

Binomial Theorem

THE FACTORIAL FUNCTION

For $n \in N$ factorial on n, denoted by n! is defined by n! = n(n-1)(n-2)....3.2.1

And the value of 0! = 1

THE NOTATION C_r

$$0 < r < n, n, r \in N, {}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

if

$$^{n}C_{0} = {}^{n}C_{n} = 1 \text{ and } {}^{n}C_{r} = 0 \text{ for } r > n$$

ii.
$$^{n}C_{n-r} = {}^{n}C_{r}$$

iii.
$$^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$$

iv.
$$^{n}C_{r} = {}^{n}C_{s} \text{ if } r = s \text{ or } r + s = n$$

$$^{n}C_{r} = \frac{n(n-1)(n-2)....(n-r-1)}{r!}$$

SOME IMPORTANT DEDUCTION OF ${}^{n}C_{r}$

i.
$$r \cdot {}^{n}C_{r} = n \cdot {}^{n-1}C_{r-1}$$

ii. $r^{2 \cdot n}C_{r} = n(n-1) \cdot {}^{n-2}C_{r-2} - n \cdot {}^{n-1}C_{r-1}$
iii. $\frac{1}{r+1} \cdot {}^{n}C_{r} = \frac{1}{n+1} \cdot {}^{n+1}C_{r+1}$

GREATEST VALUE OF ${}^{"C_r}$

Condition 1:: when n is even then ${}^{n}C_{r}$ will greatest at $r = \frac{n}{2}$

Condition 2⁻⁻⁻⁻: when n is odd then
$${}^{n}C_{r}$$
 will greatest at $r = \frac{n+1}{2}$ or $r = \frac{n-1}{2}$

THE BINOMIAL THEOREM (FOR A POSITIVE INTEGER INDEX)

If n is positive integer index and $x & y \in C$ then

 $(x+y)^{n} = {}^{n}C_{0}x^{n} + {}^{n}C_{1}x^{n-1}y + {}^{n}C_{2}x^{n-2}y^{2} + \dots + {}^{n}C_{r}x^{n-r}y^{r} + \dots + {}^{n}C_{n}y^{n}$

Here ${}^{"C_0,"C_1,"C_2,....,"C_n}$ are called binomial Coefficients.

SOME IMPORTANT POINT TO REMEMBER

SSB Interview A Comprehensive Course (Batch 4)

START FREE TRIAL

For binomial expression $(x+y)^n$, where n is a positive integer.

i. The number of the term in the expansion is $\binom{n+1}{n}$

ii.In the-each term of the expansion, the sum of the exponents is n.

iii. The binomial coefficient from the beginning and the end are equal $\ ^{n}C_{r}=\ ^{n}C_{n-r}$

GENERAL TERM IN THE EXPANSION OF $(x+y)^n$

In the binomial expansion of $(x+y)^n$, $(r+1)^m$ term denote by T_{r+1} is given by $T_{r+1} = {}^n C_r x^{n-r} y^r$

SOME IMPORTANT RESULTS OF BINOMIAL COEFFICIENT

The expansion
$$C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n = (1+x)^n$$
 can be written as $\sum_{r=0}^n {}^n C_r x^r = (1+x)^n$
and $\sum_{r=0}^n {}^n C_r = 2^n$

SUM OF THE BINOMIAL COEFFICIENTS

$$C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n = (1 + x)^n$$

Putting x = 1 then $C_0 + C_1 + C_2 + \dots + C_n = 2^n$

Putting x = -1 then $C_0 - C_1 + C_2 - C_3 \dots = 0$

$$\therefore C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

***** TO FIND THE SUM OF COEFFICIENT IN $(X+Y)^n$ or $(ax+by+cz+...)^n$

Put all x, y, z..... etc equal to 1. For example sum of all coefficient in the expansion of $(2x-3y+5z)^n (2-3+5)^n = 4^n$

MULTINOMIAL THEOREM

The general term in the expansion of $(x_1 + x_2 + ... + x_m)^n$, $n \in N$ is given by

$$\frac{n!}{P_1!P_2!\dots P_m!} x_1^{p_1} x_2^{p_2} \dots x_m^{p_m}, p_1 + p_2 + p_m = n$$

Thus, the number of the term in the expansion of $(x + y + z + u + ... + m^{th} term)^n = C_n^{n+m-1} C_n$

GENERAL TERM

i.In the expansion of $\left(1+x
ight)^{n}$, the $\left(r+1
ight)^{th}$ general term

SSB Interview

A Comprehensive Course (Batch 4)

START FREE TRIAL

$$T_{r+1} = \frac{n(n-1)(n-2)....(n-r+1)}{r!} x^r$$

- ii. If n is a positive integer, then the expansion of $(1+x)^{-n}$ $T_{r+1} = (-1)^{r} C_r x^r$
- iii. If n is a positive integer, then the expansion of $\left(1-x\right)^{-n}$ $T_{r+1}={}^{n+r-1}\ C_r x^r$

SOME IMPORTANT EXPANSION

i.
$$(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots + x^r + \dots$$

ii. $(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^r x^r + \dots$
iii. $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots + (r+1)x^r + \dots$
iv. $(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^r (r+1)x^r + \dots$

GREATEST TERM IN THE EXPANSION OF $(1+x)^n$: $T_r \iff T_{r+1}$ according to as

$$\left|\frac{r}{(n-r+1)x} <=>1,\right|_{\substack{\text{taking equality sign then}}} r = \frac{|n+1||x|}{|x|+1}$$

We should find the value of r by the equality then we can find the maximum and minimum value by applying the value of r.

** In the expansion of $(1+x)^n$, |x| < 1, another more useful result assuming $|T_{r+1}|$ as the greatest term is T_{r+1} if $\left|\frac{r}{n-r+1}\right| \le |x| \le \left|\frac{r+1}{n-r}\right|$

Here n can be any index rational, positive integer or negative integer.

SSB Interview A Comprehensive Course (Batch 4)