Binomial Theorem

THE FACTORIAL FUNCTION
For $n \in N$ factorial on n, denoted by $n!$ is defined by $n!=n(n-1)(n-2) \ldots .3 .2 .1$
And the value of $0!=1$
THE NOTATION ${ }^{n} C_{r}$

$$
0<r<n, n, r \in N,{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

i. ${ }^{n} C_{0}={ }^{n} C_{n}=1$ and ${ }^{n} C_{r}=0$ for $r>n$
ii. ${ }^{n} C_{n-r}={ }^{n} C_{r}$
iii. ${ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r}$
iv. ${ }^{n} C_{r}={ }^{n} C_{s}$ if $\mathrm{r}=\mathrm{s}$ or $\mathrm{r}+\mathrm{s}=\mathrm{n}$
v.

$$
{ }^{n} C_{r}=\frac{n(n-1)(n-2) \ldots(n-r-1)}{r!}
$$

SOME IMPORTANT DEDUCTION OF ${ }^{n} C_{r}$
i. $r .{ }^{n} C_{r}=n .{ }^{n-1} C_{r-1}$
ii. $r^{2 n} C_{r}=n(n-1)^{n-2} C_{r-2}-n^{n-1} C_{r-1}$
iii. $\frac{1}{r+1}{ }^{n} C_{r}=\frac{1}{n+1}{ }^{n+1} C_{r+1}$

GREATEST VALUE OF ${ }^{n} C_{\text {, }}$

Condition 1s: when n is even then ${ }^{n} C_{r}$ will greatest at $r=\frac{n}{2}$
Condition 2 ${ }^{\text {na }}$: when n is odd then ${ }^{n} C_{r}$ will greatest at $r=\frac{n+1}{2}$ or $r=\frac{n-1}{2}$
THE BINOMIAL THEOREM (FOR A POSITIVE INTEGER INDEX)
If n is positive integer index and $x \& y \in C$ then
$(x+y)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} y+{ }^{n} C_{2} x^{n-2} y^{2}+\ldots+{ }^{n} C_{r} x^{n-r} y^{r}+\ldots+{ }^{n} C_{n} y^{n}$

Here ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots . .,{ }^{n} C_{n}$ are called binomial Coefficients.
SOME IMPORTANT POINT TO REMEMBER

For binomial expression $(x+y)^{n}$, where n is a positive integer.
i.The number of the term in the expansion is $(n+1)$
ii.In the-each term of the expansion, the sum of the exponents is n.
iii.The binomial coefficient from the beginning and the end are equal ${ }^{n} C_{r}={ }^{n} C_{n-r}$

GENERAL TERM IN THE EXPANSION OF $(x+y)^{n}$
In the binomial expansion of $(x+y)^{n},(r+1)^{\text {th }}$ term denote by T_{r+1} is given by

$$
T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r}
$$

SOME IMPORTANT RESULTS OF BINOMIAL COEFFICIENT

The expansion $C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}=(1+x)^{n}$ can be written as $\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}=(1+x)^{n}$
and $\sum_{r=0}^{n}{ }^{n} C_{r}=2^{n}$

SUM OF THE BINOMIAL COEFFICIENTS

$$
C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}=(1+x)^{n}
$$

Putting $x=1$ then $C_{0}+C_{1}+C_{2}+\ldots \ldots .+C_{n}=2^{n}$
Putting $x=-1$ then $C_{0}-C_{1}+C_{2}-C_{3} \ldots \ldots=0$

$$
\therefore C_{0}+C_{2}+C_{4}+\ldots \ldots . .=C_{1}+C_{3}+C_{5}+\ldots . .=2^{n-1}
$$

***** TO FIND THE SUM OF COEFFICIENT IN $(X+Y)^{n}$ OR $(a x+b y+c z+\ldots)^{n}$
Put all $x, y, z \ldots \ldots . . .$. etc equal to 1 . For example sum of all coefficient in the expansion of $(2 x-3 y+5 z)^{n}$ is $(2-3+5)^{n}=4^{n}$

MULTINOMIAL THEOREM

The general term in the expansion of $\left(x_{1}+x_{2}+\ldots+x_{m}\right)^{n}, n \in N$ is given by

$$
\frac{n!}{P_{1}!P_{2}!\ldots P_{m}!} x_{1}^{p_{1}} x_{2}^{p_{2}} \ldots x_{m}^{p_{\infty}}, p_{1}+p_{2}+p_{m}=n
$$

Thus, the number of the term in the expansion of $\left(x+y+z+u+\ldots+m^{\text {th }} \text { term }\right)^{n}==^{n+m-1} C_{n}$
GENERAL TERM
i.In the expansion of $(1+x)^{n}$, the ${ }^{(r+1)^{\text {th }}}$ general term

$$
T_{r+1}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{r!} x^{r}
$$

ii. If n is a positive integer, then the expansion of $(1+x)^{-n}$

$$
T_{r+1}=(-1)^{r n+r-1} C_{r} x^{r}
$$

iii. If n is a positive integer, then the expansion of $(1-x)^{-n}$

$$
T_{r+1}={ }^{n+r-1} C_{r} x^{r}
$$

SOME IMPORTANT EXPANSION
i. $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{r}+\ldots$
ii. $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{r} x^{r}+\ldots$
iii. $(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots+(r+1) x^{r}+\ldots$
iv. $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots+(-1)^{r}(r+1) x^{r}+\ldots$

GREATEST TERM IN THE EXPANSION OF $(1+x)^{n}: T_{r} \ll>T_{r+1}$ according to as

$$
\left|\frac{r}{(n-r+1) x} \ll>1,\right|_{\text {taking equality sign then }} r=\frac{|n+1||x|}{|x|+1}
$$

We should find the value of r by the equality then we can find the maximum and minimum value by applying the value of r.
** In the expansion of $(1+x)^{n},|x|<1$, another more useful result assuming $\left|T_{r+1}\right|$ as
the greatest term is T_{r+1} if $\left|\frac{r}{n-r+1}\right| \leq|x| \leq\left|\frac{r+1}{n-r}\right|$
Here n can be any index rational, positive integer or negative integer.

