50+ Important Arithmetic Questions For SSC CGL Tier-Il 2019-20 Exam (Eng/Hindi PDF)

1. The average of five consecutive odd numbers is " m ". If the next three odd numbers are also included, then what is the increase in the average?
A. 0
B. 8
C. 17
D. 3
2. The average of five consecutive even numbers is m . If the next five even number are also included, the average of ten number will be:
A. $m+5$
B. $\mathrm{m}+10$
C. 10
D. 11
3. A batman scores 92 runs in the $15^{\text {th }}$ inning and thus increases hisaverage by 4. What is his average after the $15^{\text {th }}$ inning?
A. 40
B. 32
C. 35
D. 36
4. The average of eleven numbers is 68 . The average of the first four numbers is 78 and that of the next four numbers is 63 . The $9^{\text {th }}$ number is two times the $11^{\text {th }}$ number and the $10^{\text {th }}$ number is 4 less than the $11^{\text {th }}$ number. What is the average of the $9^{\text {th }}$ and $11^{\text {th }}$ number?
A. 70.1
B. 72.2
C. 70.5
D. 72.6
5. A person can row a distance of 4 km upstream in one hour 20 minutes and can row back to the starting point in just 24 minutes. How much time (in hours) will he take to row 13 km in still water?
A. $2 \frac{1}{2}$
B. $3 \frac{1}{2}$
C. 2
D. 3
6. A boat can cover a distance of 7.2 km downstream and 3.2 km upstream in 2 hours. It can also cover 1.5 km downstream and 0.6 km upstream in 24 minutes. What is the speed of the boat when going downstream in km / h)?
A. $4 \frac{1}{2}$
B. 5
C. $7 \frac{1}{2}$
D. 6
7. Ritika can row upstream 20 kmph and downstream 40 kmph . Find the speed of ritika in still water and speed of stream?
A. 18,20
B. 30,10
C. 22,15
D. 20,40
8. If a boat goes upstream at a speed of 24 $\mathrm{km} / \mathrm{hr}$ and comes back the same distance at $40 \mathrm{~km} / \mathrm{hr}$. What is the average speed (in $\mathrm{km} / \mathrm{hr}$) for the total journey.
A. 32
B. 30
C. 31
D. 33
9. A steamer in still water travel at a speed of $35 \mathrm{~km} / \mathrm{h}$. It takes 2 hrs to go 60 km upstream. The time taken by it to cover the same distance down the stream will be.
A. 1 hr
B. 1 hr 30 min
C. 2 hrs
D. 2 hrs 30 min
10. A certain sum amounts to Rs. 280900 in 2 years at 6% per annum, interest compounded annually. The sum is:
A. Rs. 350000
B. Rs. 550000
C. Rs. 250000
D. Rs. 200000
11. The simple interest on a sum of money for 3 years at an interest rate of 6% p.a. is

Rs 6,750. What will be the compound interest rounded off on the same rate for the same period, compounded annually is closest to:
A. `7,133 B. 7,663 C.` 7,103
D. `7,163 12. What will be the difference in compound interest on a sum of Rs. 7800 at \(8 \%\) p.a for 1 year, when the interest is paid yearly and half yearly? A. Rs 24.72 B. Rs 12.48 C. Rs 19.46 D. Rs 29.18 13. A sum lent out at compound interest amounts to Rs. 1,250 in one year and to Rs. 1,458 in 3 years at a rate percentage p.a. What is the simple interest on the same sum for \(5 \frac{2}{5}\) years at the same rate of interest? A. Rs. 600 B. Rs. 520 C. Rs. 500 D. Rs. 480 14. If in 13 years a fixed sum doubles at simple interest, what will be the interest rate per year?(Correct to two decimal places) A. \(8.69 \%\) B. \(7.69 \%\) C. \(7.29 \%\) D. \(7.92 \%\) 15. When 732 is divided by a positive integer x , the remainder is 12 . How many values of \(x\) are there? A. 19 B. 16 C. 18 D. 20 16. If the number \(1005 \times 4\) is completely divisible by 8 , then the smallest integer in place of \(x\) will be: A. 0 B. 1 C. 4 D. 2 17. How many natural numbers up to 2001 are divisible by 3 or 4 but NOT by 5 ? A. 768 B. 934 C. 1067 D. 801 18. When 3738,5659 and 9501 are divided by the greatest possible number X , the remainder in each case is \(y\). What is the sum of \(x\) and \(y\) ? A. 3783 B. 3637 C. 3673 D. 3738 19. The HCF and LCM of two numbers are 8 and 48 respectively. If the ratio of the two numbers is \(2: 3\), then the largest of the two numbers is : A. 24 B. 18 C. 48 D. 16 20. What is the sum of the greatest three digit number and smallest four digit number such that their HCF is 23? A. 2001 B. 2002 C. 1984 D. 1998 21. Two bottles of the same capacity are \(35 \%\) and \(33 \frac{1}{3} \%\) full of orange juice, respectively. They are filled up completely with apple juice and then the contents of both bottles are emptied into another vessel. The percentage of apple juice in the mixture is: A. \(65 \frac{5}{6}\) B. \(64 \frac{1}{3}\) C. \(60 \frac{2}{3}\) D. \(34 \frac{1}{6}\) 22. How many kg of salt costing Rs. 28 per kg must be mixed with 39.6 kg of salt costing Rs. 16 per kg , so that selling the mixture at Rs. 29.90, there is a gain of \(15 \%\) ? Note: For this question, discrepancy is found in question/answer. Full Marks is being awarded to all candidates. A. 198 B. 200 C. 160 D. 188 23. A vessel contains a 32 litre solution of acid and water in which the ratio of acid and water is \(5: 3\). If 12 litres of the solution are taken out and \(7 \frac{1}{2}\) litres of water are added to it, then what is the ratio of acid and water in the resulting solution? A. \(8: 11\) B. \(5: 6\) C. \(4: 7\) D. \(4: 9\) 24. 40 litres of \(60 \%\) concentration of acid solution is added to 35 litres of \(80 \%\) concentration of acid solutions. What is the concentration of acid in the new solutions? A. \(66 \frac{2}{3} \%\) B. \(69 \%\) C. \(69 \frac{1}{3} \%\) D. \(66 \%\) 25. In what ratio, sugar costing Rs 60 per kg he mixed with sugar costing Rs 42 kg such that by selling the mixture at Rs 56 per kg there is a gain of \(12 \%\) ? A. \(5: 7\) B. \(8: 9\) C. \(5: 6\) D. \(4: 5\) 26. A, B and C start a business. A invests \(33 \frac{1}{3} \%\) of the total capital, B invests \(25 \%\) of the remaining and \(C\) invests the rest. If the total profit at the end of a year is \(1,62,000\), then A's share in profit is : A.` 54,000
B. `60,000 C.` 81,000
D. `90,000 27. 'A' started a business with a capital of Rs 54,000 and admitted ' B ' and ' C ' after 4 months and 6 months respectively. At the end of the year, the profit was divided in the ratio \(1: 4: 5\). What is the difference between the capitals invested by ' \(B\) ' and 'C'? A. Rs 2,16,000 B. Rs \(3,24,000\) C. Rs \(1,08,000\) D. Rs 1,62,000 28. A sum of ' \(x\) is divided among \(A, B\) and \(C\) such that the ratio of the shares of \(A\) and \(B\) is \(6: 7\) and that of \(B\) and \(C\) is \(3: 2\). If the difference between the shares of \(A\) and \(C\) is 540. Then the value of \(x\) is : A. 7020 B. 7290 C. 7425 D. 7155 29. \(A, B\) and \(C\) invested their capitals in the ratio of \(2: 3: 5\). The ratio of months for which \(A, B\) and \(C\) invested is \(4: 2: 3\). If \(C\) gets a share of profit which is ' \(1,47,000\) more than that of \(A\), then B's share of profit is: Note : For this question, discrepancy is found in question/answer. Full Marks is being awarded to all candidates. A.` 1,89,000
B. $1,05,000$
C. `\(1,68,000\) D.` 1,26,000
30. By what number must the given number be multiplied to increase the number by 25% ?
A. $5 / 4$
B. $3 / 4$
C. $2 / 5$
D. 3
31. Anu spends 68% of her monthly income. If her monthly income increases by 20\% and her monthly savings increase by $9 \frac{3}{8} \%$, then the percentage increase in her monthly expenditure is:
A. 20%
B. 25%
C. 22%
D. 32%
32. In an examination, Anita scored 31% marks and failed by 16 marks. Sunita scored 40\% marks and obtained 56 marks more than those required to pass. Find the minimum marks required to pass.
A. 264
B. 3944
C. 3116
D. 7100
33. If radius of a circle is decreased by 11%, then the total decrease in the area of the circle is given as:
A. 19.50%
B. 20.79%
C. 20.50%
D. 21%
34. Pipes A and B together can fill a tank in 16 hours, whereas pipe C alone can empty the full tank in 24 hours, A and B were opened together for 10 hours and then closed. Pipe C was then opened. The tank will now be emptied by C in:
A. 18 hours
B. 12 hours
C. 10 hours
D. 15 hours
35. Pipes, A and B, are emptying pipes and can empty a tank in 6 hours and 16 hours, respectively. C is a filling pipe. All the three pipes were opened together. They took 80 minutes to empty $\frac{5}{18}$ of the tank. Pipe C alone can fill the tank in:
A. 36 hours
B. 42 hours
C. 48 hours
D. 40 hours
36. Pipes A and B are filling pipes while pipe C is an emptying pipe. A and B can fill a tank in 72 and 90 minutes respectively. When all the three pipes are opened together, the tank gets filled in 2 hours. A and B are opened together for 12 minutes, then closed and C is opened. The tank will be empty after:
A. 12 minutes
B. 18 minutes
C. 16 minutes
D. 15 minutes
37. Pipes A and B can fill a tank in 16 hours and 24 hours, respectively and pipe C alone can empty the full tank in x hours. All the pipes were opened together at 10:30 A. m. but C was closed at 2:30 p.m. If the tank was full at 8:30 p.m. on the same day, then what is the value of x ?
A. 96
B. 48
C. 64
D. 45
38. Pipes A. B and C can fill a tank in 30 h , 40 h and 60 h respectively. Pipes A, B and C are opened at $7 \mathrm{a} . \mathrm{m} .8 \mathrm{a} . \mathrm{m}$. and 10 a . m . respectively on the same day. When will the tank be full?
A. $9.40 \mathrm{p} . \mathrm{m}$.
B. $10.20 \mathrm{p} . \mathrm{m}$.
C. $9.20 \mathrm{p} . \mathrm{m}$.
D. $10.00 \mathrm{p} . \mathrm{m}$.
39. Four years ago, the ratio of the ages of A and B was 4: 5. Eight years from now, the ratio of the ages of A and B will be 11: 13. What is the sum of the present age of both of them?
A. 76 years
B. 72 years
C. 80 years
D. 96 years

SSC CGL Tier II
A Comprehensive Course in Hindi
40. Present ages of A and B are in ratio 8:15 respectively. 8 years ago their ages were in ratio 6:13. What is the ratio of their ages 8 years from now?
A. $9: 16$
B. 9:17
C. $10: 17$
D. $13: 17$
41. A man wanted to sell his bat at a discount of 8%. His brother who was a cricketer wanted to buy the bat, so the man sells it at a discount of 10%. In this deal, the man reduces his profit to Rs. 70 . What was the market value of the bat?
A. Rs. 3,000
B. Rs. 3,500
C. Rs. 2,500
D. Rs. 3,200
42. A shopkeeper buys two books for Rs. 300. He sells the first book at a profit of 20% and the second book at a loss of 10%. What is the selling price of the first book, if, the whole transaction there is no profit no loss?
A. Rs. 110
B. Rs. 115
C. Rs. 120
D. Rs. 125
43. The following table shows the number of students enrolled in different streams in a particular college.

Science		Arts		Commerce		Vocational	
Boys	Girls	Boys	Girls	Boys	Girls	Boys	Girls
32	18	28	45	42	42	13	30

The ratio of the number of girls studying Arts to the number of girls studying in all other streams is:
A. $1: 2$
B. $3: 1$
C. $1: 3$
D. $2: 1$
44. If $3 A=4 B=5 C$, then $A: B: C$ is equal to:
A. $10: 5: 4$
B. $10: 7: 6$
C. $20: 15: 12$

D. $20: 15: 16$

45. The total number of students in a class is 65. If the total number of girls in the class is 35, then the ratio of the total number of boys to the total number of girls is:
A. $7: 6$
B. $7: 13$
C. $13: 7$
D. $6: 7$
46. If $A: B=3: 5$, and $B: C=2: 3$, then $A: B: C$ is equal to:
A. $6: 10: 15$
B. $3: 8: 6$
C. $6: 15: 10$
D. $3: 7: 3$
47. When two equal amounts are deposited for 5 years and 3 years at the rate of 7% and 9% per annum respectively and the difference of their simple interest is Rs. 475. Then find the deposited amount?
A. Rs. 5,837.5
B. Rs. 6,037.5
C. Rs. 5,992.5
D. Rs. 5,937.5
48. Rs. 4,300 becomes Rs. 4,644 in 2 years at simple interest. Find the principle amount that will become Rs. 10,104 in 5 years at the same rate of interest?
A. Rs 7,200
B. Rs 9,260
C. Rs 8,420
D. Rs 5,710
49. X and Y are two stations which are 280 km apart. A train starts at a certain time from X and travels towards Y at $60 \mathrm{~km} / \mathrm{h}$. After 2 hours, another train starts from Y and travels towards X at 20 km/h. After how many hours does the train leaving from X meets the train which left from Y ?
A. 4 hours
B. 3 hours
C. 6 hours
D. 2 hours
50. In the stream running at $3 \mathrm{~km} / \mathrm{h}$, a motorboat hoes 12 km upstream and back to the starting point in 60 min . Find the speed of the motorboat in still water. (in km/h)?
A. $2(2+\sqrt{ } 17)$
B. $2(4+\sqrt{ } 15)$
C. $3(2+\sqrt{ } 17)$
D. $3(4+\sqrt{ } 17)$
51. Ans. D.

The eight consecutive odd numbers:
$2 x+1,2 x+3,2 x+5,2 x+7,2 x+9,2 x$ $+11,2 x+13,2 x+15$
According to the question,
$(2 x+1+2 x+3+2 x+5+2 x+7+2 x$
$+9) / 5=(10 x+25) / 5=m$
$\Rightarrow x=(m-5) / 2$ \qquad (i)

Average (8 odd nos. $)=[(10 x+25)+(2 x$
$+11)+(2 x+13)+(2 x+15)] / 8$
$=(16 x+64) / 8=2 x+8$
Putting value from equation (i):
Average (8 odd nos. $)=2 \times(m-5) / 2+8=$ m + 3
\therefore Required answer i.e. the increase in the average = $\mathbf{3}$

Alternate Method:

Let the five consecutive odd numbers are 1, 3, 5, 7, 9.
Then Average $=(1+3+5+7+9) / 5=25 / 5=$ 5

Now next three odd numbers are added i.e. 11, 13, 15.
Then New Average $=(25+11+13+15) / 8=$ $64 / 8=8$
Thus, increase in the average $=8-5=3$. 2. Ans. A.

Let five consecutive even numbers are $=x$ $, x+2, x+4, x+6$ and $x+8$
We know that , Average = Sum of observations

Total number of observations
Hence, average of five consecutive even numbers $=$
$(x+x+2+x+4+x+6+x+8) / 5=(5 x+20) / 5$ $=x+4$
Given that average of five consecutive even numbers is m
$\Rightarrow \mathrm{m}=\mathrm{x}+4$
$\Rightarrow x=m-4$
Now, next five consecutive even numbers are $=x+10, ~ x+12, x+14, ~ x+16$ and $x+18$ Sum of next five consecutive even numbers =
$x+10+x+12+x+14+x+16+x+18=5 x+70$ Sum of ten numbers $=5 x+20+5 x+70=$ $10 x+90$

We know that , Average = $\frac{\text { Sum of observations }}{\text { Total number of observations }}=\frac{10 x+90}{10}=x+9$
$\Rightarrow x+9=m-4+9=m+5$
3. Ans. D.

Let the average till 14th innings be A.
Then average $=\frac{\text { Sum }}{14}=A$
So sum = 14 A
Score of batsman in $15^{\text {th }}$ innings $=92$ runs which increases his average by 4.
Hence, $\frac{14 A+92}{15}=A+4$
$14 A+92=15 A+60$
$\Rightarrow 32=A$
Hence average after $15^{\text {th }}$ innings.
$A+4=32+4=36$
4. Ans. C.

We know that Average =
Total number of observations
Given that average of eleven numbers is 68
Hence sum of 11 numbers $=$ Average \times total number of observations = $68 \times 11=748$
Now The average of the first four numbers is 78
Hence sum of 4 numbers $=$ Average \times total number of observations $=78 \times 4=312$
Now The average of the next four numbers is 63
Hence sum of these 4 numbers = Average \times total number of observations $=$ $63 \times 4=252$
Let $9^{\text {th }}, 10^{\text {th }}$ and $11^{\text {th }}$ numbers are x, y and z respectively.
Given that $9^{\text {th }}$ number is two times the $11^{\text {th }}$ number and the $10^{\text {th }}$ number is 4 less than the $11^{\text {th }}$ number
According to question
$x=2 z$ \qquad
$y=z-4$
$x+y+z=$ (sum of 11 numbers) - (sum of first 8 numbers) $=748-(312+252)=$ 184 \qquad .(3)
Put the value of (1) and (2) in equation (3)
$\Rightarrow 2 z+z-4+z=184$
$\Rightarrow 4 z-4=184$
$\Rightarrow 4 z=188$
$\Rightarrow z=47$
Hence, $x=2 \times 47=94$
$y=47-4=43$
average of the $9^{\text {th }}$ and $11^{\text {th }}$ number $=$ $\frac{94+47}{2}=70.5$
5. Ans. C.

Speed of boat upstream $=4 /(4 / 3)=3$ km/hr
Speed of boat downstream $=4 /(2 / 5)=10$ km/hr
Speed of boat in still water $=(3+10) / 2=$ $6.5 \mathrm{~km} / \mathrm{hr}$
Time taken by boat to travel 13 km in still water $=13 /(6.5)=2$ hours
6. Ans. D.

Let the speed of boat in downstream be (x +a)
and in upstream be ($x-a$)
(where $x=$ speed of boat in still water
a = speed of stream)
Distance covered in downstream $=7.2 \mathrm{~km}$
Distance covered in upstream $=3.2 \mathrm{~km}$
Total time taken in whole journey $=2 \mathrm{hr}$
$\frac{7.2}{x+a}+\frac{3.2}{x-a}=2$
Or
$\frac{72}{x+a}+\frac{32}{x-a}=20$
After that it covers 1.5 km in downstream $\frac{24}{60} \mathrm{hr}$)
$\frac{1.5}{x+a}+\frac{0.6}{x-a}=\frac{24}{60}$
Or
$\frac{15}{x+a}+\frac{6}{x-a}=\frac{240}{60}=4$
Multiplying both side by $32 / 6$ we get
$\frac{80}{x+a}+\frac{32}{x-a}=\frac{64}{3} \ldots \ldots \ldots$
On subtracting equation (1) from (2) we get
$\frac{8}{x+a}=\frac{4}{3}$
$(x+a)=6$ speed of boat in downstream
7. Ans. B.
\Rightarrow We know that,
Rate in still water $=1 / 2(a+b)$
Rate of current $=1 / 2(a-b)$
Where, $a=$ downstream rate \& $b=$ upstream rate
\Rightarrow According to the condition given in the problem,
Rate in still water $=1 / 2(20+40)=30$ kmph
Rate of current $=1 / 2(40-20)=10 \mathrm{kmph}$
8. Ans. B.

Average speed $=\frac{2 \times 24 \times 40}{24+40}=30 \mathrm{~km} / \mathrm{hr}$
9. Ans. B.

Upstream speed $=\frac{60}{2}=30 \mathrm{~km} / \mathrm{h}$
Speed of Current $=35-30=5 \mathrm{~km} / \mathrm{h}$
Downstream speed $=35+5=40 \mathrm{~km} / \mathrm{h}$
Time taken by the steamer to go 60 km $=\frac{60}{40}=1 \mathrm{hr} 30 \mathrm{~min}$
10. Ans. C.

Effective \% rate of 6% in 2 years $=6+6$
$\frac{6 \times 6}{100}$
$=12.36$
A.T.Q.
112.36% of $P=280900$
$\mathrm{P}=28090000 / 112.36$
P = Rs. 250000.
11. Ans. D.

The simple interest on a sum of money for 3 years at an interest rate of 6\% p.a. is Rs 6,750.
Simple interest $=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}$
$\Rightarrow 6750=\frac{\text { Principal } \times 6 \times 3}{100}$
\Rightarrow Principal $=(675000 / 18)=37500$
Now we will find compound interest on Rs.
37500 for 3 years at an interest rate of 6% p.a.

SSC CGL Tier II
A Comprehensive Course in Hindi
START FREE TRIAL

Compount Interest $=$ Principal $\left(1+\frac{\text { rate }}{100}\right)^{\text {TIME }}-$ Principal
$=37500\left(1+\frac{6}{100}\right)^{3}-37500$
$=\left(37500 \times \frac{106}{100} \times \frac{106}{100} \times \frac{106}{100}\right)-37500$
= 44663.1-37500 = Rs. 7163.1
12. Ans. B.

Compound interest for one year :
Rate $=8 \%$ and time $=1$ year
Compound interest when calculated half yearly :
Rate $=4 \%$ and time period will be 6 months +6 months
Effective rate $=4+4+(16 / 100)=8.16 \%$
Difference of rate $=8.16 \%-8 \%=0.16 \%$
Then compound interest $=0.16 \%$ of 7800
$=(0.16 / 100) \times 7800=$ Rs. 12.48
13. Ans. C.

Let Principal $=$ Rs. P
According to the question:
$1,250=P(1+R / 100)$
$1,458=P(1+R / 100)^{3}$
Divide equation (ii) by (i):
$\Rightarrow 1458 / 1250=(1+\mathrm{R} / 100)^{2}$
$\Rightarrow 27 / 25=1+R / 100$
$\therefore \mathrm{R}=8 \%$
Put $R=8 \%$ in equation (i), we get
$P=$ Rs. $1250 \times(100 / 108)$
S.I $=(P \times R \times T) / 100=1250 \times(100 / 108) \times$ $(8 / 100) \times(27 / 5)=$ Rs. 500
14. Ans. B.

Let $\mathrm{P}=$ Rs. x
S.I. $=2 x-x=$ Rs. x

According to the question:
S.I $=(P \times R \times T) / 100$ and Amount $=P+S . I$
$\Rightarrow x=(x \times R \times 13) / 100$
$\therefore \mathrm{R}=7.69 \%$
15. Ans. D.

After subtracting 12 out of 732 ; we have $732-12=720$
The number 720 when divided by x; the remainder is 0 .
The factors of $720=2^{4} \times 3^{2} \times 5^{1}$
No. of factors $=(4+1)(2+1)(1+1)=30$
The ten factors which will give remainder less than 12
$=1,2,3,4,5,6,8,9,10,12$
Left factors $=30-10=20$ factors
16. Ans. A.

By divisibility of 8 : last three digits of the number should be divisible by 8 .
Hence, in the number 1005x4
5×4 must be divisible by 8
So if $x=0$ we have 504 which is divisible by 8 .
Hence smallest integer in place of x should be 0 .
17. Ans. D.

Natural numbers divisible by 3 upto 2001 $=2001 / 3=667$
Natural numbers divisible by 4 up to 2001 = 2001/4 = 500
Total numbers that are divisible by both 3 and 4 or divisible by 12
$=2001 / 12=166$
Now we need to find the numbers that are not divisible by 5 .
In case of 3 : taking LCM as 15
= 2001/15 = 133
In case of 4 : taking LCM = 20
= 2001/20 = 100
Now excluding the numbers that are occurring in both of them
; taking LCM 60
2001/60 = 33
Total number $=667+500-166-133-$ $100+33=801$
18. Ans. D.

Let when 3738, 5659 and 9501 are divided by x then quotient will be A, B and C respectively and y is the remainder in each case.
So , using remainder theorem
$3738=A x+y$
$5659=B x+y$
$9501=C x+y$
Subtract (3) from (2)
$\Rightarrow(9501-5659)=(C-B) x$
$\Rightarrow 3842=(\mathrm{C}-\mathrm{B}) \mathrm{x}$.
Subtract (2) from (1)
5659-3738 = (B-A) x
$\Rightarrow 1921=(B-A) x$ \qquad
Now we will evaluate HCF of 3842 \& 1921
$1921=1921 \times 1$
$3842=1921 \times 2$

SSC CGL Tier II
A Comprehensive Course in Hindi

Hence HCF of 3842 \& 1921 = 1921.....................(3)

From (1) , (2) and (3)
So, $x=1921$
$3738=1921 * 1+y$
$\Rightarrow y=1817$
$x=1921$
$y=1817$
$x+y=1921+1817=3738$
Hence, sum of x and $y=3738$
19. Ans. A.

The HCF and LCM of two numbers are 8 and 48 respectively.
Ratio of the two numbers is $2: 3$.
Let the numbers be $2 x$ and $3 x$.
Now ; Product of two numbers $=\mathrm{HCF} \times$ LCM
$(2 x)(3 x)=8 \times 48$
$6 x^{2}=8 \times 48$
$x^{2}=64$
Hence, $x=8$
Largest of two numbers $=3 x=3 \times 8=24$
20. Ans. A.

We need to find the greatest and the smallest numbers that are divisible by 23.
Greatest three-digit number $=999$
Remainder left when greatest number divisible by $23=\frac{999}{23}=10$
Greatest three-digit number divisible by 23 = 999-10 = 989
Smallest four-digit number $=1000$
Remainder left when smallest number divisible by $23=\frac{1000}{23}=11$
smallest number divisible by $23=1000+$ $(23-11)=1012$
sum $=989+1012=2001$
21. Ans. A.

I Bottle contains $=35 \%$ orange juice $=$ $35 / 100=105 / 300$
II Bottle contains $=33(1 / 3) \%$ orange juice $=100 /(3 \times 100)$
Now left quantity of juice will be apple juice in $\mathrm{I}=195 / 300$
Quantity of apple juice in $I I=200 / 300$
Total quantity of apple juice $=$ $(195+200) / 600=395 / 600$
Required percentage $=(395 / 600) \times 100=$ 65(5/6)\%
22. Ans. A.

Let the ${ }^{X} \mathrm{~kg}$ salt costing Rs. $28 / \mathrm{kg}$ mixed in the mixture.
By allegation method -

23. Ans. B.

Ratio of Acid : Water $=5: 3$
Quantity of Acid $=\frac{32}{8} \times 5=20$
Quantity of water $=\frac{32}{8} \times 3=12$
A.T.Q.

$$
\frac{A}{W}=\frac{20-12 \times \frac{5}{8}}{12-12 \times \frac{3}{8}+\frac{15}{2}}=\frac{5}{6}
$$

24. Ans. C.

Let the concentration of acid in new solution $=X$
By allegation method.

$=\frac{60 \times 40+80 \times 35}{40+35}$
$=\frac{5200}{75}=69 \frac{1}{3} \%$
25. Ans. D.

SSC CGL Tier II
A Comprehensive Course in Hindi

We will solve it by allegation method.
C. P. of sugar $=56 \times \frac{100}{112}=₹ 50$ per kg
A. T. Q.
$\left.\begin{array}{l}\text { ₹ } 60 \text { per } \mathrm{Kg} \\ \text { ₹ } 42 \text { per }\end{array}\right\}$ ₹ 50 per $\mathrm{Kg}\left\{\begin{array}{c}8 \\ 10\end{array}\right.$
$=4: 5$
26. Ans. A.

Let the total capital $=6 x$
A.T.Q.

A invests $33 \frac{1}{3} \%$ of total capital
$=6 x \times \frac{1}{3}=2 x$
B invests 25% of remaining $=$ $4 x \times \frac{25}{100}=1 x$
C invests the remaining $=3 x$
Total profit $=(A+B+C)=162000$
$6 x=162000$
$x=27000$
A's share in profit $=2^{X}=2 \times 27000$
$=$ ₹ 54000
27. Ans. A.

A: B:C
Amt. 54000: x : y
Time 12: 8: 6
Profit 1P: 4P:5P
Investment \times time $=$ Profit
$54000 \times 12=P$
Profit of B,
$4 P=x \times 8$
$4 \times 54000 \times 12=x \times 8$
$x=27000 \times 12=324000$
Profit of C ,
$5 \times 54000 \times 12=6 y$
$y=\frac{5 \times 54000 \times 12}{6}=540000$
Required -
$y-x=540000-324000$
$=216000$
28. Ans. D.

A: B B: C
6:73:2
$A: B: C$
$18 x: 21 x: 14 x$
Difference between A and C's shares -
$\Rightarrow 18 x-14 x=540$
$4 x=540$
$x=135$
Total sum $=18 x+21 x+14 x=53 x$
$=56 \times 135=7155$
29. Ans. D.

A: B:C
Investment $2 x: 3 x: 5 x$
Time 4: 2: 3
Profit $8 x: 6 x: 15 x$
A.T.Q.

C's profit - A's profit $=147000$
$15 x-8 x=147000$
$x=21000$
B's share of profit $=6 x$
$=6 \times 21000=₹ 126000$
30. Ans. A.

Let the number be $=x$
And it is multiplied by n,
$\Rightarrow n x=1.25 x$
$\Rightarrow \mathrm{n}=5 / 4$.
31. Ans. B.

Let the original income of Anu be Rs. 100
Original expenditure $=68 \%$ of $100=$ Rs.
68
Original savings = Rs. $(100-68)=$ Rs. 32
New income = Rs. 120
New savings $=32 \times(1+75 / 800)=$ Rs. 35
New expenditure $=120-35=$ Rs. 85
Percentage increase in expenditure $=$ [(85
-68)/68] $\times 100=25 \%$
32. Ans. A.

Let ' x ' be the maximum marks can be scored in the exam.
31% of $x-\cdots-$ - (add 16) $------>$ Passing marks <-------(subtract 56$)--------40 \%$ of x
A.T.Q.:
$(31 \%$ of $x)+16=(40 \%$ of $x)-56$
$\Rightarrow 9 \%$ of $x=72$
$\therefore \mathrm{x}=800$
Thus, Passing Marks $=(40 \%$ of $x)-56$
$\Rightarrow(40 \%$ of 800$)-56=320-56=264$
33. Ans. B.

Let the original radius (circle) be 100 units
\therefore New radius (circle) $=100-11 \%$ of 100 $=89$ units
Since area of a circle is directly proportional to the square of radius.
So, original area (circle) $\equiv(100)^{2}$
New area (circle) $\equiv(89)^{2}$
Percentage decrease in area (circle) $=$ $\frac{(100)^{2}-(89)^{2}}{(100)^{2}} \times 100=\frac{\frac{189 \times 11}{(100)^{2}} \times 100=}{} \times$
20.79\%
34. Ans. D.

$$
\begin{array}{cc}
A+B & C \\
16(\text { fiil }) & 24 \text { (Empty) }
\end{array}
$$

Let capacity of tank $=48$ units
Efficiency of $(A+B)=3$
Tank filled by $A+B$ together in 10 hours $=$ $3 \times 10=30$ units
Efficiency of pipe $C=-2$
Here negative sign only shows that this pipe is an emptying pipe.
Tank emptied by pipe C in 1 hour $=2$ unit
Hence 30 units will be emptied in $\frac{30}{2}=15$ hours
35. Ans. C.

If pipe A, B and C are opened together, they took 80 minutes to empty ${ }^{\frac{5}{18}}$ of the tank.
We know that 80 minutes $=$ $1 \frac{1}{3} h r s=\frac{4}{3} h r s$
So, tank emptied by pipe A and B in $\frac{4}{3} h r s=-\frac{4}{3}\left[\frac{1}{6}+\frac{1}{16}\right]=-\frac{4}{3}\left[\frac{8+3}{48}\right]=\frac{-11}{36}$ of the tank
Here, the negative sign only shows that tank is emptied by Pipe A and B.

Tank emptied by pipe A, B and C in $\frac{4}{3}$ hrs $=-\frac{5}{18}=\frac{-10}{36}$ of the tank.
Tank filled by pipe C in 80 minutes $=$ $-\frac{10}{36}-\left(-\frac{11}{36}\right)=\frac{1}{36}$ of the tank
Tank filled by pipe C in 60 minutes $=$ $\frac{1 \times 60}{36 \times 80}=\frac{1}{48}$ of the tank
Hence, Pipe C alone can fill the tank in 48 hours.
36. Ans. B.
$A \rightarrow 72$ minutes $B \rightarrow 90$ minutes
$A+B+C \rightarrow 120$ minutes
Let the capacity of tank
$=l . c . m .(72,90,120)$
$=360$

Efficiency of A

$$
=\frac{360}{72}=5
$$

Efficiency of $B=\frac{360}{90}=4$
Efficiency of $A+B+C=\frac{360}{120}=3$
$A=5, B=4, C=3-(A+B)=6$
Tank filled by $(A+B)$ in 12 minutes $=(5+4) \times 12=108$
Time required by C to empty the tank $=\frac{108}{6}=18 \mathrm{~min}$.
37. Ans. A.

Let capacity of tank
$=L . C . M .(16,24, x)=48 x$
Tank filled by pipe A in an hour $=\frac{48 x}{16}=3 x$
Tank filled by pipe B in an hour
$=\frac{48 x}{24}=2 x$
Tank filled by pipe C in an hour $=\frac{48 x}{x}=48$
A.T.Q.
$(A+B) \times 10-C \times 6=48 x$
$5 x \times 10-48 \times 4=48 x$
$2 x=192$
$x=96$
38. Ans. C.

Let the capacity of tank $=\operatorname{LCM}(30,40,60)$
$=120$ unit
Tank filled by by A in an hour $=\frac{120}{30}=4$ unit
Tank filled by by B in an hour $=\frac{120}{40}=3$ unit
Tank filled by by C in an hour $=\frac{120}{60}=2$ unit
Tank filled by A from 7 to 10 A. M. $=4 \times 3=12$ unit
Tank filled by B from 8 to 10 A . M. $=3 \times 2=6$ unit
Total work done by $(A+B)$ till 10 A . M. $=18$ unit
Now, all the three pipes will work together
Required time $=\frac{120-18}{\text { eff.of }(A+B+C)}$
$=\frac{102}{9}=11 \mathrm{hr} 20 \mathrm{~min}$
So, the tank will be full by $9: 20 \mathrm{P}$. M.
39. Ans. C.

Let the ages of A and B four years ago were $4 x$ and $5 x$
$\frac{4 x+4+8}{5 x+4+8}=\frac{11}{13}$
$55 \mathrm{x}-52 \mathrm{x}=156-132$
$3 x=24$
$x=8$
Sum of the present ages of A and B
$=4 x+4+5 x+4$
$=9 x+8$
$=72+8=80$
40. Ans. C.

Let the present ages be $8 x$ and $15 x$.
8 years ago $\frac{8 x-8}{15 x-8}=\frac{6}{13}$
Thus $\mathrm{x}=4$

8 years hence ratio $=(32+8) /(60+8)=$
$40 / 68=10: 17$
41. Ans. B.

Let the MP = 100x
SP = 92x
He sells to his brother at 90x.
A.T.Q.
$92 x-90 x=70$
$x=35$
then MP = 3500 .
42. Ans. C.

Let he buys each book for Rs. 100.
For $1^{\text {st }}$ book $\mathrm{SP}=120, \mathrm{CP}: \mathrm{SP}=100: 120$
= $5: 6$
For $2^{\text {nd }}$ book $S P=90, C P: S P=100: 90$
= $10: 9$
Total CP,
$15 \mathrm{k} \rightarrow 300$
$\mathrm{k} \rightarrow 20$
then SP of $1^{\text {st }}$ book $=6 \mathrm{k}=120$.
OR
Let the C.P of first book be ' x ' ad second book is ' y '.
Now, because there is no profit no loss, the profit of the first book will be equal to the loss of the second book.
So, 20% of $x=10 \%$ of y
$2 x=y$
$x+y=300$ (Given)
$x+2 x=300$
$x=100=$ C.P of first book
S.P of first book $=120 \%$ of $100=$ Rs. 120
43. Ans. A.

Number of girls studying Arts $=45$
Number of girls studying in other streams
$=18+42+30=90$
Required ratio $=45: 90=1: 2$
44. Ans. C.

Let $3 A=4 B=5 C=k$
$A=k / 3, B=k / 4, C=k / 5$
A : B:C $=(k / 3):(k / 4):(k / 5)$
Now, LCM $(3,4,5)=60$
Multiply ratio by 60.
A : B:C $=(k / 3):(k / 4):(k / 5)=20 k: 15 k$
: 12k = 20 : 15 : 12
45. Ans. D.

Total students $=65$
Girls = 35, boys $=30$
Required Ratio = $30: 35=6: 7$.
46. Ans. A.

SSC CGL Tier II
A Comprehensive Course in Hindi

$$
\begin{aligned}
& A: B=3: 5 \\
& B: C=2: 3
\end{aligned}
$$

A: B:C $=3 \times 2: 5 \times 2: 5 \times 3$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=\mathbf{6}: 10: 15$
47. Ans. D.

Let, 100 k is the sum of money to be deposite
D.

Difference in S.I. $=(5 \times 7-3 \times 9) \mathrm{k}=475$
$\Rightarrow 8 \mathrm{k}=475$
$\Rightarrow k=475 / 8$
100k $=100 \times 475 / 8$
= Rs. 5937.5.
48. Ans. C.

Principal = Rs. 4300
Amount after 2 years = Rs. 4644
Time $=2$ years
Interest $=4644-4300=$ Rs. 344
We have: $(P \times R \times T) / 100=$ S.I
$\Rightarrow(4300 \times R \times 2) / 100=344$
$\Rightarrow R=4 \%$
Now in second case, let us suppose that Principal amount be Rs x
And the amount received after simple interest = Rs. 10104
\therefore Simple interest $=10104-\mathrm{x}$
Time $=5$ years, rate $=4 \%$
Putting in the formula:
$\Rightarrow(x \times 4 \times 5) / 100=10104-x$
$\Rightarrow x=50520-5 x$
$\Rightarrow 6 x=50520$
Hence, $x=8420$
\therefore Principal $=$ Rs. 8420
49. Ans. A.
X and Y are two stations which are 280 km apart.
Distance travelled by train X in 2 hours $=$ Speed \times Time $=60 \times 2=120 \mathrm{~km}$

Remaining Distance $=280-120=160 \mathrm{~km}$ Speed of train leaving from $X=60 \mathrm{~km} / \mathrm{h}$ Speed of train leaving from $Y=20 \mathrm{~km} / \mathrm{h}$
As both trains are moving towards each other.
Hence, Relative Speed $=60 \mathrm{~km} / \mathrm{hr}+20$ $\mathrm{km} / \mathrm{hr}=80 \mathrm{~km} / \mathrm{hr}$
Time taken to travel $160 \mathrm{~km}=160 / 80=2$ hour
Hence, Time taken by train leaving from X in meeting the train which left from $Y=2$ $+2=4$ hours
50. Ans. D.

Let the speed of boat in still water $=x$
Speed of stream $=y$
A.T.Q.

$$
\begin{aligned}
& \frac{12}{x-y}+\frac{12}{x+y}=\frac{60}{60} \\
& \quad \frac{2 x}{x^{2}-y^{2}}=\frac{1}{12} \\
& \Rightarrow x^{2}-y^{2}=24 x\{y=3 \mathrm{kmph}\} \\
& \Rightarrow x^{2}-9=24 x \\
& \Rightarrow x^{2}-24 x-9=0 \\
& \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \Rightarrow \\
& =\frac{24 \pm \sqrt{576+36}}{2} \\
& =12 \pm \frac{\sqrt{612}}{2} \\
& =12 \pm \frac{6 \sqrt{17}}{2} \\
& =12 \pm 3 \sqrt{17} \\
& =3(4+\sqrt{ } 17) \text { [Positive Number]. }
\end{aligned}
$$

Classroom

SSC CGL Tier II A Comprehensive Course (HindF Medium)

Sandeep Sharma
Vinod Shankaran

