Classroom

ESE Mains

Achiever's Study Plan

Electronics \& Communication Engineering

Networks Part-2

1. The circuit shown below is unenergized before closing the switch K at $\mathrm{t}=0$, the circuit parameters are $L_{1}=1 \mathrm{H}, \mathrm{L}_{2}=8 \mathrm{H}, \mathrm{M}=2 \mathrm{H}, \mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=2 \Omega, \mathrm{~V}=10 \mathrm{~V}$. Find $\mathrm{i}_{1}(\mathrm{t})$ from the instant switch is closed.

Sol. The circuit for time $\mathrm{t}>0$

Applying KVL in loop (1)
$V=i_{1}(t) R_{1}+L_{1} \frac{d i_{1}(t)}{d t}-M \frac{d i_{2}(t)}{d t}$
Applying KVL in loop (2)
$L_{2} \frac{d i_{2}(t)}{d t}+R_{2} i_{2}(t)-M \frac{d i_{1}(t)}{d t}=0$
Taking Laplace transform of equation (i) \& (ii)
$\frac{V}{s}=R_{1} I_{1}(s)+s L_{1} I_{1}(s)-s M I_{2}(s)$
$\mathrm{sL}_{2} \mathrm{I}_{2}(\mathrm{~s})+\mathrm{R}_{2} \mathrm{I}_{2}(\mathrm{~s})-\mathrm{sMI} \mathrm{I}_{1}(\mathrm{~s})=0$
$\left(s L_{2}+R_{2}\right) I_{2}(s)=s M I_{1}(s)$
$\mathrm{I}_{2}(\mathrm{~s})=\frac{\mathrm{sM}}{\left(\mathrm{sL} \mathrm{L}_{2}+\mathrm{R}_{2}\right)} \mathrm{I}_{1}(\mathrm{~s}) \ldots$ (v)

Vision 2021 Batch-3

A Course for ESE \& GATE Electronics Aspirants

By (iii) \& (v)
$\frac{V}{s}=\left(R_{1}+s L_{1}\right) I_{1}(s)-\frac{s M . s M}{\left(s L_{2}+R_{2}\right)} I_{1}(s)$
$\frac{V}{s}=\left[R_{1}+s L_{1}-\frac{s^{2} M^{2}}{\left(s L_{2}\right)+R_{2}}\right] I_{1}(s)$
Putting values of parameters:
$\frac{10}{s}=\left[2+s-\frac{4 s^{2}}{8 s+2}\right] I_{1}(s)$
$\frac{10}{s}=\frac{\left[(s+2)(8 s+2)-4 s^{2}\right]}{(8 s+2)} I_{1}(s)$
$=\left[\frac{8 s^{2}+16 s+2 s+4-4 s^{2}}{(8 s+2)}\right] I_{1}(s)$
$I_{1}(s)=\frac{10(8 s+2)}{4 s^{2}+18 s+4}$
$=\frac{2.5(8 s+2)}{\left(s^{2}+4.5 s+1\right)}$
$=\frac{A}{s+0.234}+\frac{B}{s+4.26}$
Solving partial differentiation:
$A s+4.26 A+B s+0.264 B=2.5 \times 8 s+2.5 \times 2$
$A+B=20$
$4.26 A+0.234 B=5$
So, $A=0.0795$
$B=19.920$
$I_{2}(s)=\frac{0.0795}{s+0.234}+\frac{19.920}{s+4.26}$
$\mathrm{i}_{1}(\mathrm{t})=0.0795 \mathrm{e}^{-0.234 \mathrm{t}}+19.920 \mathrm{e}^{-426 \mathrm{t}} \mathrm{A}$
2. Obtain resonant frequency of the circuit shown in figure below.

Given value of parameters as $L=1 H, R_{1}=1 \Omega, \mathrm{R}_{2}=10 \Omega, \mathrm{C}=1 \mathrm{~F}$

Vision 2021 Batch-3

START FREE TRIAL

A Course for ESE \& GATE Electronics Aspirants

Sol. To find resonant frequency we know that imaginary part of admittance is zero in case of parallel circuit.
$Y(j \omega)=$ admit tan ce $=\frac{1}{R_{2}+j \omega L}+j \omega C+\frac{1}{R_{1}}$
$Y(j \omega)=\frac{1}{10+j \omega(1)}+j \omega(1)+\frac{1}{1}$
$Y(j \omega)=\frac{10-j \omega}{100-\omega^{2}}+j \omega+1$
$\operatorname{Img}[Y(j \omega)]=0$
$\frac{-\omega}{100-\omega^{2}}+\omega=0$
$\omega=\frac{\omega}{100-\omega^{2}}$
$100-\omega^{2}=1$
$100-1=\omega^{2}$
$\omega= \pm \sqrt{99}$
$\omega= \pm 9.95 \mathrm{rad} / \mathrm{sec}$
The resonant frequency for this parallel combination is $9.95 \mathrm{rad} / \mathrm{sec}$.
3. The network shown in figure below, switch ' K ' is connected at position (1) for long time. At $t=0$, the switch ' K ' is transferred to position (2) Determine the voltage $V_{R}(t)$

Sol. For $\mathrm{t}<\mathrm{O}$ -

$\mathrm{V}_{\mathrm{C} 1}\left(0^{-}\right)=10 \mathrm{~V}$
$\mathrm{V}_{\mathrm{c} 2}\left(0^{-}\right)=10 \mathrm{~V}$
[voltage across capacitor in parallel to voltage source is same as voltage source at steady state]
At $\mathrm{t}=\mathrm{O}^{+}$switch moved to position (2) for $\mathrm{t}=\mathrm{O}^{+}$, the circuit will be

Applying KVL in loop (1)
$\frac{-10}{\mathrm{~s}}+\mathrm{I}_{1}(\mathrm{~s}) \mathrm{R}_{1}+\frac{1}{\mathrm{C}_{1} \mathrm{~s}}\left[\mathrm{I}_{1}(\mathrm{~s})-\mathrm{I}_{2}(\mathrm{~s})\right]=0$
$\mathrm{I}_{1}(\mathrm{~s})\left[\mathrm{R}_{1}+\frac{1}{\mathrm{C}_{1} \mathrm{~s}}\right]-\mathrm{I}_{2}(\mathrm{~s}) \frac{1}{\mathrm{C}_{1} \mathrm{~s}}=\frac{10}{\mathrm{~s}}$
KVL in loop (2)
$\frac{-10}{\mathrm{~s}}+\frac{10}{\mathrm{~s}}+\frac{1}{\mathrm{C}_{1} \mathrm{~s}}\left[\mathrm{I}_{2}(\mathrm{~s})-\mathrm{I}_{1}(\mathrm{~s})\right]+\left[\frac{1}{\mathrm{C}_{2} \mathrm{~s}}+\mathrm{R}_{2}\right] \mathrm{I}_{2}(\mathrm{~s})=0$
$-\frac{1}{\mathrm{C}_{1} \mathrm{~s}} \mathrm{I}_{1}(\mathrm{~s})+\left[\mathrm{R}_{2}+\frac{1}{\mathrm{C}_{1} \mathrm{~s}}+\frac{1}{\mathrm{C}_{2} \mathrm{~s}}\right] \mathrm{I}_{2}(\mathrm{~s})=0$.
Putting values of parameter in equation (i) and (ii)
$\mathrm{I}_{1}(\mathrm{~s})\left[1+\frac{1}{\mathrm{~s}}\right]+\frac{1}{\mathrm{~s}}\left[-\mathrm{I}_{2}(\mathrm{~s})\right]=\frac{10}{\mathrm{~s}} \ldots$
$-\frac{1}{\mathrm{~s}} \mathrm{I}_{1}(\mathrm{~s})+\left[1+\frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}}\right] \mathrm{I}_{2}(\mathrm{~s})$.
By (iv)
$\mathrm{I}_{1}(\mathrm{~s})=(\mathrm{s}+2) \mathrm{I}_{2}(\mathrm{~s})$
$I_{2}(s)=\frac{1}{s+2} I_{1}(s) \ldots .(v)$
By (iii) \& (v)
$I_{1}(\mathrm{~s})\left[\frac{\mathrm{s}+1}{\mathrm{~s}}\right]+\frac{1}{\mathrm{~s}}\left(\frac{1}{\mathrm{~s}+2}\right) \mathrm{I}_{1}(\mathrm{~s})=\frac{10}{\mathrm{~s}}$
$I_{1}(s)\left[\frac{s+1}{s}+\frac{1}{s(s+2)}\right]=\frac{10}{s}$

Vision 2021 Batch-3

START FREE TRIAL

A Course for ESE \& GATE Electronics Aspirants

$$
\begin{aligned}
& I_{1}(s)=\frac{10 \times s \times s(s+2)}{s[s(s+1)(s+2)+s]} \\
& I_{1}(s)=\frac{10(s+2)}{s^{2}+3 s+3} \\
& I_{2}(s)=\frac{I_{1}(s)}{s+2}=\frac{10}{s^{2}+3 s+3}
\end{aligned}
$$

(By V)
So, $I_{2}(s)=\frac{10}{s^{2}+3 s+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+3}$
$=\frac{10}{\left(s+\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$\mathrm{I}_{2}(\mathrm{t})=\mathrm{L}^{-1}\left[\mathrm{I}_{2}(\mathrm{~s})\right]$
$=L^{-1}\left[\frac{10 \times \sqrt{3} / 2}{\sqrt{3} / 2\left[\left(s+\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}\right]}\right]$
$=10 \frac{2}{\sqrt{3}} \mathrm{e}^{-(3 / 2) \mathrm{t}} \sin \left(\frac{\sqrt{3}}{2} \mathrm{t}\right)$
$\mathrm{i}_{2}(\mathrm{t})=\frac{20}{\sqrt{3}} \mathrm{e}^{-(3 / 2) \mathrm{t}} \sin \left(\frac{\sqrt{3}}{2} \mathrm{t}\right)$
VR (t) R2 i2 (t)
$V_{R}(t)=\frac{20}{\sqrt{3}} e^{-1.5 t} \sin \left(\frac{\sqrt{3}}{2} t\right)$
4. Determine the voltage V_{R} in the circuit given below

The values of parameters are $C=1 F, R_{1}=R_{2}=1 \Omega$
$\mathrm{L}=1 \mathrm{H}, \mathrm{V} \mathrm{c}(0)=8 \mathrm{~V}, \mathrm{i}(0)=1 \mathrm{~A}$
Find the value of $i(t)$ for time $t>0$

A Course for ESE \& GATE Electronics Aspirants

Sol. Drawing circuit considering the initial conditions

Applying KVL in loop (1)
$-\frac{10}{\mathrm{~S}}+\frac{\mathrm{V}_{\mathrm{c}}(0)}{\mathrm{S}}+\left[\mathrm{R}_{1}+\frac{1}{\mathrm{Cs}}\right] \mathrm{I}_{1}(\mathrm{~s})-\mathrm{R}_{1} \mathrm{I}_{2}(\mathrm{~s})=0$
$\left(1+\frac{1}{\mathrm{~s}}\right) \mathrm{I}_{1}(\mathrm{~s})-\mathrm{I}_{2}(\mathrm{~s})=\frac{10}{\mathrm{~s}}-\frac{8}{\mathrm{~s}}=\frac{2}{\mathrm{~s}} \ldots$ (i)
Applying KVL in loop (2)
$-I_{1}(s) R_{1}+\left(R_{2}+L s+R_{1}\right) I_{2}(s)-L i\left(0^{+}\right)=0$
$-\mathrm{I}_{1}(\mathrm{~s})+(2+\mathrm{s}) \mathrm{I}_{2}(\mathrm{~s})=1$
$E q^{n}(i i) \times\left(\frac{s+1}{s}\right)+E q^{n}(i)$
$\Rightarrow-\left(\frac{\mathrm{s}+1}{\mathrm{~s}}\right) \mathrm{i}_{1}(\mathrm{~s})+(2+\mathrm{s}) \times \frac{(\mathrm{s}+1)}{\mathrm{s}} \mathrm{I}_{2}(\mathrm{~s})$
$=\left(\frac{\mathrm{s}+1}{\mathrm{~s}}\right)+\frac{2}{\mathrm{~s}}+\left(\frac{\mathrm{s}+1}{\mathrm{~s}}\right) \mathrm{I}_{1}(\mathrm{~s})-\mathrm{I}_{2}(\mathrm{~s})$
$\Rightarrow \frac{(\mathrm{s}+1)(\mathrm{s}+2)}{\mathrm{s}} \mathrm{I}_{2}(\mathrm{~s})-\mathrm{I}_{2}(\mathrm{~s})=\left(\frac{\mathrm{s}+3}{\mathrm{~s}}\right)$
$I_{2}(s)=\frac{s+3}{s^{2}+2 s+2}$
$I_{2}(s)=\frac{s+1}{(s+1)^{2}+1}+\frac{2}{(s+1)^{2}+1}$
$\mathrm{i}_{2}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \cos \mathrm{t}+2 \mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$
$\therefore \mathrm{I}_{2}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \cos \mathrm{t}+2 \mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$ for $\mathrm{t}>0$
5. For the circuit shown below, derive the condition \& expression of resonant frequency. Also calculate resonant frequency if parameters are $L=1, C=1 n F, R=1 \mathrm{~K} \Omega, V=1.5 \mathrm{~V}$

Sol. The equivalent impedance is given by
$Z=\left(R+X_{L}\right) \|\left(X_{C}\right)$
$=(R+j \omega L) \| \frac{1}{j \omega C}$
$=\frac{(R+j \omega L) \times \frac{1}{j \omega C}}{\left(R+j \omega L+\frac{1}{j \omega C}\right)}$
$=\frac{(R+j \omega L)}{R j \omega C-\omega^{2} L c+1}$
$=\frac{R+j \omega L}{\left(1-\omega^{2} L C\right)+j \omega R C}$
$=\frac{(R+j \omega L)\left[\left(1-\omega^{2} L C\right)-j \omega R C\right]}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} R^{2} C^{2}}$
At resonance imaginary part is zero as current and voltage are in phase at resonance
So,
$-j \omega R^{2} C+j \omega L\left(1-\omega^{2} L C\right)=0$
$R^{2} C / L=1-\omega^{2} L C$
$\omega^{2} L C=1-R^{2} C / L$
$\omega^{2}=\frac{1}{L C}-\frac{R^{2} C}{L^{2} C}$
$\omega=\sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{\mathrm{~L}^{2}}}$
The expression for resonant frequency is derived as
$\mathrm{f}-\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{\mathrm{~L}^{2}}}$

A Course for ESE \& CATE Electronics Aspirants

So, putting values R, L and C the value of resonant frequency will be $\mathrm{f}-\frac{1}{2 \pi} \sqrt{\frac{1}{1 \times 10^{-9}}-\frac{\left(10 \times 10^{3}\right)^{2}}{(1)^{2}}}$
$=\frac{1}{2 \pi} \sqrt{10^{9}-10^{8}}$
$\mathrm{f}=4774.6 \mathrm{~Hz}$
The resonant frequency will be 4774.6 Hz or 4.77 KHz .

OUR TOP GRADIANS IN GATE 2020

Himanshu Kumar
AIR-9
EE

Nikhil Kumar
AIR-9
EE
(a)
Raja Majhi
AIR-30
ECE

Classroom

Vision 2021-Course for ESE \& GATE (Batch-3)

Electronics \& Communication Engineering

Vision 2021

A Course for ESE \& GATE Electronics Aspirants Batch-3

Why take this course?
>650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
, Subject \& Full-Length Mock Tests for GATE \& ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

