Classroom

ESE Mains Achiever's Study Plan

Electronics & Communication Engineering

Analog Circuits Part-2

Prep Smart. Score Better. Go gradeup

www.gradeup.co

1. A two stage Feedback amplifier is shown below. Transistor parameters are $h_{fe} = 50$, $h_{ie} = 1.1k\Omega$, $h_{re} = h_{oe} = 0$. Calculate Av_f, R_{of}, R_{if}.

Sol. Step 1: R₁ & R₂ form voltage divider & they constitute Feedback network. This network creates voltages-series Feedback.

$$A = A_{V} = \frac{V_{o}}{V_{s}}$$

Step 2:

If output node G is grounded, then $R_1 \& R_2$ appear in parallel in the input circuit. If input loop is broken, then $R_1 \& R_2$ appear in series in the output circuit.

Step 3: β = ?

 V_{o} gets divides between R_{1} & $R_{2}.$

Hence, $V_F = \frac{V_o R_1}{R_1 + R_2}$ $\frac{V_F}{V_o} = \beta = \frac{R_1}{R_1 + R_2} = \frac{0.1}{0.1 + 4.7} = \frac{1}{48}$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

Step 4: If required then replace Transistor with appropriate small signal model.

Step 5: Calculate gain without Feedback, input & output impendences without feedback. Q₂ CE amplifier with Bypass C

$$\begin{split} \mathsf{A}_{\mathsf{V}_2} &= \frac{-\mathsf{h}_{\mathsf{fe}}\mathsf{R}_1^1}{\mathsf{h}_{\mathsf{fe}}} \\ \mathsf{R}_L^1 &= 4.7 \mid | \, 4.7 = 2.37\mathsf{K} \\ &= \frac{-50 \times 2.37}{1.1} \\ &= -107.7 \\ \mathsf{R}_{\mathsf{I}_2}^1 &= 47 \mid | \, 33 \mid | \, \mathsf{h}_{\mathsf{Ie}} = 47 \mid | \, 33 \mid | \, 1.1 \\ &= 1.05 \;\mathsf{K}\;\Omega \\ \mathsf{R}_{\mathsf{L}_1}^1 &= 10 \mid | \; \mathsf{R}_2^1 = 10 \mid | \, 1.05 \\ &= 0.95 \;\mathsf{K}\;\Omega \\ \mathsf{Q}_1: \;\mathsf{CE} \; \text{amplifier with un-bypassed resistance} \\ (\mathsf{R}_1 \mid \mathsf{R}_2) &= \mathsf{R}_{\mathsf{E}} = 0.098\mathsf{K}\;\Omega \\ \mathsf{A}_{\mathsf{V}_1} &= \frac{-\mathsf{h}_{\mathsf{fe}} \,/\,\mathsf{R}_1^1}{\mathsf{h}_{\mathsf{e}} + (1 + \mathsf{h}_{\mathsf{fe}})\mathsf{R}_{\mathsf{E}}} \\ &= \frac{-50 \times 0.95}{1.1 + 51 \times 0.098} \\ &= -7.78 \\ \frac{\mathsf{V}_0}{\mathsf{V}_{\mathsf{s}}} &= \mathsf{A}_{\mathsf{V}} = \mathsf{A}_{\mathsf{V}_1} \times \mathsf{A}_{\mathsf{V}_2} = -7.78 \times (-107.7) = 838 \\ \mathsf{R}_{\mathsf{i}} &= 150 \mid | \; 47 \mid | \; [\mathsf{h}_{\mathsf{ie}} + (1 + \mathsf{h}_{\mathsf{fe}}) \mathsf{R}_{\mathsf{E}}] \\ &= 150 \mid | \; 47 \mid | \; \mathsf{6.09} \\ &= 5.21 \;\mathsf{K}\;\Omega \\ \mathsf{R}_0^{-1} &= 4.7 \mid | \; 4.8 \\ &= 2.37 \;\mathsf{K}\;\Omega \\ \\ \text{Step 6: } D &= 1 + \beta\mathsf{A} = ? \\ D &= 1 + \beta\mathsf{A}_{\mathsf{v}} = 1 + \frac{1}{48} \times 838 = 18.46 \\ \\ \text{Step 7: } \\ D &= 1 + \beta\mathsf{A}_{\mathsf{v}} = 1 + \frac{1}{48} \times 838 = 18.46 \\ \mathsf{A}_{\mathsf{VF}} &= \frac{\mathsf{A}_{\mathsf{v}}}{1 + \beta\mathsf{A}_{\mathsf{v}}} = \frac{838}{18.46} = 45.4 \\ \mathsf{R}_{\mathsf{iF}} &= \mathsf{R}_{\mathsf{i}} \times \mathsf{D} = 5.21 \times 18.46 = 96.17 \;\mathsf{K}\;\Omega \\ \mathsf{R}_0^{-1} &= \frac{\mathsf{R}_0^{-1}}{\mathsf{D}} = \frac{2.37}{18.46} = 0.128\mathsf{K}\Omega \\ \end{aligned}$$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

- **2.** Derive the condition for LC oscillations in basic feedback amplifier.
- **Sol.** Consider the basic amplifier having gain A and with the feedback network as shown below:

Consider it to be FET amplifier and has a small signal model as shown:

Analysis:-

LC oscillator can be redrawn by replacing the amp block with it's equivalent circuit.

If the effect of feedback network is considered, then net load for amplifier will be $\mathcal{Z}_L \Rightarrow$

$$\begin{split} V_{o} &= \frac{A_{V}.V_{i}Z_{L}}{R_{o}^{1} + Z_{L}} \\ \frac{V_{o}}{V_{i}} &= A = \frac{A_{V}.Z_{L}}{R_{o}^{1}s + Z_{L}} \\ A &= A_{V}.\frac{\frac{Z_{2}(Z_{1} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}}}{R_{o}^{1} + \frac{Z_{2}(Z_{1} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}}} \\ A &= \frac{A_{V}.Z_{2}(Z_{1} + Z_{3})}{Z_{2}(Z_{1} + Z_{3}) + R_{o}^{1}(Z_{1} + Z_{2} + Z_{3})} \end{split}$$

 V_{o} gets divided between Z_3 & Z_1

$$V_{F} = \frac{V_{o} Z_{1}}{Z_{1} + Z_{3}}$$
$$\frac{V_{F}}{V_{o}} = \beta = \frac{Z_{1}}{Z_{1} + Z_{3}} \dots (2)$$

Loop gain = $A \times \beta$

$$=\frac{A_{V}Z_{1}Z_{2}}{R_{o}^{1}(Z_{1}+Z_{2}+Z_{3})+Z_{2}(Z_{1}+Z_{3})}$$

Put $Z_1 = jX_1, Z_2 = jX_2, Z_3 = jX_3$

Consider only purely reactive components

Loop gain =
$$\frac{-A_{V}X_{1}X_{2}}{jRo_{0}^{1}(X_{L} + X_{2} + X_{3}) - X_{2}(X_{1} + X_{3})} \dots (3)$$

At ω_{\circ} , phase of loop gain should be 360°

Hence, $R_0^1 (X_1 + X_2 + X_3) = 0$

 $X_1 + X_2 + X_3 = 0 \text{ at } \omega = \omega_0$

Condition for oscillation to occur

At
$$\omega = \omega_0$$
,

Loop gain =
$$\frac{-A_V X_1 X_2}{jo - X_2 (X_1 + X_3)} = \frac{A_V X_1}{X_2}$$

For sustained oscillation; $|loop gain| \ge 1$

$$\begin{split} & \left| A_{V} \right| \frac{X_{1}}{X_{2}} \geq 1 \\ & \left| A_{V} \right| \geq \frac{X_{2}}{X_{1}} \end{split}$$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

3. In the circuit shown below diodes are ideal, input is varied from 0 to 50V. Plot transfer characteristics.

Sol.

Let D₁, D₂ & D₃ be off \rightarrow V_x = 0 initially but as D₁ is ON Then V_x = $\frac{5}{5+5} \times 6 = 3V$ (a) V_i < 3V: D₃ \rightarrow OFF, D₂ \rightarrow OFF & D₁ \rightarrow ON V_o = V_x = 3V (b) If V_i > 3V: D₃ \rightarrow ON KCL at X: $\frac{V_i - V_x}{2.5} + \frac{6 - V_x}{5} = \frac{V_x - 0}{5}$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

 $2V_{i} - 2V_{x} + 6 - V_{x} = V_{x}$ $V_{x} = \frac{2V_{i} + 6}{4} = \frac{V_{i} + 3}{2}$ D₁ remains On, if $V_{x} < 6$ $\frac{V_{i} + 3}{2} < 6$ $V_{i} < 9V$ (c) 3 < V_i < 9: D₁ & D₃ are ON
D₂ = OFF $V_{o} = V_{x} = \frac{V_{i} + 3}{2}$ (d) V_i > 9: D1 →OFF

Let D₂ be OFF

$$V_{x} = \frac{5}{2.5 + 5} \times V_{i}$$
$$V_{x} = \frac{2}{3} V_{i}$$
$$D_{2} \text{ remains off } V_{x} < 20$$
$$\frac{2V_{i}}{2} < 20$$

 $V_i = 30V$

(i) If 9 < V_i < 30 : - D_1 & $D_2 \rightarrow OFF$

D₃ is ON & V_o = V_x = $\frac{2}{3}$ V_i

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

4. Explain the BJT model using Eber-molls model.

Sol. Ebers- moll model of BJT: consider Coupled diode model for PNP transistor

 \rightarrow The two diodes represent J_E & $J_C.$

 \rightarrow I_{EN} is the current through emitter June in normal active mode.

 $I_{EN} = I_{ES} (e^{V}_{EB}/VT - 1)$

 \rightarrow I_{CR} \rightarrow current thorough collector June in reverse active mode.

 $I_{CR} = I_{CS} (e^{V_{CB}/VT} - 1)$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

 \rightarrow Dependent source $\alpha_{N}.I_{EN}$ represents current through collector Junction in normal active mode.

 \rightarrow Dependent source $a_R.I_{CR}$ represents current through J_E in reverse active mode.

 a_N = large signal current gain of normal active mode

 a_R = large signal current gain of Reverse Active mode.

 $\rightarrow a_N \gg a_R$ ($a_N \cong 1 \& a_R$ signally greater than zero (Because BJT is unsymmetrical $N_E \neq N_C$) KCL at Emitter:

$$I_E + a_R I_{CR} = I_{EN}$$

 $I_{E} = I_{EN} - a_{R}I_{CR}....(1)$

 $I_E = I_{ES} (e^{V_{EB}/V_{T}-1}) - a_R I_{CS} (e^{V_{CB}/V_{T1}})....(2)$

KCL at collector:-

 $I_C + I_{CR} = a_N I_{EN}$

 $I_{C} = a_{N}I_{EN} - I_{CR} \dots (3)$

 $I_{C} = a_{N} I_{ES} (e_{EB}^{V} - 1) - I_{CS} (e_{CB}^{V} - 1) \dots (4)$

 $I_B = I_E - I_C$ by equation (2)-(4)

 $I_B = (1-a_N) I_{ES} (e_{EB}^{V_T} - 1) + (1 - a_R) I_{CS} (e_{CB}^{V_T} - 1) \dots (5)$

Eqn. (2), (4) & (5) are known as equation they can be used to calculate I_E , $I_C \& I_B$ for all modes of operation.

Combine eqn. (1) & (3) \rightarrow

 $I_E = I_{EN} - a_R (a_N I_{EN} - I_{CR})$

 $I_E = (1 - a_R \cdot a_N) I_{EN} + a_R I_{CR}$

 $I_{E} = (1 - a_{R} \cdot a_{N}) I_{ES} [e^{V}_{EB}/VT - 1] + a_{R}I_{CR}$

 $I_E = I_{Eo} [e_{EB}^{V_T} - 1] + a_R I_C.....(6)$

When $I_{EO} = (1 - a_R a_N) I_{ES}$.

 I_{EO} – called Reverse sat n current of emitter June. When collector terminal is open circuited. Form eqn. (3):

$$\begin{split} &I_{C} = a_{N} \ I_{EN} - I_{CR} \\ &I_{C} = a_{N} \ [I_{E} + a_{R} \ I_{CR}] - I_{CR} \(from (1)) \\ &I_{C} = a_{N}I_{E} - (1 - a_{N} \ a_{R}) \ I_{CR} \\ &I_{C} = a_{N}I_{E} - (1 - a_{N}a_{R}) \ I_{CS} \ (e^{V}_{CB}/V_{T} - 1)) \\ &I_{C} = a_{N}I_{E} - I_{CO} \ (e^{V}_{CB}/V_{T} - 1) \(7) \\ &I_{CO} \rightarrow \text{Reverse saturation current of [where I_{CO} = (1 - a_{N}a_{B})I_{CS}] \\ &Collection \ June \ when \ emitter \ is \ open \ Circuit. \end{split}$$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

5. BJT has $\beta = 100 \& V_{BE} = 0.7$ Volt, Design self-bias circuit to operate BJT at V_{CE} = 6V, I_C =

1.5 mA. Assume stability factor S = 8

Sol. Step 1: Draw simplified self-bias circuit

$$V_{Th} = \frac{V_{CC} \times R_2}{R_1 + R_2}$$
$$R_{Th} = \frac{R_1 R_2}{R_1 + R_2}$$

 $R_E = 1.2 \text{ k} \Omega$

Where V_{CC} is the voltage supply of the self bias circuit and R_1 and R_2 form self bias resistors.

Step 2: Calculate $R_C \& R_E$ by using KVL in collector loop

$$\begin{aligned} + V_{CC} - R_{C}I_{C} - V_{CE} - R_{E}I_{E} &= 0 \\ \downarrow \\ R_{C} + R_{E} &= \frac{V_{CC} - V_{CE}}{I_{C}} \\ &= \frac{12 - 6}{1.5} = 4k\Omega \\ \left\{ V_{CE} &= \frac{V_{CC}}{2} (OR) V_{CC} = 2V_{CE} \right\} \\ \text{Select } R_{C} > 2R_{E} \\ \text{Let } R_{C} &= 2.8 \text{ k } \Omega \end{aligned}$$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

Step 3: calculate R_{th} by using stability factor value.

$$S = \frac{1+\beta}{1+\frac{\beta R_E}{R_{Th}+R_E}}$$
$$S = \frac{101}{1+\frac{100\times1.2}{R_{Th}+1.2}} = 8$$

 $R_{Th} = 9.12 \text{ k} \Omega = R_B$

Step 4: Calculate V_{th} by using KVC in base loop

 V_{Th} = R_{B} . I_{B} + V_{BE} + I_{E} + I_{E} R_{E}

$$=\frac{1.5}{100}\times9.12+0.7+1.5\times1.2$$

 $V_{Th} = 2.63$ volt

Step 5: Calculate R1 & R2

$$\frac{R_{Th}}{V_{Th}} = \frac{\frac{R_1 \cdot R_2}{(R_1 + R_2)}}{\frac{V_{CC} \cdot R_2}{(R_1 + R_2)}} = \frac{R_1}{V_{CC}}$$
$$R_1 = \frac{V_{CC}}{V_{Th}} \times R_{Th}$$
$$= \frac{12}{2.63} \times 9.12$$

 $R_1 = 41.61 \text{ k} \Omega$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

$$\mathsf{R}_{\mathsf{Th}} = \frac{\mathsf{R}_1 \mathsf{R}_2}{\mathsf{R}_1 + \mathsf{R}_2} \Longrightarrow \mathsf{R}_2 \frac{\mathsf{R}_{\mathsf{Th}} \cdot \mathsf{R}_1}{\mathsf{R}_1 - \mathsf{R}_{\mathsf{Th}}}$$

Note: If stability factor value is not provided then R_{Th} is calculated by using the condition $(1 + \beta) R_E > > R_{Th}$

Take $(1 + \beta) R_E = 10R_{Th}$

$$R_{Th} = \frac{\left(1 + \beta\right)}{10} R_{E}$$

Thus $R_1 = 41.61 \text{ k} \Omega$, $R_2 = 11.7 \text{ k} \Omega$, $V_{CC} = 12V$, $R_C = 2.8 \text{ k} \Omega$, $R_E = 1.2 \text{ k} \Omega$

Vision 2021 Batch-3

A Course for ESE & GATE Electronics Aspirants

OUR TOP GRADIANS IN GATE 2020

Classroom

Vision 2021-Course for ESE & GATE (Batch-3)

Electronics & Communication Engineering

Vision 2021 A Course for ESE & GATE Electronics Aspirants Batch-3

Why take this course?

- > 650+ Hours of Live Classes for ESE & GATE Technical Syllabus
- > 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
- > 750+ Quizzes & Conventional Assignments for Practice
- > Subject & Full-Length Mock Tests for GATE & ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

Prep Smart. Score Better. Go gradeup

www.gradeup.co