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CHAPTER 1: VECTOR CALCULUS 

1. Vector Quantity 

A physical quantity which has both magnitude and definite direction is called a vector 

quantity. The various examples of vector quantity are force, velocity, displacement, electric 

field intensity, magnetic field intensity, acceleration etc. 

1.1. Representation of a Vector 

To distinguish between a scalar and a vector it is customary to represent a vector by a letter 

with an arrow on top of it, such as a and b , or by a letter in boldface type such as  A and B . 

1.2. Unit Vector 

A unit vector consists both magnitude and direction. Its direction is same as that of the main 

vector however, its magnitude is unity. It can be written in various as IA, iA, αA or uA. A unit 

vector is defined as the ratio of the main vector itself to its magnitude. For example, the unit 

vector of A is given as 
| |

A

A

A
 =  

Where |A| is the magnitude of the vector and αA is the unit vector of A. 

2. Basic Vector Operations 

2.1. Scaling of a Vector 

When a vector is multiplied by a scalar it results in a vector quantity. 

Consider a vector A and a scalar k. The product R  of the two quantities is given as 

R  = k A  

Following are some important properties of scaling operation: 

Properties of scaling operation 

1. Consider the scaling operation R  = k A . The direction of R  is same as that of A  if k is 

positive, and opposite to that of A if k is negative. 

2. In rectangular coordinates, assume that the scaling operation is given by 

Rx xa  + Ry ya  + RZ Za  = k (Ax xa   + Ay ya  + Az Za ) 

The above equality is satisfied if each component of the LHS is equal to the corresponding 

component of RHS, i.e. 

Rx = kAx, Ry= kAy, Rz = kAz 

The magnitude of R is 

 
2 2 2| | x y zR k A A A kA= + + =  

 

 

IMPORTANT FORMULAS TO REMEMBER 
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3. Let k1, k2 be the scalars, and A, B be the vectors then, 

(k1+k2) A  = k1 A +k2 A   

2.2. Addition of Vectors 

Consider the two vectors, 

A  = Ax xa  + Ay ya +Az Za  and 

B  = Bx xa +By ya  + Bz Za  

The addition of these two vectors is given by 

A  + B  = (Ax+Bx) 
xa   + (Ay+By) 

ya  + (AZ+BZ) 
Za  

Properties of Vector Addition 

1. Vector addition follows the commutative law, i.e. 

A  + B  = B  + A  

2. Vector addition follows the associative law, i.e. 

A  +( B + C ) = ( A  + B ) + C  

3. Similar to the vector addition, the subtraction of the vectors is defined as 

A  - B  = (Ax - Bx) 
xa   + (Ay - By)

ya   + (Az-BZ) Za   

k1( A + B ) = k1 A + k1 B  

2.3. Multiplication of vectors 

When two vectors A and B are multiplied, the result is either a scalar or a vector depending 

on how they are multiplied. There are two types of vector multiplication: 

1. Scalar (or dot) product: A • B  

2. Vector (or cross) product: A  × B  

2.3.1 Scalar Product 

The dot product of the vectors A and B is defined as 

A • B  = |A||B| cosθ 

Following are some important properties of dot product of two vectors. 

Properties of Dot product 

1. The dot product of two orthogonal vectors is always zero, i.e. 

 A • B  = 0, if θ = 900 

2. The dot product of two parallel vectors in equal to the product of their magnitudes, i.e. 

 A • B  = AB,  if θ = 00 

3. In rectangular coordinate systems, the dot products of the unit vectors are given as 

 αx • αy = αy• αz = αz• αx=0 

αx • αx = αy • αy = αz• αz =1 

4. if the two vectors are defined in rectangular coordinates as 

 A  = Axαx + Ayαy + Azαz 
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 B  = Bxαx+ Byαy + Bzαz 

Then, their dot product is evaluated as 

 A • B  = AxBx + AyBy + AzBz 

5. The dot product follows the commutative law, i.e. 

 A • B  = B • A  

6. The dot product also follows the distributive law, i.e. 

 A • ( B + C ) = A • B  + A • C  

2.3.2 Vector of Cross Product 

The cross product of two vectors A and B is Defined as 

A  × B  = (AB sin θ) αn 

Where αn is the unit vector normal to the plane containing A and B, θ is the angle between 

the vector A and B as shown in Figure 1.4 As there are the normal unit vector αn we use the 

right- hand rule. 

Right hand rule 

Let your fingers point in the direction of the first vector and curl around (via the smaller 

angle) toward second; then your thumb indicates the direction of αn. the cross-product A× B 

points upward. 

Properties of cross product 

1. The cross product of two orthogonal vectors is equal to the product of their magnitudes 

with the direction perpendicular to the plane, i.e. 

 A  × B  = ABαn,  if, θ = 900 

2. The cross product of two parallel vectors is always zero, i.e. 

 A  × B  = 0,   if θ = 00 

3. In rectangular coordinate system, the cross product of the unit vectors are given as 

 αx× αx = αy× αy = αz× αz = 0 

 αx× αy = αz 

 αy × αz = αx 

 αz × αx = αy 

4. If the two vectors are defined in rectangular coordinates as 

 A  = Axαx+ Ayαy+Azαz 

 B  = Bxαx+Byαy + Bzαz 

Then, their cross product is evaluated as 

 A B
x y z

x y z

x y z

a a a

A A A

B B B

 
 

 =  
 
 
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5. The cross product is anti-commutative, i.e. 

 A  × B  = – B  × A  

6. The cross product follows the distributive law, i.e. 

A  × ( B  + C ) = A  × B  + A  × C  

3. COORDINATE SYSTEMS 

The following three most useful coordinate systems: 

1. Cartesian or rectangular coordinates, 

2. Circular or cylindrical coordinates, and 

3. Spherical coordinates. 

3.1. Rectangular or Cartesian Coordinate System 

The three coordinate axes are designated as x, y and z which are mutually perpendicular to 

each other. The variables x, y and z can have any values in the range 

-∞ < x < ∞, -∞, < y < ∞, -∞ < z < ∞ 

Vector Representation in Rectangular Coordinate System 

A vector A in rectangular coordinate system is represented as 

A = Ax αx + Ay αy+ Az αz 

Where αx,αy, αz are the unit vectors along the x, y and z directions. 

The magnitude of A is given by 

2 2 2| A | x y zA A A= + +  

 

Figure: Representation of cartesian coordinates 

  

https://byjusexamprep.com/


byjusexamprep.com 

6 

3.2. Cylindrical Coordinates 

The cylindrical coordinate system is very convenient whenever we are dealing with problems 

having cylindrical symmetry. 

 A Point P in cylindrical coordinates is represented as (ρ,  , z) and is as shown in figure 

below. 

The ranges of the variables are: 

0       

0 2     

z−   +  

A vector A  in cylindrical coordinates can be written as 

( )z z zˆ ˆ ˆA ,A ,A or A a A a A a     + +  

 

Figure: Representation of cylindrical coordinates 

Notice that the unit vectors ˆ ˆa ,a  and zâ  are mutually perpendicular because our coordinates 

system is orthogonal. 

z zˆ ˆ ˆ ˆ ˆ ˆa a a a a a 0    =  =  =  

z zˆ ˆ ˆ ˆ ˆ ˆa a a a a a 1    =  =  =  

zˆ ˆ ˆa a a  =     

zˆ ˆ ˆa a a  =     

ẑ ˆ ˆa a a  =  
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Conversion of cartesian coordinate to cylindrical coordinate and vice-versa 

Point transformation, 

−

 = +

 =

=

2 2

1

x y

y
tan

x

z z

 

or  

=  

=  

=

x cos

y sin

z z

  

The relationship between x y z zˆ ˆ ˆ ˆ ˆ ˆa ,a ,a and a ,a ,a  are vector transformation, 

xˆ ˆ ˆa cos a sin a =  −      

yˆ ˆ ˆa sin a cos a =  +      

z zˆ ˆa a=     

or x yˆ ˆ ˆa cos a sin a =  +     

x yˆ ˆ ˆa sin a cos a = −  +      

z zˆ ˆa a=     

Finally, the relationship between (Ax, Ay, Az) and ( )zA ,A ,A   are 

x

y

zz

A Acos sin 0

A sin cos 0 A

0 0 1 AA





 

= −     

x

y

z z

AA cos sin 0

A sin cos 0 A

0 0 1A A





 − 

=    

3.3. Spherical Coordinates 

A point P can be represented as ( ( )r, ,  ) and s illustrated in figure below. From figure, we 

notice that r is defined as the distance from the origin to point P or the radius of a sphere 

centered at the origin and passing through P; θ (called the colatitudes) is the angle between 

the z-axis and the position vector of P; and  is measured from the x-axis (the same 

azimuthal angle in cylindrical coordinates). According to these definitions, the ranges of the 

variables are  

0 r       

0      

0 2     
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Note: the unit vectors r̂ ˆ ˆa ,a and a  are mutually perpendicular because our coordinate 

system is orthogonal.  

r rˆ ˆ ˆ ˆ ˆ ˆa a a a a a 0    =  =  =  

r rˆ ˆ ˆ ˆ ˆ ˆa a a a a a 1    =  =  =   

r̂ ˆ ˆa a a  =     

rˆ ˆ ˆa a a  =     

rˆ ˆ ˆa a a  =     

 

Conversion of cartesian coordinate to spherical coordinate and vice-versa 

Point transformation, 

−

−

= + +

+ +
 =

 =

2 2 2

2 2 2
1

1

r x y z

x y z
tan

z

y
tan

x

 

Or 

=  

=  

= 

x r sin cos

y r sin sin

z r cos

 

The relationship between x y z rˆ ˆ ˆ ˆ ˆ ˆa ,a a and a ,a ,a  are 

x rˆ ˆ ˆ ˆa sin cos a cos cos a sin a =   +   −      

y rˆ ˆ ˆ ˆa sin sin a cos sin a cos a =   +   +      

z rˆ ˆ ˆa cos a sin a=  −          

r x y zˆ ˆ ˆ ˆa sin cos a sin sin a cos a=   +   +       

x y zˆ ˆ ˆ ˆa cos cos a cos sin a sin a =   +   −      

x yˆ ˆ ˆa sin a cos a = −  +   

Finally, the relationship between (Ax, Ay, Az) and ( )rA ,A ,A   are 
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Vector transformation, 

r x

y

z

A Asin cos sin sin cos

A cos cos cos sin sin A

sin cos 0A A



    

=     − 

−  

    

x r

y

A Asin cos cos cos sin

A sin cos cos sin cos A

cos sin 0 AAz





    − 

=     

 − 

 

4. DIFFERENTIAL ELEMENTS IN COORDINATE SYSTEMS 

4.1. Differential Elements in Rectangular Coordinate System 

The differential elements in rectangular coordinate system are defined as follows: 

1. Differential length in rectangular coordinate system: 

 dL = dxαx + dyαy + dzαz 

2. Differential area in rectangular coordinate system: 

 dS = dydzax = dxdzαy = dxdyαz 

3. Differential volume in rectangular coordinate system: 

 dV =dxdydz 

4.2. Differential Elements in Cylindrical Coordinate System 

The differential elements in cylindrical coordinate system are defined as follows: 

1. Differential length in cylindrical coordinate system: 

 dL = dραρ + ρdϕαϕ+dzαz 

2. Differential area in cylindrical coordinate system: 

 dS = ρdϕdzαρ = dρdzαϕ = ρdϕdραz 

3. Differential volume in cylindrical coordinate system: 

 dV = ρdρdϕdz 

4.3. Differential Elements in spherical Coordinate System 

The differential elements in spherical coordinate system are defined as follows: 

1. Differential length in spherical coordinate system 

 dL = drαr + rdθαθ + rsinθdϕαϕ 

2. Differential area in spherical coordinate system 

 dS = r2sinθdθdϕαr = rsinθdrdϕαθ = rdrdϕαϕ 

3. Differential volume in spherical coordinate system 

 dV = r2sinθdrdθdϕ 
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5. DIFFERENTIAL CALCULUS 

The Del operator (∇), in the different coordinate system, is defined as 

 x y z
x y z

  
  

 = + +
  

  (Rectangular coordinates) 

 
1

z

z

   
  

  
 = + +

  
  (Cylindrical Coordinates) 

 
1 1

sin
r

r r r
   

  

  
 = + +

  
 (Spherical coordinates) 

6. Gradient of a Scalar 

The gradient (or grad) is defined by the operation of the Del operator on a scalar field. For a 

scalar Field V, we define the gradient in the different coordinates as 

x y z

V V V
V

x y z
  

  
 = + +

  
  (Rectangular coordinates) 

1
z

V V V
V

z
   

  

  
 = + +

  
  (Cylindrical coordinates) 

1 1

sin
r

V V V
V

r r r
   

  

  
 = + +

  
 (Spherical coordinates) 

7. Divergence of a Vector 

Divergence of a vector function is a scalar and defined as the net outward flux per unit 

volume over the elementary closed surface. For a vector function A, we define the divergence 

in the different coordinates as 

 
  

 = + + 
   

yx z
AA A

A
x y z

  (Rectangular) 

 
( )1 1 z

A A A
A

z

 

   

  
 = + +

  
 (Cylindrical) 

 

2

2

(sin )( )1 1 1

sin sin

r
AAr A

A
r r r r



   


 = + +

  
 (Spherical) 

8. Curl of a Vector 

The curl of a vector plays a very important role in electromagnetic theory. 

We define the curl of vector A in different coordinate systems as 

 ( )Rectangular coordinates

 
 

    =
   
 
  

x y z

x y z

a a a

A
x y z

A A A
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 ( )
1

Cylindrical coordinates

 
 

      =       
 
  

x z

z

a a a

A
z

A A A







  

 

 

  

 



  
  =

    



 
 
 2

r

a ra r sin a

1
A

rr sin

A rA r sin A

 (Spherical coordinates) 

9. Laplacian Operator 

The Laplacian Operator is the square of the Del operator and written as (∇2). It can operate 

both on scalar as well as vector field. The Laplacian of a scalar field is a scalar field whereas 

the Laplacian of a vector is a vector field. 

9.1. Laplacian of a Scalar 

The Laplacian of a scalar field V in different coordinate systems is defined as 

2 2 2
2

2 2 2

V V V
V

x y z

  
 = + +

  
           (Rectangular coordinates)

2 2
2

2 2 2

1 1V V V
V

z


    

    
 = + + 

    
 (Cylindrical coordinates) 

2
2 2

2 2 2 2 2

1 1 1
. sin

sin sin

V V V
V r

r r r r r


    

       
 = + +   

       
    (Spherical coordinates) 

9.2. Laplacian of a Vector 

The Laplacian of a vector is defined as the gradient of divergence of the vector minus the curl 

of the curl of vector, i.e. 

∇2 A = ∇ (∇. A) - ∇×∇× A 

10. DIVERGENCE THEOREM 

According to divergence theorem, the surface integral of a vector field over a closed surface 

is equal to the volume integral of the divergence of the vector field over the volume. 

Mathematically, the divergence theorem is written as 

 ( )A dS A dV=  s 
 

Where A is a vector field and V is the volume bounded by the closed surface S. 
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11. STOKE’S THEOREM 

According to Stoke’s theorem, the line integral of a vector field around a closed path in equal 

to the surface integral of the curl of vector field over the open surface bounded by the closed 

path. Mathematically, the Stoke’s theorem is written as 

( )A dL A dS=  L S
 

Where A is a vector field and S is the open surface bounded by the closed path L. 
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CHAPTER 2: ELECTROSTATICS 

 

1. Electric charge 

Electric Charge is a fundamental conserved property of some subatomic particles, which 

determines their electromagnetic interaction. 

1.1 Point Charge 

Point charges are very small charges assumed to be of infinitesimally small volume, although 

they have finite volume considered as a single charge. 

1.2. Line Charge 

The charge per unit length along the line charge is called line charge density. It is denoted by 


L
 and defined as 

 →


 = =


L

L 0

Q dQ
lim

L dL
 

where Q  is small charge, and L  is small length. 

1.3. Surface Charge 

The charge per unit area over the surface is called the surface charge density. It is denoted 

by 


S  and defined as 

 →


 = =


S

s 0

Q dQ
lim

S dS
 

where Q  is small charge, and S  is small area. 

1.4. Volume Charge 

The charge per unit volume in the region is called volume charge density. It is denoted by 


  

and defined as 


 →


 = =

 0

Q dQ
lim

d
 

where Q  is small charge, and   is small volume. 

2. Electric flux Density 

The electric flux density vector D  in a medium is defined as the product of the permittivity 

and the electric field vector 

=D E  

The permittivity of the medium is defined in terms of the free space permittivity and the 

relative permittivity (∈ ′)as 

= 0'  

Electric flux density is independent of the medium properties  

For point charge  = =
  

R R2 2

Q Q
ˆ ˆE a , D a

4 R 4 R
 

For line charge = =
  

L L
P P

P P

P P
ˆ ˆE a , D a

2 2
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The unit of electric flux density are 

 =
2

F F C

m m m
 

NOTE:  The units of D  are equivalent to surface density i.e. C/m2 

3. Gauss’s Law – Maxwell Equations 

The total outward electric flux Ψ through any closed surface is equal to the total charge 

enclosed by the surface. 

In equation form, gauss’s law is written as  

 = = enclosed

s

D. dS Q  

Where n n
ˆ ˆdS a dS and a= =  is the outward pointing unit normal to closed surface S. 

s

D. dS = = total charge enclosed 

=  v

v

Q P dv  

or = =   v

S V

Q D.dS dv  

By applying divergence theorem to the middle term, we have 

=  
S V

D.dS .Ddv  

Comparing the two volume integrals 

 = v.D  

It states that the volume charge density is the same as the divergence of the electric flux 

density. 

4. Electric field due to a point charge 

=
 2

Q
ˆD a

4 r
 


=

  2
0

Q
ˆE a

4 r
 

Where, Q is the point charge and r is the distance between point where electric field is 

calculated and point charge. 

5. Electric field due to an Infinite line charge 

⇒  𝐷⃗⃗ =
𝑃𝐿

2𝜋𝜌
𝑎̂𝑃 

𝑎𝑛𝑑  𝐸⃗ =
𝑃𝐿

2𝜋 ∈0 𝜌
𝑎̂𝑃 

Where, PL is linear charge density, 𝜌 is distance of the point P (P is the point where electric 

field is calculated) from line charge and 𝑎̂𝑃is position vector of point P. 

6. Electric Field due to an infinite sheet of charge 

𝐷⃗⃗ =
𝜌𝑠

2
𝑎̂𝑧 
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Or, 𝐸⃗ =
𝐷⃗⃗ 

∈0
=

𝜌𝑠

2∈0
𝑎̂𝑧 

Where, 𝜌𝑠 is surface charge density and zâ  is the unit normal vector from sheet to the 

pointwhere electric field is calculated. 

7. Field due to a uniformly chargedsphere 

𝐷⃗⃗  =  {

𝑟

3
𝜌𝑣𝑎̂𝜏;  0 < 𝑟 ≤ 𝑎

𝑎3

3𝑟2 𝜌𝑣𝑎̂𝜏;    𝑟 ≥ 𝑎
   Where, 𝜌𝑣is volume charge density. 

 

Figure: Gaussian surface for a uniformly charged when (a)r ≥ a and (b) r ≤ a 

 

Figure: Sketch of |D| against r for a uniformly charged sphere. 

8. Electric field due to multiple point charger  

The electric field due to multiple points chargers can be determined using the principle of 

superposition. for  N point charges Q1,Q2,……..QN located at 1 2 3 Nr ,r ,r ......r  the electric fields 

intensity at point r  is obtained by equations. 

1 1 2 2 N N

3 3 3

0 1 0 1 0 N

Q (r r ) Q (r r ) Q (r r )
E ...

4 r r 4 r r 4 r r

− − −
= + +

  −   −   −
 

=

−
=

  −

N

K k

3
K 10 1 k

Q (r r )1
E

4 r r
 

9. Electric field due to charge distributions 

L L

L

dQ dl Q dl(line charge)=   =   

S S

S

dQ dS Q dS (surface charge)=   =   

=   = v v

v

dQ dV Q dV (volume charge)  
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10. Electric field on the axis of a charged ring 

Consider a circular ring of radius a with uniform line charge density ρL(C/m) and a point P on 

the axis of ring as shown in figure 

 

Figure: electric field to circular ring 

The total electric field is therefore 

z2 2 3/2

0

Qz
ˆE a

4 (z a )
=

 +
 

Note: 
2

0

Q
As z , E tends to

4 z
→ 


 

11. Electric field of a Charged Circular Disk 

The electric field due to a uniformly charged circular disk at a point on its axis can be 

calculated using the result for a ring. Consider a disk of radius a, surface charge density 

ρs*(C/m2) and point P as shown in the figure 

 

Figure: Electric field due to charged circular 
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s

z
2 2

0

z
ˆE 1 a

2 z a


= −

 +

 
 
 

 

Note: If z ≫ a then 
z2

0

Q
ˆE a

4 z
=

 
 

12. Potential difference in the electric field of a point charge 

The potential difference between two points A and B in the electric fields of the point charge 

is 

AB

B

A

B

A

AB VVdVld.EV −==−=   

13. Energy Density in Electrostatic Field    

WE = =  
2

0

vol. vol.

1 1
(D.E) dv E dv (J)

2 2
 

Where, D is electric flux density and E is electric field intensity. 

We defined energy density in (J/m3) 

14. Boundary Conditions 

Electric field intensity E  into two orthogonal components 

 E  = +t nE E  

where tE  and nE  are tangential and normal components of E  respectively. 

14.1. Dielectric-Dielectric Boundary Conditions 

Consider the E  field existing in a region that consist of two different dielectrics characterized 

by ϵ1 = ϵ0ϵn and ϵ2 = ϵ0ϵa as shown in figure. 

 

Figure: Dielectric-dielectric boundary: (a) determining E1t = E2t 

(b) determining D1σ = D2σ. 

The fields and 1E and 2E  can be decomposed as 

 = +1 1t 1nE E E  

 = +2 2t 2nE E E  

then,   E1t = E2t 

14.2. Conductor-Dielectric Boundary Conditions 
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Figure: Conductor-dielectric boundary. 

 


= = 


n S

Q
D

S
 

or,   Dn = ρS 

14.3. Conductor-Free Space Boundary Conditions 

The boundary conditions at the interface of conductor and free space can be obtained from 

conductor-dielectric boundary conditions with ϵr =1. 

 Thus the boundary condition are 

 Et = 0. Dt = ϵ0Et = 0  

 Dn  = 




S

0

 

 

Figure: Conductor-free space boundary 

15. Poisson’s and Laplace’s Equations 


 = −



2 vV , Where V is electrostatic potential andρv is volume charge density. 

This is known as Poisson’s equation. 

As special case of this equation occurs when ρv = 0 (i.e., for a charge free region 

  =2V 0  

Which is known as Laplace’s equation. 

16. Coaxial Capacitor 
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Figure: A coaxial capacitor 

The capacitance of a coaxial cylinder is given by 

 C = 
 

=
Q 2

bV
ln

a

 

17. Spherical Capacitor 

 

Figure: A spherical capacitor 

The capacitance of the spherical capacitor is 

C = 
 

=

−

Q 4

1 1V

a b
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CHAPTER 3: MAGNETOSTATICS 

1. MAGNETIC FLUX DENSITY 

Magnetic flux density is the amount of magnetic flux per unit area of a section, perpendicular 

to the direction of magnetic flux. 

It is denoted by B. Mathematically, 


=

n

d
B a

dS
 

Where d is a small amount of magnetic flux through small area dS of the section 

perpendicular to magnetic flux an is the unit vector normal to the surface area. 

also expressed as 

 = •S
B dS  

2. Relation between Magnetic field Intensity (H) and Magnetic Flux Density (B): 

The magnetic field intensity is related to the magnetic flux density as 

=  =  
0

B H ,H  

Where,  is the permeability of the medium, 0=4  ×10-7 H/m is the permeability of free 

space, and , is the relative permeability of the medium. 

3. Biot-Savart’s Law 

 

Figure: Magnetic field due to small length at P 

 

Line current  R

2L

Idl a
H

4 R


=


   

Surface current  R

2L

KdS a
H

4 R


=


   

Volume current R

2V

Jdv a
H

4 R


=


        

(H direction = I direction × Radial vector)    

4. Ampere’s Circuital Law 
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According to Ampere’s circuital law the line integral of magnetic field intensity H around the 

closed loop L is equal to I, i.e. 

∮𝐻 ⋅ 𝑑𝐿 = 𝐼
𝐿

 

Differential Form of Ampere’s Circuital Law 

In differential form Ampere’s circuital law is defined as 

H J  =  

i.e. the curl of the magnetic field intensity (H) is equal to the current density (J) at the point 

in space. 

5. H-field for finite length of current I carrying wire: 

 

Figure: Field at P due to line conductor 

( )1 2

I
H sin sin a

4
=  + 


 

Note: Notice from the above equation that H  is always along the unit vector â  (i.e., along 

concentric circular paths) irrespective of the length of the wire or the point of interest P. 

6. H-field for infinite length of current I carrying wire: 

I
ˆH a

2
=


  

The unit vector â  must be found carefully. A simple approach is to determine â  form 

l p
ˆ ˆ ˆa a a


=     

Where l̂a  is a unit vector along the line current and p̂a  is a unit vector along the 

perpendicular line from the line current to the filed point.  
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 Electric force (Fe = QE) Magnetic Force (Fm = Qu ×B) 

1. It is in the same direction as the field E. It is perpendicular to both u and B. 

2. It can perform work. It cannot perform work. 

3. It is independent of the velocity of charge. It depends upon the velocity of charge. 

4. It can produce change in kinetic energy. It cannot produce change in kinetic energy. 

Table: Comparison between Electric Force and Magnetic Force 

7. Force on a Differential Current Element in Magnetic Field 

The differential magnetic force experienced by various differential current elements are given 

below: 

= m

L

F IdL B  (Line current) 

= m

S

F K BdS  (Surface current) 

= m

V

F J Bdv  (Volume current) 

Where IdL is the line current element, KdS is surface current element, Jdv is volume current 

element, and Fm is the magnetic force exerted on the respective elements in presence of 

magnetic field B 

8. Magnetic Force Between Two Current Elements 

Consider the two differential current elements I1dL1 and I2dL2 separated by a distance r. The 

magnetic force between the two current elements is given by  

( )



 
=  

1 2

2 11 2

24

r

L L

dL dL aI I
F

r
 

This equation is also called Ampere’s force law. 

9. Magnetic Susceptibility 

In a linear material, magnetization is directly proportional to field intensity. i.e. 

m

M H

or M H



= 
 

where 
m

  is the magnetic susceptibility of the medium. The magnetic susceptibility of a 

magnetic material is a measure of the degree of magnetization of a material in response to 

an applied magnetic field. 

10. Relation between Magnetic Field Intensity and Magnetic Flux Density 

In a magnetic material, magnetic flux density is expressed in terms of magnetic field 

intensity as 

0 0 m

0 r

B (H M) (1 )H

H H

=  + =  + 

=   = 
 

where 
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0 r
 =    is called permeability of the medium, expressed in Henry per metre (H/m), 

7

0
4 10 H/m− =    is the permeability of free space, known as absolute permeability, 

r m

0

(1 )


 = +  =


 is the relative permeability of the medium, it is dimensionless. 

11. Energy Density in a Magnetic Field 

In a magnetic field with flux density B, the stored magnetic energy density is given by 

m

1
w (B H)

2
=   

where H is the magnetic field intensity in the region. The total magnetic energy stored in a 

region is obtained by taking the volume integral of the energy density, i.e. 

m m

1
W w d (B H)d

2 
=  =     

12. Boundary Conditions for Magnetostatic Fields: 

B1n = B2n States that Normal component of B is continuous across an interface. μ1H1n = μ2H2n 

H1t – H2t = Jsn States that the Tangential component of H field is discontinuous across an 

interface where free surface current exist-amount the amount of discontinuity being equal to 

the surface current density.  

When conductivities of both media are finite, current are defined by volume current densities 

and free surface currents don’t exist on interface hence j equal to zero, and the Tangential 

component of H field is continuous across the boundary of almost all physical media; it is 

discontinuous only when an interface with an ideal conductor or a super conductor is 

assumed. 
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CHAPTER 4: MAXWELL’S EQUATION 

Maxwell Equations 

Differential form integral form Significance 

B
E

t


  = −


 ∮𝐸. 𝑑𝑙 = −∬

𝜕𝐵

𝜕𝑡
. 𝑑𝑠 Faraday’s Law 

∇ × 𝐻

= 𝐽 +
𝜕𝐷

𝜕𝑡
 

∮𝐻. 𝑑𝑙 = −∬(𝐽 +
𝜕𝐷

𝜕𝑡
). 𝑑𝑠 Ampere’s Circuital Law 

∇.D = ρv ∯𝐷.𝑑𝑠 = 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 Gauss Law 

∇.B = 0 ∯𝐵.𝑑𝑠 = 0 No isolated magnetic charge 

 

*** 
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