the AM waves is called as amplitude modulator and modulators are 

named as, 

i. Square law modulator 

ii. Switching modulator 

11. DISADVANTAGES OF AM (DSBFC) 

The AM signal is also called as "Double Sideband Full Carrier (DSBFC) signal. The main 

disadvantage of this technique is: 

• Power wastage takes place. 

• AM needs larger bandwidth. 

• AM wave gets affected due to noise. 

These are explained as follows 

• The carrier signal in the DSBFC system does not convey any information. 
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12. DETECTION OF AM WAVES 

Square-law detector  

A square-law detector is essentially obtained by using a square-law modulator for the purpose 

of detection. Consider the transfer characteristic equation of a nonlinear device, which is 

reproduced here for convenience 

v2(t) = a1v1(t) + a2v1
2(t) 

where v1(t) and v2(t) are the input and output voltages, respectively and a1 and a2 are 

constants. 

Envelope detector 

Charging time constant = 
c

1
RC

f
  

Discharging time constant = 
m

1
RC

f
  

As the varying voltage across R follows the envelope. 

So that, 
c m

1 1
RC

f f
   

If RC is very small or RC is very large, then in both the cases we can’t get the envelope of 

message signal waveform. 

For getting envelope of m(t), exact value of RC is given as, 

2
a

m a

1 m1
RC

m

−
 


 

13. TYPES OF AM 

 

14. DOUBLE-SIDEBAND SUPPRESSED-CARRIER MODULATION 

Time-Domain Description 

To describe a double-sideband suppressed-carrier (DSBSC) modulated wave as a function of 

time, we write  

s(t) = c(t)m(t) = Ac cos(2πfct) m(t) 

 Frequency-Domain Description 

The suppression of the carrier from the modulated wave is well-appreciated by examining its 

spectrum. Specifically, by taking the Fourier transform 
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c c c

1
S(f) A [M(f f ) M(f f )]

2
= − + +  

where, as before, S(f) is the Fourier transform of the modulated wave s(t) and M(f) is the 

Fourier transform of the message signal m(t). 

15. GENERATION OF DSBSC WAVES 

A double-sideband suppressed-carrier modulated wave consists simply of the product of the 

message signal and the carrier wave. A device for achieving this requirement is called a product 

modulator.  

Spectrum of DSB-SC Signal 

 

Modulated DSBSC signal 

Transmission B.W = 2ωm 

16. COHERENT (SYNCHRONOUS) DETECTION OF DSB-SC WAVES 

Let x(t) be the DSB-SC signal at the input of the product modulator and the local oscillator 

having frequency Ac cos (2πfct + ϕ). The signal x(t) can be represented as 

c cx(t) m(t) A cos(2 f t)=    

 

Hence the output of the product modulator is given by 

x′(t) = m(t). Ac cos(2πfct) cos(2πfct + ϕ) 

x′(t) = m(t). Ac cos(2πfct + ϕ) cos(2πfct) 

But 
1

cosAcosB [cos(A B) cos(A B)
2

= + + −  
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Therefore, c c

1
x (t) m(t)A [cos(4 f t ) cos ]

2
 =  +  +   

c c c

1 1
x (t) A cos m(t) m(t)A cos(4 f t )

2 2
 =  +  +   

Signal x′(t) is them passed through a low pass filter. Which allows only the first term to pass 

through and will reject the second term. Hence the filter output is given by, 

c

1
m(t) A cos m(t)

2
 =   

17. HILBERT TRANSFORM 

Hilbert transform of x(t) is represented with x̂(t)  ,and it is given by 

 

SINGLE SIDE-BAND  

Let m(t) is modulating signal and 𝑚̂(𝑡) is Hilbert transform of m(t) then, 

SSB-SC c c

SSB-SC c c

ˆX (t) m(t)cos t m(t)sin t LSB

ˆX (t) m(t)cos t – m(t)sin t USB

=  +  

=   
 

Also, 

B.W = ωc + ωm – ωc 

B.W = ωm 

Power Saving 

In DSB-SC: 

Power saved in DSBSC c

t

P
100

P
=   

save 2
a

2
P 100%

2 m
= 

+
 

In SSB-SC: 

c USB LSB

t

P P or P
Power saved in SSB 100

P

+
=   

2
a

save 2
a

4 m
P 100%

4 2m

+
= 

+
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18. VESTIGIAL SIDE-BAND MODULATION (VSB) 

 

VSB Transmitter 

Transmission bandwidth 

The transmission bandwidth of the VSB modulated wave is given by, 

B = (fm + fv) Hz  

where fm = Message bandwidth  

And fv = Width of the vestigial sideband. 

Generation of VSB Modulated Wave 

The modulating signal x(t) is applied to a product modulator. The output of the carrier oscillator is 

also applied to the other input of the product modulator. The output of product modulator is given 

by 

 

Generation of VSB signal 

m(t) = x(t).c(t) = x(t).Vc cos(2πfct) 

The spectrum of the VSB modulated signal is given by, 

S(f) = cV

2
[X(f – fc) + X(f + fc)]H(f)    

Chapter-3 

Angle Modulation 

1. ANGLE MODULATION 

An angle modulated wave can be expressed mathematically as 

s(t) = Ac cos [ωct + θ(t)]   

Where Ac is the peak carrier amplitude,  

          ωc is carrier frequency and  

          θ(t) is the instantaneous phase deviation. 

In angle modulation θ(t) is a function of modulating signal. 

2. PHASE MODULATION (PM)  

Mathematical Expression for PM 
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A phase modulated can be mathematically expressed in time domain as follows: 

 

Where kp is the phase sensitivity in radians per volt and m(t) is the message waveform. 

Mathematical Expression for FM 

We can use θ(t) to write the expression for FM in time domain as under: 

s(t) = Ac cos θ(t) 

FM wave: 

 

Where kf is the frequency sensitivity in radians per volt and m(t) is the message waveform. 

3. SINGLE TONE FREQUENCY MODULATION 

Changing the frequency of the carrier according to the-message signal is called Frequency 

Modulation. 

fi(t) = fc + Kfm(t) 

Kf = Frequency sensitivity (Hz/Volt) 

fi(t) = fc + Kf Am cos2πfmt  

fi, max = fc + KfAm 

fi, min = fc – KfAm 

Δf = KfAm = frequency deviation 

Maximum Frequency of FM Wave: 

The maximum frequency of FM wave is given by 

fmax=fc± Δf 

For a single tone modulation: 

m(t) = Am cos 2πfmt 

f m
c c m

m

2 K A
s(t) A cos 2 f t sin2 f t

2 f

  
=  +      

f m
c c m

m

K A
A cos 2 f t sin2 f t

f

  
=  +    

  

 

Modulation Index: The modulation index of FM wave is defined as under: 

f

Frequency deviation

Modulating frequency
 =  

f m

m m

K A f

f f


 = =  

Deviation Ratio: The modulation index corresponding to the maximum deviation and 

maximum modulating frequency is called as the deviation ratio. 
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Maximum deviation
Deviation ratio

Maximum modulating frequency
=  

Percentage Modulating of FM Wave: 

Actual frequncy deviation
% Modulation

Maximum allowable deviation
=  

4. TYPES OF FM 

The FM systems are basically classified into following two types: 

i. Narrow band FM (β << 1) 

ii. Wide band FM (β >> 1) 

BW of NBFM = 2fm 

The spectrum of AM and FM are identical except that the spectral component at fc – fm is 180° 

out of phase. 

Generation of NBFM signal 

Figure 6 shows the generation of narrow band FM using balanced modulator. 

 

Figure 6: Generation of Narrow band FM 

5. WIDEBAND FM 

Bessel function of order ‘n’ is given by 

j(x sin n )
nJ (x) (1 2 ) e d− =    

S(t) is wideband FM 

c 0 c c 1 c ms(t) A J ( )cos2 f t A J ( )[cos2 (f f )=   +   + c mt cos2 (t f )t]−  −  

                          c 2 c m c mA J ( )[cos2 (f 2f )t cos2 (f f )t]+   + +  +  

POWER CALCULATION 

Total Power 

2
2C

t n
n –

A
P J ( )

2R



= 

=   

According to property of Bessel function  

https://byjusexamprep.com/


byjusexamprep.com 

19 

2
C

t

A
P .1

2R
=  

2
CA

Total power
2R

=  

Same as unmodulated carrier power  

i.e. t CP P=  

The total power is independent of modulation index. AM takes more power compared to FM for 

the same message and carrier.  

6. CALCULATION OF PRACTICAL B.W OF WBFM USING CARSON’S RULE 

Carson has proved that the number of sidebands having significant amplitudes containing 99% 

of the total power is β + 1. 

B.W. = 2(β + 1)fm  

        
m

m

m

f
2 1 f

f

2 f 2f

 
= +  

 

=  +

 

7. PHASE MODULATION 

In phase modulation, phase of the carrier is varied according to message signal. Time domain 

equation of PM modulated signal can be written as, 

c c p

p

S(t) A cos[2 f t K (t)]
multitone modulation

K m(t)

=  +

 =  

Where, Kp =phase sensitivity (units =rad/volt) 

c c p m ms(t) A cos 2 f t K A cos2 f t single ton modulation =  +    

p mwhere K A A called phase deviation=   

c c ms(t) A cos[2 f t cos2 f t]=  +    

modulation index =  =  

8. GENERATION OF WBFM SIGNALS 

WBFM Signal can be generated by two methods 

i. Direct Method or parameter variation method 

ii. Indirect Method or Armstrong Method  

Direct Method 

This method is most widely used for generation of WBFM signal. 
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Figure 14(a): Voltage control oscillator 

Frequency of oscillation, 

1 2 1

1
f

2 (L L )(C C )
=

 + +
 

9. FM DEMODULATION USING PLL 

 

First order PLL 

When the input to the PLL is of the form cos[2πft + ϕ] the output voltage is 

0

d
V [ ]

dt
  .  

When the input to the PLL is an FM signal, Ac cos[2πfct + 2πKf ∫m(t) dt], the output voltage is 

0 f

d
V 2 K m(t) dt

dt
    

0 fV 2 K m(t)   

0 f
V

V

1
V 2 K m(t)

2 K
1

Where, =proportionality constant
2 K

=   




 

ff
0

vv

K frequency sensitivity of VCO at transmitterK
V m(t)

K frequency sensitivity of VCO at ReceiverK

−
=

−
 

Chapter-5 

Receivers and Noise 

1. TRF RECEIVER 

Block diagram for TRF Receiver is as follows 

 

Tuned radio frequency receiver 
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Carrier frequencies allotted from FM = (88– 108) MHz 

Carrier frequencies allotted from AM =(550 – 1650) KHz 

BW allotted to each AM broadcasting station = 10kHz 

2. SUPERHETERODYNE RECEIVER 

Block diagram for TRF Receiver is as follows 

 

Superheterodyne Receiver 

Mixer will change the carrier frequency from fs to fIF. 

Intermediate frequency for MW is 455 KHz. 

Image frequency: 

Fsi = fs + 2 IF 

Where IF is image frequency 

The resonant frequency of IF tuned amplifier is constant i.e., IF. 

fl – fs = IF 

Where fl is local oscillator frequency 

Image (Frequency) Rejection Ratio: 

IRR = s

si

Gain at f

Gain at f
 

Gain at fsi ≪ 1 

 

By increasing the Intermediate frequency, IRR can be increased. By increasing the bandwidth, 

the gain at fsi can be decreased so that IRR increases. 

1
IRR

B.W
  

IRR Q  

2 2IRR 1 Q= +   

where, si s

s si

f f

f f
 = −  

Since, the frequency of local oscillator is given by 
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LO

1
f

2 LC
=


 

where L is inductance and C is capacitance. Now, for a fix value of L, we have 1/fLO 

 

2

LO

1
C

2 L

1 1
or C

2 L f

=


=


 

So, maximum value of capacitance exists for minimum value of fLO, i.e 

 max 2

LO,min

1 1
C

2 L f
=


 

Similarly, we get 

min 2

LO, max

1 1
C

2 L f
=


 

3. CLASSIFICATION OF NOISE 

The fundamental noise sources produce different types of noise. They may be listed as under: 

(i) Thermal noise 

(ii) Partition noise 

(iii) Shot noise 

(iv) Low frequency or flicker noise 

(v) High frequency or transit time noise 

Shot Noise 

The mean square shot noise current for a diode is given as  

2
nI  = 2(I + 2I0)q B amperes2 

Where I = direct current across the junction (in amp.) 

          I0 = reverse saturation current (in amp.) 

          q = electronic charge = 1.6 × 10–19C  

          B = effective noise bandwidth in Hz. 

Thermal Noise or Johnson Noise 

The average thermal noise power is given by, 

Pn = kTB   Watts   

Where k = Boltzmann’s constant = 1.38 × 10–23 Joules/Kelvin 

          B = Bandwidth of the noise spectrum (Hz) 

           T = Temperature of the conductor, °Kelvin 

White Gaussian Noise 

The power spectral density (psd) of a white noise is given by, 

( ) = 0
n

N
S f

2
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N0 is defined, as under: 

N0 = kTe 

where K = Boltzmann’s constant and 

          Te = Equivalent noise temperature or the system 

Signal To Noise Ratio 

It is defined as the ratio of signal power to the noise power at the same point. 

Therefore,  = s

n

PS

N P
  

where, Ps = Signal power 

           Pn = Noise power at the same point. 

S/N (dB) = 10 log10 (Ps/Pn)  

4. SINAD 

This is another variation of signal to noise ratio. SINAD stands for signal noise and distortion 

and it is defined as, 

SINAD = 
+ +

+

S N D

N D
 

Where, S = Signal, N = Noise and D = Distortion 

SINAD is generally used in the specifications of FM receiver. 

5. NOISE FACTOR 

It is defined as, 

S N ratioat the input
F =

S N ratio at the output
  

= si n0

ni s0

P P
F

P P
    

Where Psi and Pni = Signal and noise power at the input 

and Pso and Pno = Signal and noise power at the output 

6. NOISE FIGURE  

Sometimes, the noise factor is expressed in decibels. When noise factor is expressed in 

decibels, it is known as noise figure. 

Noise figure FdB = 10 log10 F     

Substituting the expression for the noise factor, we get  

Noise figure = 10 log10 
 
 
 

S N at the input

S N at the output
 = 10 log10 (S/N)i – 10 log10 (S/N)0    

Hence, Noise figure FdB = (S/N)i dB – (S/N)0 dB 

The ideal value of noise figure is 0 dB. 
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7. NOISE TEMPERATURE 

The equivalent noise temperature of the amplifier is given by, 

Teq = (F – 1) T0  

Where F is noise factor and T0 is temperature 

8. FIGURE OF MERIT 

 

Figure 7 

(S/N)i=(Si/Ni) = 
Powerof the modulated signal

Power of noise in message bandwidth
 

(S/N)0 = (S0/N0) = 
Powerof the demodulated signal

Power of noise in message bandwidth
 

Figure of Merit = 
( )

( )
0

i

S N 1

Noise FigureS N
=  

Noise Figure = 
( )

( )
i

0

S N

S N
 

(S/N)0 depends mainly on modulation scheme and receiver characteristics. 

 

Figure of Merit of a DSB system 

∴ Figure of merit = 
2
c 0

2
c 0

A P 2WN
1

A P 2WN
=  

Figure of Merit of a SSB system: 

∴ Figure of merit = 
2
c 0

2
c 0

A P 4WN
1

A P 4WN
=  

Figure of Merit of AM system: 

Figure of Merit 
2 2 2

a a m

2 2 2 2
a a m

K P K A

1 K P 2 K A 2


 = = 

+ + + 
 [modulation efficiency] 

Chapter-5 

Mathematical Tool 

1. PROBABILITY 

Probability Axioms  

1. (Nonnegativity) P(A) ≥ 0, for every event A.  
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2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies  

P(A ∪ B) = P(A) + P(B).  

Furthermore, if the sample space has an infinite number of elements and A1, A2, ... is a 

sequence of disjoint events, then the probability of their union satisfies  

P(A1 ∪ A2 ∪….) = P(A1) + P(A2) + …  

3. (Normalization) The probability of the entire sample space =Ω is equal to 1, that is, 

P(Ω) = 1. 

Properties of Probability Laws 

Consider a probability law, and let A, B, and C be events.  

(a) If A ⊂ B, then P(A) ≤ P(B).  

(b) P(A ∪ B) = P(A) +  P(B) — P(A ∩  B).  

(c) P(A ∪ B) ≤ P(A) + P(B).  

(d) P(A ∪ B ∪ C) = P(A) + P(Ac ∩ B) + P(Ac ∩ Bc ∩ C). 

conditional probability for event A and B: 

P(A B)
P(A |B)

P(B)


=  

2. TOTAL PROBABILITY THEOREM AND BAYES' RULE  

Total Probability Theorem 

Let A1,…, An be disjoint events that form a partition of the sample space (each possible outcome 

is included in one and only one of the events A1,… , An) and assume that P(Ai) > 0, for all i = 

1,…, n. Then, for any event B, we have  

P(B) = P(A1 ∩ B) + … +P(An ∩ B) = P(A1)P(B | A1) + … + P(An)P(B | An). 

Bayes' Rule  

Let A1, A2,….., An be disjoint events that form a partition of the sample space, and assume that 

P(Ai) > 0, for all i. Then, for any event B such that P(B) > 0, we have  

i i
i

P(A )P(B / A )
P(A |B)

P(B)
=  i i

1 1 n n

P(A )P(B / A )

P(A )P(B | A ) ... P(A )P(B | A )
=

+ +
 

Independent Events: 

We say that A is independent of B 

P(A | B) = P(A). 

 P(A | B) =P(A ∩ B)/P(B), this is equivalent to 

 P(A ∩ B) = P(A)P(B).  

3. INTRODUCTION TO RANDOM VARIABLES 

A random variable is a rule or relationship, denoted by X, that assigns a real number X(S) to 

every point in the sample space S. The random variables can be distinguished as  

1. Discrete Random Variable  

2. Continuous Random Variable  

3 Cumulative Distribution Function 
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4 Mean, Variance and Standard Deviation of a Random Variable 

5 Different types of Random Variable 

4. DISCRETE RANDOM VARIABLE  

When the random variable takes only a discrete set of values, then it is called a discrete random 

variable. For example, we flip a coin, the possible outcomes are head (H), and tail (T), so S 

contains two points labelled H and T. Suppose, we define a function X(S) such that  

1 for S H
X(S)

1 for S T

=
= 

− =
 

Thus, we have mapped the two outcomes into the two points on the real line. So, this is called 

a discrete random variable.  

5. PROBABILITY DENSITY FUNCTION OF DISCRETE RANDOM VARIABLE 

Let a discrete random variable X having the possible outcomes, X = {X1,X2,…Xn}  

So, the probability density function (PDF) of the discrete random variable is defined as  

fx(x1) = P(X = x1) i = 1, 2, ...n  

 

 

6. PROBABILITY MASS FUNCTION OF DISCRETE RANDOM VARIABLE 

Suppose that the jumps in Fx(x) of a discrete random variable X occur at the points x1, x2 , ..., 

where the sequence may be either finite or countably infinite, and we assume xi < xj if i < j.  

Then Fx(xi)– Fx(xi–1,)= P(X ≤ xi) – P(X ≤ xi–1) = P(X = xi)          

Let Px(x) = P(X = x)              

The function px(x) is called the probability mass function (pmf) of the discrete random 

variable X.  

Properties of px(x):  

I. 0 ≤ px(xk) ≤ 1      k = 1, 2, ...  

2. px(x)= 0  if x # xk (k = 1, 2, ...)  

3. ( )x k

k

p x = 1                  

The cdf Fx(x) of a discrete random variable X can be obtained by  

Fx(x)= P(X ≤ x) = ( )x k

xk x

p x


      

7. CONTINUOUS RANDOM VARIABLE 

If the random variable X takes any value in a whole observation interval, X is called a continuous 

random variable. For example, if we define a function X(θ) such that 

 X(θ) = tan2 θ 
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Then, every value in the range 0 ≤ x < ∞ is a possible outcome of this experiment. Thus, we 

can say that X(θ) is a continuous random variable. 

8. CONTINUOUS RANDOM VARIABLES AND PDFS  

A random variable X is called continuous if its probability law can be described in terms of a 

nonnegative function fx , called the probability density function of X, or PDF for short, which 

satisfies  

B
P(X B) fx(x)dx, =    

for every subset B of the real line. In particular, the probability that the value of X falls within 

an interval is  

b

x

a

P(a X b) f (x)dx,  =    

excluding the endpoints of an interval has no effect on its probability: 

 P(a ≤ X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b).  

Note that to qualify as a PDF, a function f x must be nonnegative, i.e., fx(x) ≥ 0 for every x, 

and must also satisfy the normalization equation  

fx(x)dx P( X ) 1


−
= −    = . 

9. CUMULATIVE DISTRIBUTION FUNCTION OF CONTINUOUS RANDOM VARIABLE  

The cumulative distribution function (CDF) of the continuous random variable X is given by 

Fx(x) = P(X ≤ x) 

Some important properties of CDF of continuous random variable are given below.  

Properties of CDF of Continuous Random Variable:  

1. Fx(– ∞) = 0  

2. Fx(∞) = 1  

3. P(a < x ≤ b) = Fx(b) – Fx(a)  

 Probability Density Function of Continuous Random Variable 

The probability density function (PDF) of a continuous random variable is defined as 

x
x

dF (x)
f (x)

dx
=  

Some important properties of PDF of continuous random variable are given below.  

10. PROPERTIES OF PDF OF CONTINUOUS RANDOM VARIABLE 

 1. fx(x) ≥ 0  

2. x
f (x)dx 1



−
=  
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3. P(X ≤ x) = Fx(x) = 
x

x
f ( )d

−
   

4. P(a < x ≤ b) = 
b

xa
f (X)dx  

11. EXPECTED VALUE OR MEAN OF A CONTINUOUS RANDOM VARIABLE 

The expected value or mean of a continuous random variable X is defined by 

E[X] xfx(x)dx


−
=  . 

• The variance of g(X) is defined by 2 2Var(X) E[(X E[X]) ] (x E[X]) fx(x)dx


−
= − = −  

12. CUMULATIVE DISTRIBUTION FUNCTIONS 

The CDF of a random variable X is denoted by Fx and provides the probability P(X ≤ x). In 

particular, for every x we have 

k x

x

px(k) X : discrete,

Fx(x) P(X x)
fx(t)dt X : continuous



−




=  = 







 

Properties of a CDF  

The CDF Fx of a random variable X is defined by Fx(x) = P(X ≤ x), for all x,  

and has the following properties. 

• Fx is monotonically nondecreasing: 

if x  ≤  y, then Fx(x) ≤  Fx(Y).  

• Fx(x) tends to 0 as x → ∞, and to 1 as x → ∞. 

• If X is discrete, then Fx has a piecewise constant and staircase-like form.  

• If X is continuous, then Fx has a continuously varying form.  

• If X is discrete and takes integer values, the PMF and the CDF can be obtained from each 

other by summing or differencing:  

Fx(k) = 
k

i

Px(i),
=−

  

px(k)= P(X ≤ k) – P(X ≤  k –1) = Fx(k ) – Fx(k –1), 

for all integers k.  

• If X is continuous, the PDF and the CDF can be obtained from each other by integration or 

differentiation: 

x

x
F (x) fx(t)dt,

−
=    
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13. STATISTICAL AVERAGE OF RANDOM VARIABLE 

Mean or Expected Value: 

Let a random variable X characterized by its PDF fx(x). The mean or expected value of X is 

defined as  

x
E(X) X xf (x)dx



−
= =   

Similarly, we obtain the expected value of a function g(X) as E[g(X)] = ( )g X  = x
g(x)f (x)dx



−  

If X is a discretely distributed random variable, then the expected value of X is given by  

n

x i x i
i 1

E[X] X x f (x )
=

= =  =   

Variance  

The variance 
2

x
  of a random variable X is the second moment taken about its mean. i.e. 

 Var [X] = 
2

x
 = E [(X – μx)2] 

2

x x
(x ) f (x)dx



−
= −   

Expanding the above equation, we can write  

2 2 2 2 2

x x
E[X ] {E[X]} X = − = −   

Standard Deviation 

The standard deviation σx of a random variable is the square root of its variance, i.e., 

                      2 2

x x
var[x] X = = =   

Covariance  

The covariance of the random variables X and Y is defined as:  

cov[XY] = σxy = E [(X - μx) (Y – μy )] x y
(X )(Y )= −  −   

where μx and μy are the mean of random variables X and Y, respectively. We may expand the 

above result as  

cov[XY] = σxy = E[XY] – μxμy x y
XY= −    

 Correlation Coefficient  

The correlation coefficient of random variables X and Y can he defined as  

xy

x y

cov[xy]
 =

 
 

where cov [XY] is the covariance of X and Y, and σx, σy are the standard deviations of random 

variables. 

NOTE:  

1. The random variables X and Y are uncorrelated if and only if their covariance is zero, i.e 

cov[XY] = 0  
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2. The random variables X and Y are orthogonal if and only if their correlation is zero, i.e. 

E[XY] = 0 

14. DIFFERENT TYPES OF RANDOM VARIABLE 

Exponential Random Variable 

An exponential random variable has a PDF on the form 

xe if x 0,
fx(x)

0 otherwise,

− 
= 


 

Where λ is a positive parameter characterizing the PDF 

x

0
E[X] x e dx


−=   

x x

00
( xe e dx

−  
−= − +   

e x

0
0


−= −  = 

1


. 

2 2 2

2 1 1
var(X) = − =

  
. 

Normal or Gaussian Random Variable 

A continuous random variable X is said to be normal or Gaussian if it has a PDF of the form (see 

below figure)  

22/2 ,

x

1
F (x) e (x )

2

= − − 


 

Where μ and σ are two scalar parameters characterizing the PDF 

 

The mean and the variance can be calculated to be 

E[X] = μ,       var(X) = σ2
. 

CDF calculation of the Normal Random variable 

The CDF of a normal variable X with mean μ and variance σ2 is obtained using the standard 

normal table as 

X X
P(X x) P

x x
P Y ,

−  −  
 =  

  

−  =    
=  =    

    

 

Where Y is a standard random variable. 

Conditional PDF and Expectation Given an Event  

• The conditional PDF fx|A of a continuous variable X given an event A with  

P(A) > 0, satisfies 
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x|AB
P(X B| A) f (x)dx =   

• If A be a subset of the real line with P(X ϵ A) > 0, then 

x

X|A

f (x)
if x A,

P (x) P(X A)

0 otherwise,




= 



 

and 
x|AB

P(X B| X A) f (x)dx,  =   

For any set B. 

• The corresponding conditional expectation is defined by] 

x|A
E[X | A] xf (x)dx



−
=   

• The expected value rule remains valid: 

x|A
E[g(X)| A] g(x)f (x)dx



−
=   

• If A1, A2, …An are disjoint events with P(Ai) > 0 foreach I, that form a partition of the sample 

space, then 

i

n

x i x|A
i 1

f (x) P(A )f (x)
=

=   

(a version of the total theorem), and 

n

i i
i 1

E[X] P(A )E[X | A ]
=

=   

(the total expectation theorem). Similarly, 

n

i i
i 1

E[g(X)] P(A )E[g(X)| A ]
=

=   

15. MULTIPLE CONTINUOUS RANDOM VARIABLES 

A joint PDF fx,y, if fx,y is a nonnegative function that satisfies  



 =   x,y

(x,y) B

P((X,Y) B) f (x,y)dxdy  

for every subset B of the two-dimensional plane. The notation above means that the integration 

is carried over the set B. In the particular case where B is a rectangle of the form  

B = [a, b] × [c, d], we have  

    =  
d b

x,y

c a

P(a X b,c Y d) f (x,y)dxdy  

Furthermore, by letting B be the entire two-dimensional plane, we obtain the normalization 

property  

X,Y
f (x,y)dxdy 1

 

− −

=   

Expectation  
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If X and Y are jointly continuous random variables, and g is some function, then Z = g(X, Y) is 

also a random variable. For now, let us note that the expected value rule is still applicable and  

x,y
E[g(X,Y)] g(x,y)f (x,y)dxdy

 

− −

=    

As an important special case, fur any scalars a, is, we have  

E(aX + by] = aE[X] + bE[Y].  

16. INDEPENDENCE OF CONTINUOUS RANDOM VARIABLES 

Suppose that X and Y are independent, that is,  

fx,y(x,Y)= fx(x)fy(y), for all x,y.  

17. BERNOULLI RANDOM VARIABLE  

Consider the toss of a biased coin, which comes up a head with probability p, and a tail with 

probability 1-p. The Bernoulli random variable takes the two values 1 and 0, depending on 

whether the outcome is a head or a tail:  

1 if a head,
X

0 if a tail


= 


  

Its PMF is  

x

P if x 1,
P (x)

1 p if x 0.

=
= 

− =
  

18. BINOMIAL RANDOM VARIABLE  

A biased coin is tossed n times. At each toss, the coin comes up a head with probability p, and 

a tail with probability 1-p, independently of prior tosses. Let X be the number of heads in the 

n-toss sequence. We refer to X as a binomial random variable with parameters n and p. The 

PMF of X consists of the binomial probabilities  

( )n k n k

k
px(k) P(X k) p (1 p) ,−= = = −  k  = 0,1,...,n.  

(Note that here and elsewhere, we simplify notation and use k, instead of x, to denote the 

experimental values of integer-valued random variables.) The normalization property 

x
Px(x) 1= , specialized to the binomial random variable, is written as  

( )
n

n k n k

k
k 0

p (1 p) 1−

=

− =  

19. POISSON DISTRIBUTION 

A random variable X is called a Poisson random variable with parameter ( 0)   if its pmf is 

given by 
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k

xp (k) P(x k) e k 0, 1....
k!

− = = = =     

The corresponding cdf of X is 

The mean and variance of the Poisson random variable X are: 

x E(X) = =      

2

x Var(X) = =   

 

20. UNIFORM DISTRIBUTION 

A random variable X is called a uniform random variable over (a, b) if its pdf is given by 

x

1
a x b

f (x) b a

0 otherwise


 

= −



 

The corresponding cdf of X is 

x

0 x a

x a
f (x) a x b

b a

1 x b




−
=  

−
 

 

The mean and variance of the uniform random variable X are: 

x

a b
E(x)

2

+
 = =  

2
2

x

(b a)
Var(X)

12

−
 = =  

21. RAYLEIGH DISTRIBUTION  

The Rayleigh distribution describes a continuous random variable obtained from two Gaussian 

random variables. If X and Y are independent Gaussian random variables with zero mean and 

the same variance σ2, then the corresponding Rayleigh random variable is defined by  

2 2R x y= +  

The probability density function of the Rayleigh random variable is given by  

2 2r /2a

R 2

r
f (r) e−=


 

The corresponding CDF of Rayleigh random variable 

2 2r /2

R
f (r) 1 e− = −  

 The resulting mean of R is  

R
2


=   

The resulting second moment of R is 
2 2R 2=   
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Properties of FXY(x, y): 

The joint cdf of two random variable’s has many properties analogous to those of the cdf of a 

single random variable 

1. 0 ≤ FXY(x, y) ≤ 1 

2. If x1 ≤ x2, and y1 ≤ y2, the 

FXY(x1, y1) ≤ FXY(x2, y1) ≤ FXY(x2, y2) 

FXT(x1, y1) ≤ FXY(y1, y2 ≤ FXY(x2, y2) 

3. XY XY
x
y

lim F (x,y) F ( , ) 1
→
→

=   =  

4. 
XY XY

x
lim F (x,y) F (– , y) 0
→−

=  =  

5. XY XY XY
x a
lim F (x,y) F (–a , y) F (a,y)

+

+

→
= =  

6. P(X1 < X ≤ x2, Y ≤ y)= FXY(x2, y)–FXY(x1, y) 

(X ≤ x, y1 < Y ≤ y2) = FXY(x, y2)–FXY(x, y1) 

7. If x1 ≤ x2 and y1 ≤ y2, then 

FXY(x2, y2)– FXY(x1, y2) – FXY(x2, y1) + FXY(x1, y1) ≥ 0 

22. MARGINAL DISTRIBUTION FUNCTIONS 

Now, 
x
lim(X x, Y y) (X x, Y ) (X x)
→

  =    =   

Since the condition y ≤ ∞ is always satisfied. Then 

XY XY X
x
lim X (x,y) F (x, ) F (x)
→

=  =  

Similarly, 
XY XY Y

x
lim X (x,y) F ( , x) F (y)
→

=  =  

The cdf’s FX(x) and Fy(y) are referred to as the marginal cdf’s of X and Y, respectively. 

23. INDEPENDENT RANDOM VARIABLES 

If X and Y are independent random variable’s, then  

pXY(xi, yj) = pX(xi) pY(yj) 

24. JOINT PROBABILITY DENSITY FUNCTIONS 

Let (X, Y) be a continuous bivariate random variable with cdf FXY(x, y) and let 

2
xy

XY

F (x,y)
f (x,y)

x y


=

 
 

The function fXY(x, y) is called the joint probability density (joint pdf) of (X, Y). 

Properties of fXY(x,): 

1. fXY(x, y) ≥ 0 
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2. 

A

XY

R

f (x, y) dx dy 1=  

3. fXY(x, y) is continuous for all values of x or concept possible a finite set. 

4. 

A

XY

R

P[(X, Y)] A] f (x, y) dx dy =   

5. 
d b

XY
c a

P(a X b, c d) f (x, y)dx dy   =    

Since P[(X = a)] = 0 = P(Y = c)  

it follows that 

P(a < X ≤ b, c < Y ≤ d) = P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(a ≤ X < b, c ≤ Y < d) 

 = 
d b

XY
c a

P(a X b, c Y d) f (x, y)dx dy    =     

25. MARGINAL PROBABILITY DENSITY FUNCTIONS 

x

X XY XY
– –

F (x) F (x, ) f ( , )d d


 
=  =       

Hence 
X

x xy

dF (x)
f (x) f (x, )d

dx0



−
= =    

or x xyf (x) f (x, y)d


−
=   

or x xyf (x) f (x, y)dy


−
=    

Similarly, Y XYf (y) f (x, y) dx


−
=    

The pdf’s fx(x) and fY(y are referred to as the marginal pdf’s of X and Y, respectively. 

26. CLASSIFICATION OF RANDOM PROCESS 

Random processes may be classified as continuous or discrete. 

Continuous Random Process: A continuous random process consists of a random process 

with associated continuously distributed random variables  

X(t, si). The Gaussian random process is an example of the continuous random process. 

Discrete Random Process: A discrete random process consists of the random variables with 

discrete distributions. For example, the output of an ideal (hard) limiter in a binary (discrete 

with two levels) random process. 

27. PROBABILITY DENSITY FUNCTION OF RANDOM PROCESS 

A complete description of a random process {X(t, s)} is given by the N-fold joint pdf that 

probabilistically describes the possible values assumed by a typical sample function at time tN 

> tN–1 > … > t1, when N is arbitrary. 
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For N = 1, we can interpret this joint pdf as 

1X 1 1 1 1 1 1 1 1
f (x ,t )dx P(x dx X x at timet )= −  

 

Where X1 = X(t1, s). Similarly, for N = 2, we can interpret the joint pdf as 
1 2X X 1 1 2 2

f (x , t :x , t )

dx1dx2 = P(x1 – dx1 < X1 ≤ x1 and x2 – dx2 < X2 ≤ x2) where X2 = X(t2, s). In general, we 

denote the N-dimensional PDF of a random process as 

fX(t)(x) = fX(t)(x(t1), x(t2), …., x(tN))  

28. STATIONARY RANDOM PROCESS 

A random process X(t) is said to be stationary to the order N if, for any t1, t2 …, tN 

X(t) 1 2 N
f (x(t ), x(t ), ... x(t ))  = X(t) 1 0

f (x(t t ),+
2 0 N 0

x(t t ), ... x(t t ))+ +  

where t0 is any arbitrary real constant. Furthermore, the process is said to be strictly stationary 

if it is stationary to the order N → ∞. 

29. AVERAGES OF RANDOM PROCESS  

We may define the time average and ensemble average of a random process in the following 

ways: 

Time Average of a Random Process 

Consider a stationary random process X(t) with the sample function x(t). The time average of 

this random process is defined as 

T/2

T/2T

1
X(t) lim x(t)dt

T −→
  =   

30. ENSEMBLE AVERAGE OF A RANDOM PROCESS 

For a given random process X(t), the ensemble average is defined as the mean value of X(t) 

at arbitrary time t, i.e. 

X x(t)
E[X(t)] X(t) (t) x f (x)dx



−
= =  =  . 

An important property of ensemble average is given below.  

Property of Ensemble average:  

The mean (ensemble average) of a stationary process is constant, i.e. 

μX(t) = μX  for all t 

31. AUTOCORRELATION FUNCTION  

The autocorrelation function of a random process X(t) is defined as the expectation of the 

product of two random variables X(t1) and X(t2), i.e. 

RX(t1, t2) = 1 2 1 2
E[X(t ) X(t )] X(t ) X(t )=  

1 2 x(t) 1 2 1 2
x x f (x , x )dx dx

 

− −
=    
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where x1 = x(t1) and x2 = x(t2). Some important properties of the autocorrelation function of 

a stationary random process are given below. 

Properties of Auto Correlation Function:  

1. The autocorrelation function of strictly stationary random process is a function only of the 

time difference τ = t2 – t1, i.e.  

RX(τ) = E[X(t) X(t + τ)] = X(t) X(t )+   

2. The mean square value of the process may be obtained from Rx(τ) simply by putting τ = 0 

in above equation, i.e. 

2 2

X
R (0) E[X (t)] X (t)= =  

3. If the autocorrelation function of a random process has no periodic component then, we 

may define 

2

X X
X(t) R ( ) or X(t) R ( )=  =   

4. The autocorrelation function is the even function of τ, i.e. 

RX(τ) = RX(–τ) 

5. The autocorrelation has its maximum magnitude at τ = 0, i.e. 

RX(0) ≥ RX(τ) 

32. CROSS-CORRELATION FUNCTION 

The cross-correlation function for two random processes X(t) and Y(t) is defined as: 

XY 1, 2 1 2 1 2
R (t t ) E[X(t )Y(t )] X(t )Y(t )= =  

where t1 and t2 denote the two values of time at which the processes are observed. Following 

are some important properties of the cross-correlation function of two jointly stationary 

random processes X(t) and Y(t): 

Properties of Cross Correlation Function:  

1. The cross-correlation function of jointly random processes X(t) and Y(t) is a function only 

of the time difference τ = t2 – t1, i.e. 

RXY(t1, t2) = RXY(τ) 

2. The cross-correlation function is the even function of τ, i.e. 

RXY(–τ) = RYX(τ) 

3. The random processes X(t) and Y(t) are said to be uncorrelated if, for all t1 and t2, 

XY 1, 2 1 2
R (t t ) X(t ) Y(t )=   

4.  XY X Y
|R ( )| R (0) R (0)   

5. XY X Y

1
|R ( )| [R (0) R (0)]

2
  +  
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33. ERGODIC PROCESS 

A random process is said to be ergodic if all time averages of any sample function are equal 

to the corresponding ensemble averages (expectations). As the ergodic process has its 

ensemble average equal to its time average, we may deduce the following properties for the 

ergodic process: 

Properties of Ergodic Process:  

1. The dc value of an ergodic process can be defined in terms of ensemble average as 

dc
X X(t) E[X(t)] X(t)=   = =  

2. The dc power of an ergodic process can be defined as 

2 2 2

dc
P X(t) {E[X(t)]} {X(t)}=   = =  

3. The power in the ac (time-varying) component is given by 

2
2 2 2 2

ac x
P X (t) X(t) X (t) X(t)= =   =   = −  

4. The rms power (total power) of an ergodic process is defined as 

2
2 2 2 2

total
P X (t) E[X (t)] X (t) x X(t)=   = = =  +

 

5. The rms value of an ergodic process can be defined as 

2 2 2

rms
X X (t) E[X (t)] X (t)=   = =

2
2

x
X(t)=  +

 

34. WIDE SENSE STATIONARY PROCESS  

A random process is said to be wide-sense stationary (WSS) if its mean is independent of 

time and autocorrelation function depends on the time difference, i.e. 

E[X(t)] = μx where μx is a constant 

and RX(t1, t2) = RX(τ), where τ = t2 – t1 

35. POWER SPECTRAL DENSITY 

Following are some important properties of the power spectral density of a stationary 

process. 

Properties of Power Spectral Density:  

1. The power spectral density SX(f) is always real and nonnegative, i.e. 

SX(f) ≥ 0 

2. The power spectral density of a real-valued random process is an even function of 

frequency, i.e. 

SX(–f) = SX(f) 

3. The total normalized power of a random process is defined in terms of power spectral 

density as 

total X
P S (f)df



−
=    
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or 
2

X
E[X (t)] S (f)df



−
=   

or X X
R (0) S (f)df



−
=   

4. The zero-frequency value of the power spectral density of a stationary process equals 

the total area under the graph of the autocorrelation function, i.e. 

X X
S (0) R ( )d



−
=    

36. CROSS SPECTRAL DENSITY 

Let X(t) and Y(t) be two jointly stationary processes with their cross-correlation functions 

denoted by RXY(τ) and RYX(τ). We then define the cross-spectral densities for the random 

processes as 

SXY(f) = 
j2 fr

XY
R ( )e d


− 

−
   

and 
j2 fr

YX YX
S (f) R ( )e d


− 

−
=    

Accordingly, using the formula for inverse Fourier transformation, we may also write  

j2 fr

XY XY
R ( ) S (f)e df




−
 =   

and 
j2 fr

YX YX
R ( ) S (f)e df




−
 =   

Properties of Cross Spectral Density:  

The cross-spectral densities SXY(f) and SYX(f) are not necessarily the real function or f. 

However, using the property of autocorrelation function, we may deduce that 

SXY(f) = SYX(–f) = 
*

YX
S (f)  

37. LINEAR SYSTEM  

Consider a linens system shown in Figure 10. The input-output relationship for the system is 

y(t) = h(t) * x(t) 

The corresponding Fourier transform relationship is 

Y(f) = H(f) X(f) 

 

 X(f)            Y(f) 

 RX(τ)            RY(τ) 

 SX(f)            SY(f) 

Input-Output Relationship of a Linear System 
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If x(t) is a wide-sense stationary random process, then the output autocorrelation is defined 

as 

RY(τ) = h(–τ) * h(τ) * RX(τ) 

Correspondingly, the output power spectral density is given by 

SY(f) = |H(f)|2 SX(f) 

Thus, the power transfer function of the network is 

2Y

X

S (f)
G(f) |H(f)|

S (f)
= =  

Chapter-6 

Baseband Modulation 

1. SAMPLING PROCESS 

Sampling Period: The time interval between two consecutive samples is referred as 

sampling period.  

 Sampling Rate: The reciprocal of sampling period is referred as sampling rate, i.e. 

fS = 1/TS 

2. EXPLANATION OF SAMPLING THEOREM  

Consider a message signal m(t) bandlimited to W, i.e. 

M(f) = 0  For |f| ≥ W 

Then, the sampling Frequency fS, required to reconstruct the bandlimited waveform without 

any error, is given by  

Fs ≥ 2 W 

3. NYQUIST RATE 

Nyquist rate is defined as the minimum sampling frequency allowed to reconstruct a 

bandlimited waveform without error, i.e. 

fN = min {fS} = 2W 

Where W is the message signal bandwidth, and fS is the sampling frequency.  

4. NYQUIST INTERVAL  

The reciprocal of Nyquist rate is called the Nyquist interval (measured in seconds), i.e. 

N
N

1 1
T

f 2W
= =  

Where fN is the Nyquist rate, and W is the message signal bandwidth. 
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5. SAMPLING OF BANDPASS SIGNALS 

The sampling theorem for bandpass signals may be expressed as under: 

The bandpass signal x(t) whose maximum bandwidth is 2fm can be completely represented 

into and recovered from its samples if it is sampled at the minimum rate of twice the 

bandwidth. 

Hence if the bandwidth is 2fm, then the minimum sampling rate for bandpass signal must be 

4fm samples per second. 

This bandpass signal is first represented in terms of its inphase and quadrature components  

Let xI(t) = Inphase component of x(t) 

And XQ(t) = Quadrature component of x(t) 

Thus, the signal x(t) in terms of inphase and quadrature components will be expressed as 

x(t) = xI(t) cos(2pfct) – XQ(t) sin(2pfct) 

Thus, if 4fm samples per second are taken, then the bandpass signal of bandwidth 2fm can be 

completely recovered from its samples. Hence, for bandpass signals of bandwidth 2fm. 

Minimum sampling rate = Twice of bandwidth = 4fm samples per second. 

6. SAMPLING TECHNIQUE 

The sampling of a signal is done in several ways. 

Basically, there are three types of sampling technique as under: 

i. Instantaneous sampling 

ii. Natural sampling 

iii. Flat top sampling 

Out of these three, instantaneous sampling is called ideal sampling whereas natural 

sampling and flat-top sampling are called practical sampling methods.  

Table 1: Performance Comparison of three Sampling Technique 

S. 

No 

Parameter of 

comparison 

Ideal or 

instantaneous 

sampling 

Natural sampling Flat top sampling 

1. 
Sampling 

principle 
It uses multiplication It uses chopping principle 

It uses sample and hold 

circuit 

2. 
Generation 

circuit 
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3. 
Waveforms 

involved 

  
 

4. Feasibility 
This is not a practically 

possible method 

This method is used 

practically 

This method is also used 

practically 

5. Sampling rate 
Sampling rate tends to 

infinity 

Sampling rate satisfies 

Nyquist criteria 

Sampling rate satisfies 

Nyquist criteria 

6. 
Noise 

interference 

Noise interference is 

maximum 

Noise interference is 

minimum noise 
Interference is maximum 

7. 
Time domain 

representation 
( ) ( ) ( )s s

n

g t x nT t nT


=−

=  −  
( ) ( ) ( ) sj2 nf t

s
ns

A
g t x t sinc nf e

T




=−


=   ( ) ( ) ( )s s

n

g t x nT h t nT


=−

= −  

8. 

Frequency 

domain 

representation 

( ) ( )s s
n

G f f X f nf


=−

= −  ( ) ( ) ( )s s
ns

A
G f sinc nf X f nf

T



=−


=  −  ( ) ( ) ( )s s

n

G f f X f nf H f


=−

= −  

7. PULSE MODULATION  

Pulse modulation is the process of changing a binary pulse signal to represent the information 

to be transmitted. Pulse modulation can be either analog or digital.  

Analog Pulse Modulation  

Analog pulse modulation results when some attribute of a pulse varies continuously in one-

to-one correspondence with a sample value. In analog pulse modulation systems, the 

amplitude, width, or position of a pulse can vary over a continuous range in accordance with 

the message amplitude at the sampling instant. 

i. Pulse Amplitude Modulation (PAM) 

ii. Pulse Width Modulation (PWM) 

iii. Pulse Position Modulation (PPM) 
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Representation of Various Analog Pulse Modulation 

Digital Pulse Modulation  

In systems utilizing digital pulse modulation, the transmitted sample take on only discrete 

values. Two important types of digital pulse modulation are: 

i. Delta Modulation (DM) 

ii. Pulse Code Modulation (PCM) 

iii. Differential Pulse Code Modulation (DPCM)  

iv. Adaptive Delta Modulation (ADM) 

8. PULSE CODE MODULATION 

The PCM signal is generated by carrying out the following three basic operations: 

i. Sampling  

ii. Quantizing  

iii. Encoding  

 

Block Diagram Representation of PCM System 

9. Quantization 

Uniform Quantizer 

A quantizer is called as a uniform quantizer if the step size remains constant throughout the 

input range. 

There are two types of uniform quantizer as under: 
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i. Symmetric quantizer of the midtread type 

ii. Symmetric quantizer of the midrise type 

 

Two types of Uniform Quantization (a) Midtread, and (b) Midrise 

Nonuniform Quantizer 

Nonuniform quantization is required to be implemented to improve the signal to quantization 

noise ratio of weak signals. It is equivalent to passing the baseband signal through a 

compressor and then applying the compressed signal to a uniform quantizer. A particular 

form of compression law that is used in practice is called as μ-law, which is defined by 

q

1n(1 |m|)
|m |

1n(1 )

+ 
=

+ 
 

Where m and mq are the normalized input and output voltages, and μ is a positive constant. 

Encoding  

An encoder translates the quantized samples into digital code words. The encoder works with 

M-ary digits and produces for each sample a code word consisting of n digits in parallel. Since, 

there are Mn possible M-ary codewords with n digits per word, unique encoding of the q 

different quantum levels requires that  

Mn ≥ q  

The parameters M, n, and q should be chosen to satisfy the equality, so that  

q = Mn or n = logM q 

Encoding in Binary PCM 

For binary PCM, each digit may be either of two distinct values 0 or 1, i.e.  

M = 2 

If the code word of binary PCM consists of n digits, then number of quantization levels is 

defined as  

q = 2n 

or n = log2q 

In general, we must remember the following characteristics of a PCM system: 
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10. CHARACTERISTICS OF PCM SYSTEM 

• A sampled waveform is quantized into q quantization levels; where q is an integer. 

• If the message signal is defined in the range (–mp, mp), then the step size of quantizer is  

p2m

q
 =  

• For a binary PCM system with n digit codes, the number of quantization level is defined 

as  

q = 2n 

• If the message signal is sampled at the sampling rate fS, and encoded to n number of bits 

per sample; then bit rate (bits/sec) of the PCM is defined as  

Rb = nfS 

11. METHODOLOGY TO EVALUATE BIT RATE FOR PCM SYSTEM  

If the number of quantization levels q and message signal frequency fm for a PCM signal is 

given, then bit rate for the PCM system is obtained in the following steps: 

Step 1: Obtain the sampling frequency for the PCM signal. According to Nyquist criterion, 

the minimum sampling frequency is given by  

fS = 2fm 

Step 2: Deduce the number of bits per sample using the expression  

n = log2q 

Step 3: Evaluate bit rate (bits/sec) for the PCM system by substituting the obtained values 

in the expression  

Rb = nfS 

12. TRANSMISSION BANDWIDTH IN A PCM SYSTEM 

PCM b s

1 1
B R nf

2 2
 =  

Where Rb is the bit rate, n is the number of bits in PCM word, and fS is the sampling rate. 

Since, the required sampling rate for no aliasing is  

fS ≥ 2 W 

Where W is the bandwidth of the message signal (that is to be converted to the PCM signal). 

Thus, the bandwidth of the PCM signal has a lower bound given by  

BPCM ≥ nW 

13. NOISE CONSIDERATION IN PCM 

In PCM (pulse code modulation), there are two error sources: 

i. Quantization noise 

ii. Channel noise 

Quantization Noise 
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For a PCM system, the kth sample of quantized message signal is represented by  

Mq(kTS) = m(kTS) + ε(kTS) 

Where m(kTS) is the sampled waveform, and ε(kTS) is the quantization error. Let the 

quantization levels having uniform step size δ. Then, we have  

–
2 2

 
    

So, the mean-square error due to quantization is  

2
/22 2

– /2

1
d

12






 =   =

  …………(i) 

14. METHODOLOGY TO EVALUATE BIT RATE FOR PCM SYSTEM 

Step 1: Obtain the sampling frequency for the PCM signal. According to Nyquist criterion, 

the minimum sampling frequency is given by 

fS = 2fm 

Step 2: Obtain the maximum quantization error for the PCM system using the expression  

p p p

n

2m m m
| error |

2 2q q 2


= = = =  

Step 3: Apply the given condition of accuracy as  

|error| ≤ x % of full-scale value 

Step 4: Solve the above condition for the minimum value of number of bits per second (n).  

Step 5: Obtain the bit rate by substituting the approximated integer value of n in the 

expression  

Rb = nfS 

15. SIGNAL TO QUANTIZATION NOISE RATIO  

For PCM system, we have the message signal m(t), and quantization error ε. So, we define 

the signal to quantization noise ratio as  

2 2

Q 22

m (t) m (t)
(SNR)

/12
= =



……………(ii) 

Where δ is the step size of the quantized signal defined as 

p2m

q
 = …………………(iii) 

Substituting equation (iii) in equation (ii), we get the expression for signal to quantization 

noise ratio as  

2

Q 2
p

m (t)
(SNR) 12

(2m / q)
=  
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2
2

Q 2
p

m (t)
(SNR) 3q

m
= ……………(iv) 

Where mp is the peak amplitude of message signal m(t), and q is the number of quantization 

level. 

16. CHANNEL NOISE  

If a PCM signal is composed of the data that are transmitted over the channel having bit 

error rate Pe, then peak signal to average quantization noise ratio is defined as 

2

peak 2
e

3q
(SNR)

1 4(q –1)P
=

+
 

Similarly, for the channel with bit error probability Pe, the average signal to average 

quantization noise ratio is defined as  

2

avg 2
e

q
(SNR)

1 4(q –1)P
=

+
 

17. COMPANDING  

The signal to quantization noise ratio for μ-law companding  is approximated as  

2

Q 2

3q
(SNR)

[ln(1 )]
=

+ 
 

Where q is the number of quantization level, and μ is a positive constant. 

18. NOISE CONSIDERATION IN DELTA MODULATION  

The quantizing noise error in delta modulation can be classified into two types of noise: 

i. Slope Overload Noise  

ii. Granular Noise 

 

Slope Overload Noise  

The maximum slope that can be generated by the accumulator output is  

s
s

f
T


=   

We have the required condition to avoid slope overload as, 

s

dm(t)
max f

dt
   

Where m(t) is the message signal, δ is the step size of quantized signal, and fs is the sampling 

rate. 

Granular Noise  

The granular noise in a DM system is similar to the granular noise in a PCM system. Form 

equation (i), we have the total quantizing noise for PCM system, 
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2 2
/22 2

PCM – /2

1 ( /2)
( ) d

12 3





 
 =   = =

 
 

Replacing δ/2 of PCM by δ for DM, we obtain the total granular quantizing noise as  

2
2

DM( )
3


 =  

Thus, the power spectral density for granular noise in delta modulation system is obtained as  

2 2

N
s s

/3
S (f)

2f 6f

 
= =  

Where δ is the step size, and fS is the sampling frequency. 

19. METHODOLOGY FOR FINDING MINIMUM STEP SIZE IN DELTA MODULATION  

Following are the steps involved in determination of minimum step size to avoid slope 

overload in delta modulation: 

Step 1: Obtain the sampling frequency for the modulation. According to Nyquist criterion, 

the minimum sampling frequency is given by  

fS = 2fm 

Step 2: Obtain the maximum slope of message signal using the expression  

m m

dm(t)
max 2 f A

dt
=   

Where fm is the message signal frequency and Am is amplitude of the message signal. 

Step 3: Apply the required condition to avoid slope overload as  

s

dm(t)
f max

dt
   

Step 4: Evaluate the minimum value of step size δ by solving the above condition. 

20. MULTILEVEL SIGNALING 

Baud  

Let a multilevel signalling scheme having the symbol duration TS seconds. So, we define the 

symbols per second transmitted for the system as  

s

1
D

T
=  

Where D is the symbol rate which is also called baud. 

 Bits per Symbol  

For a multilevel signalling scheme with M number of symbols (levels), we define the bits per 

symbol as  

K = log2M  

 Relation Between Baud and Bit Rate 

For a multilevel signalling scheme, the bit rate and baud (symbols per second) are related as  

Rb = kD =Dlog2M ……………..(v) 
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Where Rb is the bit rate, k = log2M is the bits per symbol, and D is the baud (symbols per 

second). 

21. RELATION BETWEEN BIT DURATION AND SYMBOL DURATION  

For a multilevel signalling scheme, the bit duration is given by  

b
b

1
T

R
=  

Where Rb is the bit rate. Also, we have the symbol duration  

s

1
T

D
=  

Where D is the symbol rate. Thus, by substituting this expression in equation (v), we get the 

relation  

TS = kTb = Tblog2M  

Where k = log2M is the bits per symbol. 

22. TRANSMISSION BANDWIDTH  

The null to null transmission bandwidth of the rectangular pulse multilevel waveform is 

defined as  

BT = D symbols/sec 

The absolute transmission bandwidth for 
sinx

z
pulse multilevel waveform is defined as  

T

D
B   symbols / sec

2
=  
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Chapter-7 

Bandpass Modulation 

1. DIGITAL BANDPASS MODULATION 

There are three basic modulation schemes: 

i. Amplitude shift keying (ASK) 

ii. Frequency shift keying (FSK) 

iii. Phase shift keying (PSK) 

A. Amplitude-Shift Keying (ASK):  

In ASK, the modulated signal can be expressed as  

c
c

Acos t symbol 1
x (t)

0 symbol 2


= 


        

Note that the modulated signal is still an on-off signal. Thus, ASK is also known as on-off 

keying (00K).  

B. Frequency-Shift Keying (FSK):  

In FSK, the modulated signal can be expressed as 

1

c

2

Acos t symbol 1
x (t)

A cos t symbol 0


= 


 

C. Phase shift keying (PSK): 

In PSK, the modulated signal can be expressed as  

c

c

c

Acos t symbol 1
x (t)

A cos t symbol 0


= 

 + 
       

2. AMPLITUDE SHIFT KEYING 

ASK is often referred to as on-off keying (OOK). The ASK signal is represented by  

s(t) = Ac m(t) cosωct 

where m(t) is a unipolar baseband data signal. 

 

( )
 →

=  = 
→

c c
c c

A cos2 t 1
s t A  cos t  

0 0
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2

C
S

A
P

2
=  

 →  
=

→

s c 2
2p cos2 f t 1 0 t T

s(t)
0 0 elsewhere

 

Because of this it is called “ON OFF KEYING” 

 

=  →  

= 

b
c b

b

b 1

2E
s(t) cos f t 1 0 t T

T

E (t)

 

Ask is one dimensional from constellation diagram 

3. TRANSMISSION BANDWIDTH OF ASK SIGNAL 

For ASK signal, the transmission bandwidth is given by 

BT = 2Rb 

If raised cosine-roll off is used (to conserve bandwidth), the absolute transmission bandwidth 

(for rectangular pulse waveform) of AKS signal is obtained as 

BT = (1+α)Rb 

Where α is the roll-off factor of the filter. 

4. BIT ERROR PROBABILITY OF ASK SIGNAL 

The probability of bit error for coherent ASK system is given by 

( ) ( )e b 0 bP Q E / N Q= =   

Where Eb is the bit energy, N0 is the noise power density, and γb is the bit energy to noise 

density ratio. 

5. BINARY PHASE SHIFT KEYING 

Binary phase shift keying (BPSK) system consists of shifting the phase of a sinusoidal carrier 

0° or 180° with a unipolar binary signal, as shown in Figure 2(d). The BPSK signal is 

represented by 

S(t) = Ac cos [ωct+kpm(t)] 

Where m(t) is the polar baseband data signal, as shown in Figure 2(b). Let us obtain the 

transmission bandwidth, and bit error probability for BPSK system 
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6. TRANSMISSION BANDWIDTH OF BPSK SIGNAL 

The null-to-null transmission bandwidth for BPSK system is same as that found for amplitude 

shift keying (ASK). The null-to-null transmission bandwidth for BPSK system is given by 

BT = 2Rb 

Where Rb is the bit rate of the digital signal. 

7. Calculation of probability of error 

( ) =
2

max
e

r1
P min erfc

2 8
 

 = −
bT

2 2

max 1 2

0 0

2
[s (t) s (t)] dt

N
 

NOTE: Probability of error in term of distance (d) 

 
 =
 
 

e

0

1 d
P erfc

2 2 N

   
   = =
   
   o o

d d
Q Q

2 N 2N
 

 
=  

 
 

b
e

0

E1
P erfc

2 N
b b

ob

2 E 2E
Q Q

N2N

   
 = =  

  
  

 

If distance between two manage points is decreased, then probability of error will increase. 

8. PROBABILITY OF ERROR IN CASE OF NON-SYNCHRONIZED BPSK 

If   is the error between local oscillation and modulated signal, then Pe will become  


=

2

b
e

0

E cos1
P erfc

2 N
 

1/2
2

b

0

2E cos
Q

N

 
=  

 

 

2

b

0

E cos
SNR

N


=  

9. BIT ERROR PROBABILITY OF BPSK SIGNAL 

If we consider phase error ϕ in demodulation, then the bit error probability is expressed as 

2
e bP Q 2 cos =   

 
 

10. TRANSMISSION BANDWIDTH OF COHERENT BINARY FSK SIGNAL 

The transmission bandwidth for FSK signal may be expressed as 

BT = 2(Δf + Rb) 

Where Rb is the bit rate of the modulating signal and Δf is the peak frequency deviation. 

The above expression can be more generalised for the following cases: 

Case I: Narrowband FSK 
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For narrowband FSK signal, Δf ≪ Rb. So, the transmission bandwidth of narrowband FSK is 

given by 

BT = 2Rb 

Case II: Wideband FSK 

For wideband GSK signal, Δf ≫ Rb. So, the transmission bandwidth of wideband FSK given by 

BT = 2Δf 

Case III: FSK with Raised Cosine Roll-off Factor 

If a raised cosine roll-off factor α is used, equation (ii) becomes 

BT = 2Δf + (1 + α) Rb 

11. BIT ERROR PROBABILITY OF COHERENT BINARY FSK SIGNAL  

For coherent binary FSK signal, we define the bit error probability as 

( ) ( )e b 0 bP Q E / N Q= =   

Where Eb is the bit energy, N0 is the noise power density, γb is the bit energy to noise density 

ratio. 

Note: 

For larger value of z, the Q(z) function can be approximated as  

( )
2z /21

Q z e , z 1
2 z

− 


 

Q(z) function can be expressed in terms of complementary error function as 

     ( )
1 z

Q z erfc
2 2

 
=  

 
 

11. NONCOHERENT BINARY SYSTEMS 

The most common noncoherent bandpass modulation techniques are: 

i. Differential phase shift keying (DPSK) 

ii. Noncoherent frequency shift keying 

12. METHOD OF DIFFERENTIAL ENCODING 

Differential encoding of a message sequence is illustrated in Table 1. The steps for differential 

encoding are as follows. 

Following are the steps involved in differential encoding of a message sequence: 

Step 1: An arbitrary reference binary digit is assumed for the initial digit of the encoded 

sequence. In the example shown in Table 1, a 1 has been chosen. 

Step 2: For each digit of the encoded sequence, the present digit is used as a reference for 

the following digit in the sequence. 

Step 3: A 0 in the message sequence is encoded as a transition from the state of the 

reference digit to the opposite state in the encoded message sequence; a 1 is encoded as no 
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change of state. In the example shown, the first digit in the message sequence is a 1, so no 

change in state is made in the encoded sequence, and a 1 appears as the next digit. 

Step 4: This serves as the reference for the next digit to be encoded. Since the next digit 

appearing in the message sequence is a 0, the next encoded digit is the opposite of the 

reference digit, or a 0.  

Step 5: The encoded message sequence then phase-shift keys a carrier with the phases 0 

and ϖ as shown in the table. 

Table 1: Differential Encoding Example 

 Reference Digit 

Message Sequence  1 0 0 1 1 1 0 0 0 

Encoded Sequence 1 1 0 1 1 1 1 0 1 0 

Transmitted Phase 0 0 π 0 0 0 0 Π 0 π 

 

14. PROBABILITY OF BIT ERROR FOR BINARY DPSK (NON COHERENT PSK) 

−

 −
=  

 

b
e (bit error)

0

E1
P exp

2 N
 

Probability of bit error for binary DPSK is higher than binary BPSK. 

Pe (DPSK) > Pe (BPSK) 

15. BIT ERROR PROBABILITY FOR NONCOHERENT FREQUENCY SHIFT KEYING 

The bit error probability for noncoherent frequency shift keying is defined  

b b
e

0

E1 1
P exp exp

2 2N 2 2

   
= − = −   

  

 

where Eb is the bit energy, Na is the noise power density, and γb is the bit energy to noise 

density ratio. 

16. CONTINUOUS PHASE FREQUENCY SHIFT KEYING (CPFSK) 

s(t) = b
i

b

2 E
cos t

T
  

it = ct + (t) 

Here (t) = (0)  
b

n ht

T


where h = Deviation Ratio 

1t = c t + (0) +  
b

n ht

T


 

2t = c t + (0) –  
b

n ht

T


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Since (t) is changing with time, hence it is known as CPFSK. 

(1 – 2) t =  
b

2n ht

T


 

 
1 2

b

nh
(f f )

T
− =  

s1(t) = b
1

b

2 E
cos(2 f t) 1

T
 → +  

s2(t) = b
2

b

2 E
cos(2 f t) 1 / 0

T
 → −  

n → integer taken as ‘1’ for smallest value. 

17. MSK (MINIMUM SHIFT KEYING) 

Here, h = 
1

2
(Deviation ratio) 

Type of CPFSK in which 
1

h
2

 
= 

 
 

In case of MSK, both S1 and S2 will be orthogonal to each other. This type of FSK is also 

known as fast FSK. 

For MSK: 

(f1 – f2) = 
b b

h 1

T 2T
= (for n =1) = 

Bit rate

2
 

18. RELATION BETWEEN BIT RATE AND SYMBOL RATE 

Since, k = log2M bits per symbol are transmitted, so symbol rate for MPSK system can be 

defined in terms of bit rate Rb as 

b b
s

2

R R
R

k log M
= =  

 

19.  RELATION BETWEEN BIT ENERGY AND SYMBOL ENERGY 

For a multilevel Signaling scheme, assume that the signal energy per bit is Eb, and signal 

energy per symbol is Es. We express the relationship between these two quantities as 

Es = Eb(log2M) 

20. RELATION BETWEEN PROBABILITY OF BIT ERROR AND PROBABILITY OF SYMBOL 

ERROR FOR ORTHOGONAL SIGNALS 
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Let PE be the average probability of symbol error, and Pe be the average probability of bit 

error (bit error rate) for an M-ary orthogonal system (such as MFSK). 

k 1
e

k
E

P 2 M/2

P M 12 1

−

= =
−−

……(v) 

In the limit as k increases, we get 

e

x E

P 1
lim

P 2→
=  

21. RELATION BETWEEN PROBABILITY OF BIT ERROR AND PROBABILITY OF SYMBOL 

ERROR FOR MULTIPLE PHASE SIGNALS 

For a multiple phase system (such as MPSK), the probability of bit error (Pe) can be 

expressed in terms of probability error (PE) as 

E
e

2

P
P

log M
=  

22. M-ARY PHASE SHIFT KEYING (MPSK) 

Transmission Bandwidth 

For an M-ary PSK signal, we define the transmission bandwidth as  

BT = 2Rs  

where Rs is the symbol rate. Substituting equation (iii) in above expression, We get 

transmission bandwidth of MPSK system as 

b
T

2

2R
B

log M
= ……………….(vii) 

Where Rb is the bit rate for the system. Also, we have overall absolute transmission 

bandwidth with raised cosine filtered pulses as 

( ) s
T

2

1 R
B

log M

+ 
=  

were α is the roll off factor. 

 

23. PROBABILITY OF SYMBOL ERROR 

The probability of symbol error for MPSK system is defined as  

s
E

0

2E
P 2Q sin

N M

 
  

 
 

 

Where M = 2k is the size of the symbol set, and Es is the energy per symbol. Since, the 

symbol energy Es is given by 

Es = Eb(log2M) = kEb 
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Where k = log2M is the number of bits transmitted per symbol. So, we can express the 

probability of symbol error in terms of Eb/N0 as 

b
E

0

2kE
P 2Q sin

N M

 
=  

 
 

 

24. PROBABILITY OF BIT ERROR 

Using equation (vi), we express the bit error probability in terms of symbol error probability 

for an M-ary PSK system as 

E E
e

2

P P
P

log M k
= =  

Thus, by substituting equation (ix) in above expression we get the probability of bit error 

for M-ary PSK system as 

b
e

0

2kE2
P Q sin

k N M

 
=  

 
 

 

2
b

2
Q 2k sin

k M

 
=  

 
 

 

25. QUADRATURE PHASE SHIFT KEYING (QPSK) 

Transmission Bandwidth 

Substituting M = 4 in equation (vii), we get the transmission bandwidth for QPSK system 

as 

b
T b

2

2R
B R

log 4
= =  

26. PROBABILITY OF SYMBOL ERROR 

Substituting M = 4 in equation (viii), we get the probability of symbol error for QPSK 

system as 

s
E

0

2E
P 2Q sin

N 4

 
  

 
 

 

or s
E

0

E
P 2Q

N

 
=  

 
 

 

Since, the symbol energy Es is given by 

Es = Eb(log2M) = Eb(log24) = 2Eb 

So, we can express the probability of symbol error in terms of Eb/N0 as 

b
E

0

2E
P 2Q

N

 
=  

 
 
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27. PROBABILITY OF SYMBOL ERROR 

The probability of symbol error for an M-ary QAM system is given by 

b
E

0

E1 3k
P 1 Q

M 1 NM

  
 −     −   

 

E b

1 3k
P 4 1 Q

M 1M

  
 −     −   

 

Where k = log2M is the number of bits transmitted per symbol, Eb is the bit energy, N0 

is the noise power density, and γb is the bit energy to noise density ratio. 

28. Probability of Bit Error 

Using equations (vi) and (xi), we obtain the bit error probability for an M-ary QAM system 

as 

E E
e

2

P P
P

log M k
= =  

b

4 1 3k
1 Q

k M 1M

  
= −     −   

 

29. M-ARY FREQUENCY SHIFT KEYING (MFSK) 

Transmission Bandwidth 

The transmission bandwidth for an M-ary FSK system is defined as  

b
T

2

R M
B

2log M
=  

Where Rb is the bit rate, and M = 2k is the size of the symbol. 

30.  PROBABILITY OF SYMBOL ERROR 

The probability of symbol error for an M-ry FSK system is given by 

( ) s
E

0

E
P M 1 Q

N

 
 −  

 
 

( ) b 2

0

E log M
M 1 Q

N

 
= −  

 
 

 

( ) ( )E b 2or P M 1 Q log M −   

31. PROBABILITY OF BIT ERROR 

Using equation (v) and (xii), we obtain the bit error probability for an M-ary FSK system 

as 

e E

M

2P P
M 1

=
−

 

( )e b 2

M
or P Q log M

2
   
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33. OVERALL COMPARISON 

 

33. OVERALL CONCLUSION OF FORMULAE 

(i) Probability of error of ASK, FSK, PSK and QPSK using constellation diagram 

( )e min

0

d d
P Q Q d d

2 2N

  
 = = =      

 

For ASK : 
2
c b

min b b

A T
d E E Bit energy

2

 
 = = =
 
 

 

2
b c b

e
0 0

E A T
P Q Q

2N 4N

  
 = = 

   
   

 

For PSK : min bd 2 E=  

 
2

b c b
e

0 0

E A T
P Q 2 Q

2N N

  
 = = 

   
   

 

For FSK : min bd 2E=  

2
b c b

e
0 0

2E A T
P Q Q

2N 2N

  
 = = 

   
   

 

For QPSK : ( )min s b s bd 2E 4E E 2E= = =  

 
2

b c b
e

0 0

4E A T
P Q Q

2N N

  
 = = 

   
   

                  (Pe= Bitt error probability) 

(ii) Probability of error for various signalling scheme: 

QPSK : 
2

b c b
e(symbol) e(bit) b

0 0

2E A TE
P 2Q ;P Q E

N N 2

   
 = =  

     
     
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DPSK : 
2

Es/N c0
e s

A T1
P e E

2 2

−
 
 = =
 
 

 

16-QAM : 

2

s s
e

0 0

E E
P 3Q 2.25 Q

N 5N

    
 = −   

        

 

MSK  : 

2
b

e

2Ed
P Q Q

2

   
 = =  

      

 

34. MATCHED FILTER 

Impulse response of matched filter, h(t) is 

• h(t) = si (T – t)           si(t) → Real 

• h(t) = si (T – t)           si(t) → Imaginary 

• h(t) = si *(T – t)          si(t) →Complex 

Chapter-8 

Information Theory 

1. INTRODUCTION TO INFORMATION THEORY 

The amount of the information associated with xi is defined as 

( )
( )i a

i

i a

i

1
I x log

P x

1
or I log

p

=

=

 

2. PROPERTIES OF INFORMATION 

a)  If we are absolutely certain of the outcome of an event, even before it occurs, there is 

no information gained, i.e. 

Ii = 0 for pi = 1 

b) The occurrence of an event either provides some or no information, but never brings 

about a loss of information, i.e. 

Ii> 0 for 0 < pi< 1 

c) The less probable an event is, the more information we gain when it occurs. 

Ij> Ii for pj< pi 

d) If two events xi and xj are statistically independent, then 

I(xixj) = I(xi) + I(xj) 
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3. ENTROPY 

If each symbol xi occurs with probability pi and conveys the information Ii, then the average 

information per symbol is obtained as 

( ) ( )
n

i i i

i 1

H X E I x p I
=

= =     

( )
n

i 2

i 1 i

1
H X p log

p=

=  

4. PROPERTIES OF ENTROPY 

Following are some important properties of source entropy. 

a) In a set of symbol X, if the probability pi = 1 for some i, and the remaining probabilities 

in the set are all zero; then the entropy of the source is zero, i.e 

H(X) = 0 

b) If all the n symbols emitted from a source are equiprobable, then the entropy of the 

source is 

H(X) = log2n 

c) From above two results, we can easily conclude that the source entropy is bounded as

  

0 < H(X) < log2n 

5. INFORMATION RATE 

The information rate for a source having entropy H is given by 

H
R bits / sec

T
=  

where T is the time required to send a message. 

If the message source generates messages at the rate of r messages per second, then we 

have 

1
T

r
=  

The information rate of the source as 

R = rH bits/sec 

6. METHODOLOGY TO EVALUATE SOURCE INFORMATION RATE 

For a given set of source symbol, we evaluate the information rate in the following steps: 

Step 1: Obtain the probability pi of each symbol emitted by source. 

Step 2: Deduce the amount of information conveyed in each symbol using expression, 

i 2

i

1
I log bits

p
=  
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Step 3: Obtain the source entropy by substituting the above results in the expression 

n n

i i i 2

i 1 i 1 i

1
H p I p log

p= =

 
= =  

 
   

Step 4: Obtain the average message transmission rate using the expression 

1
r

T
=  

where T is the time required to send a message 

Step 5: Evaluate information rate of the source by substituting the above results in the 

expression  

R = rH bits / sec 

7. AVERAGE CODE – WORD LENGTH 

Let the binary code – word assigned to symbol xi by the encoder have length Ii measured 

in bits. Then, the average code – word length is defined as 

n

i i

i 1

L l p
=

=  

8. SOURCE CODING THEOREM 

According to source encoding theorem, the minimum average code – word length for any 

distortion less source encoding scheme is defined as 

( )
min

2

H X
L

log k
=  

Where H(X) is the entropy of the source, and k is the number of symbols in encoding 

alphabet. 

Thus, for the binary alphabet (k = 2), we get the minimum average code – word length as 

( )minL H X=  

9. CODING EFFICIENCY 

The coding efficiency of a source encoder is defined as 

minL

L
 =  

( )

2

H X

L log k
 =  

10. Shannon-Fano Coding: 

Methodology: Shannon – Fano encoding algorithm: 

Step 1: The source symbols are first ranked in order of decreasing probability. 

Step 2: The set is then partitioned into two sets that are as close to equiprobable as possible 
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Step 3: 0’s are assigned to the upper set and 1’s to the lower set. 

Step 4: The above process is continued, each time partitioning the sets with as nearly equal 

probabilities as possible, until further partitioning is not possible. 

Or we can represent this coding as: 

1. List the source symbols in order of decreasing probability. 

2. Partition the set into two sets that are as close to equiprobable as possible, and assign 0 

to the upper set and 1 to the lower set. 

3. Continue this process, each time partitioning the sets with as nearly equal probabilities 

as possible until further partitioning is not possible. 

11. HUFFMAN CODING 

Methodology: Huffman encoding algorithm:  

Following are the steps involved in Huffman encoding coding of a source symbol: 

Step 1: The source symbols are listed in order of decreasing probability. 

Step 2: The two source symbols of lowest probability are assigned a 0 an a 1. 

Step 3: These two source symbols are regarded as being combined into a new source 

symbol with probability equal to the sum of the two original probabilities. (the list source 

symbols, and therefore source statistics, is thereby reduced in size by one.) 

Step 4: The probability of the new symbol is placed in the list in accordance with its value. 

Step 5: The above procedure is repeated until we are left with a final list of source statistics 

(symbols) of only two for which a 0 and a 1 are assigned. 

Step 6: The code for each (original) source symbol is found by working backward and 

tracing the sequence of 0s and 1s assigned to that symbol as well as its successors. 

12. DISCRETE MEMORYLESS CHANNELS 

 

The matrix of transition probabilities [P(Y|X)], given by: 

[P(Y|X)] = 

 
 
 
 
 
 
 

1 1 2 1 n 1

1 2 2 2 n 2

1 m 2 m n m

P(y x ) P(y x ) ... P(y x )

P(y x ) P(y x ) ... P(y x )

... ... ... ...

P(y x ) P(y x ) ... P(y x )
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if the input probabilities P(X) are represented by the row matrix 

[P(X)] = [P(x1)   P(x2)   …   P(Xm)]     

and the output probabilities P(Y) arc represented by the row matrix 

[P(X)] = [P(y1)   P(y2)   …   P(ym)]     

then [P(Y)] = [P(X)][P(Y|X)]       

If P(X) is represented as a diagonal matrix 

 
 
 =
 
 
  

1

2
d

m

P(x ) 0 ... 0

0 P(x ) ... 0
[P(X)]

... ... ... ...

0 0 ... P(x )

     

then [P(X, Y)] = [P(X)d[P(Y|X)] 

13. ENTROPY FUNCTIONS FOR DISCRETE MEMORYLESS CHANNEL 

If the channel has n inputs and m outputs, then we can define several entropy functions 

for input and output as 

( ) ( ) ( )

( ) ( ) ( )

n

1 2 i

i 1

m

j 2 j

j 1

H X P x log P x

H Y P y log P y

=

=

= −

= −




 

 

a) Joint Entropy 

The joint entropy of the system is obtained as 

( ) ( ) ( )
n m

i j 2 i j

i 1 j 1

H X,Y P x , y log P x , x
= =

= −  

b) Conditional Entropy 

The several conditional entropy functions for the discrete memoryless channel is 

defined as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

m

i j i 2 j i

j 1

n

j i j 2 i j

i 1

n m

i j 2 j i

i 1 j 1

n m

i j 2 i j

i 1 j 1

H Y | x p y | x log P y | x

H X | y P x | y log x | y

H Y | X P x , y log P y | x

H X | Y P x , y log P x | y

=

=

= =

= =

= −

= −

= −

= −









 

14. MUTUAL INFORMATION 

The mutual information I(X; Y) of a channel is defined by 
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I(X; Y) = H(X) – H(X|Y) b/symbol 

Also, we can define the mutual information as 

I (X; Y) = H(Y) – H(Y | X) 

15. Channel Capacity 

The channel capacity is defined as the maximum of mutual information, i.e. 

C = max {I(X;Y)} 

Substituting above equation, we get the channel capacity as 

C = max {H(X) – H(X |Y)} 

This result can be more generalized for the Gaussian channel. The information capacity 

of a continuous channel of bandwidth B hertz is defined as  

C = Blog2 (1 + S/N) 

where S/N is the signal to noise ratio. This relationship is known as the Hartley – 

Shannon law that sets an upper limit on the performance of a communication system. 

16. CHANNEL EFFICIENCY  

The channel efficiency is defined as the ratio of actual transformation to the maximum 

transformation, i.e. 

( )

( )

I X;Y

max{I(X;Y)}

I X;Y
or

C

 =

 =

 

17. CAPACITIES OF SPECIAL CHANNELS 

Lossless Channel: 

For a lossless channel, H(X|Y) = 0 and 

I(X; Y)= H(X)    

Thus, the mutual information (information transfer) is equal to the input (source) 

entropy, and no source information is lost in transmission. Consequently, the channel 

capacity per symbol is 

Cs = 
i{P(x )}

max H(X) = log2m   

where m is the number of symbols in X. 

Deterministic Channel: 

For a deterministic channel, H(Y|X) = 0 for all input distributions P(xi), and 

I(X; Y) = H(Y)   

Thus, the information transfer is equal to the output entropy. The channel capacity per 

symbol is 

Cs = 
i{P(x )}

max H(Y) = log2n   
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where n is the number of symbols in Y. 

Noiseless Channel: 

Since a noiseless channel is both lossless and deterministic, we have 

I(X; Y) = H(X) = H(Y) 

and the channel capacity per symbol is 

Cs = log2m = log2n 

18. Binary Symmetric Channel: 

For the BSC of Figure below, the mutual information is: 

I(X; Y) = H(Y) + plog2p + (1 – p)log2(1 – p) 

and the channel capacity per symbol is 

Cs = 1 + plog2p + (1 – p)log2(1 – p) 

 

Binary Symmetric Channel 

19. DIFFERENTIAL ENTROPY 

The average amount of information per sample value of x(t) is measured by 

H(X) = – 


− X 2 Xf (x)log f (x) dx  b/sample  

The entropy H(X) defined by above is known as the differential entropy of X. 

H(Y) = – 


− Y 2 Yf (y)log f (y) dy   

H(X|Y) = – 
 

− −  XY 2 Xf (x,y)log f (x | y) dxdy   

H(X|Y) = – 
 

− −  XY 2 Yf (x,y)log f (y | x) dxdy  

20. ERROR DETECTION AND CORRECTION CAPABILITIES 

The minimum distance dmin of a linear code C is an important parameter of C. It determines 

the error detection and correction capabilities of C. This is stated in the following theorems. 

Theorem 1: 

“A linear code C of minimum distance dmin can detect up to r errors if and only if 

dmin ≥ t + 1” 

Theorem 2: 

“A linear code C of minimum distance dmin can correct up to t errors if and only if 
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dmin ≥ 2t + 1 ", there exists a received word r such that d(ci, r) ≤ t, and yet r is as close 

to cj as it is to ci. Thus, the decoder may choose cj, which is incorrect. 

21. PARITY-CHECK MATRIX 

Let H denote an m X n matrix defined by 

H = [P   Im]    

where m = n – k and Im is the mth-order identity matrix. Then 

HT = 
 
 
  

T

m

P

I
  

Using above equations, we have 

 
 = =  =  

  

T
T T T T

k

m

P
GH I P P P 0

I
    

where 0 denotes the k × m zero matrix. Now we have, 

cHT = dGHT = 0(11.13) 

where 0 denotes the 1 × m zero vector. 

The matrix H is called the parity-check matrix of C. Note that the rank of H is m = n – 

k and the rows of H are linearly independent. The minimum distance dmin of a linear block 

code C is closely related to the structure of the parity-check matrix H of C.  

22. SYNDROME DECODING 

With syndrome decoding, an (n, k) linear block code can correct up to t errors per 

codeword if n and k satisfy the following Hamming bound. 

−

=

 
  

 

t

n k

i 0

n
2

i
   

Where 
( )

 
= 

− 

n n!

i n 1 !i!
 

A block code for which the equality holds is known as the perfect code. Single error-

correcting perfect codes are called Hamming codes. 

 

*** 
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