## ESE Mains

Achiever's Study Plan

## Electronics \& Communication Engineering

## Analog Circuits Part-2

1. A two stage Feedback amplifier is shown below. Transistor parameters are $h_{f e}=50, h_{i e}=$ $1.1 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{re}}=\mathrm{h}_{\mathrm{oe}}=0$. Calculate Avf, Rof, Rif.


Sol. Step 1: $R_{1} \& R_{2}$ form voltage divider \& they constitute Feedback network. This network creates voltages-series Feedback.
$A=A_{V}=\frac{V_{0}}{V_{s}}$

## Step 2:

If output node $G$ is grounded, then $R_{1} \& R_{2}$ appear in parallel in the input circuit. If input loop is broken, then $R_{1} \& R_{2}$ appear in series in the output circuit.


Step 3: $\beta=$ ?
$V_{o}$ gets divides between $R_{1} \& R_{2}$.
Hence, $V_{F}=\frac{V_{0} R_{1}}{R_{1}+R_{2}}$
$\frac{V_{F}}{V_{o}}=\beta=\frac{R_{1}}{R_{1}+R_{2}}=\frac{0.1}{0.1+4.7}=\frac{1}{48}$

## Vision 2021 Batch-3

START FREE TRIAL

## A Course for ESE \& GATE Electronics Aspirants

Step 4: If required then replace Transistor with appropriate small signal model.
Step 5: Calculate gain without Feedback, input \& output impendences without feedback.
Q2 CE amplifier with Bypass C
$A_{\mathrm{v}_{2}}=\frac{-\mathrm{h}_{\mathrm{fe}} \mathrm{R}_{\mathrm{L}}^{1}}{\mathrm{~h}_{\mathrm{ie}}}$
$R_{L}^{1}=4.7| | 4.7=2.37 K$
$=\frac{-50 \times 2.37}{1.1}$
$=-107.7$
$\mathrm{R}_{\mathrm{i} 2}^{1}=47| | 33| | \mathrm{h}_{\mathrm{ie}}=47| | 33| | 1.1$
$=1.05 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{L} 1}^{1}=10| | \mathrm{Ri}_{2}^{1}=10| | 1.05$
$=0.95 \mathrm{~K} \Omega$
$\mathrm{Q}_{1}$ : CE amplifier with un-bypassed resistance
$\left(R_{1}| | R_{2}\right)=R_{E}=0.098 \mathrm{~K} \Omega$
$A_{\mathrm{v}_{1}}=\frac{-h_{\mathrm{fe}} / R_{\mathrm{L}}^{1}}{h_{\mathrm{ie}}+\left(1+h_{\mathrm{fe}}\right) \mathrm{R}_{\mathrm{E}}}$
$=\frac{-50 \times 0.95}{1.1+51 \times 0.098}$
$=-7.78$
$\frac{V_{0}}{V_{s}}=A_{V}=A_{V_{1}} \times A_{V_{2}}=-7.78 \times(-107.7)=838$
$R_{i}=150| | 47| |\left[h_{i e}+\left(1+h_{f e}\right) R_{E}\right)$
$=150$ || 47 || 6.09
$=5.21 \mathrm{~K} \Omega$
$\mathrm{Ro}^{1}=4.7| | 4.8$
$=2.37 \mathrm{~K} \Omega$
Step 6: $D=1+\beta A=$ ?
$D=1+\beta A_{v}=1+\frac{1}{48} \times 838=18.46$

## Step 7:

$D=1+\beta A_{v}=1+\frac{1}{48} \times 838=18.46$
$A_{V F}=\frac{A_{v}}{1+\beta A_{v}}=\frac{838}{18.46}=45.4$
$R_{i F}=R_{i} \times D=5.21 \times 18.46=96.17 k \Omega$
$\mathrm{Ro}^{1} \mathrm{~F}=\frac{\mathrm{Ro}^{1}}{\mathrm{D}}=\frac{2.37}{18.46}=0.128 \mathrm{~K} \Omega$

## Vision 2021 Batch-3

2. Derive the condition for LC oscillations in basic feedback amplifier.

Sol. Consider the basic amplifier having gain $A$ and with the feedback network as shown below:


Consider it to be FET amplifier and has a small signal model as shown:


## \# Analysis:-

LC oscillator can be redrawn by replacing the amp block with it's equivalent circuit.


If the effect of feedback network is considered, then net load for amplifier will be $Z_{L} \Rightarrow$
$Z_{L}=Z_{2} \|\left(Z_{1}+Z_{3}\right)$
$Z_{L}=\frac{Z_{2}\left(Z_{1}+Z_{3}\right)}{Z_{1}+Z_{2}+Z_{3}}$
$A_{V} V_{i}$ gets divided into $R_{o}^{1} \& Z_{L}$
$V_{o}=\frac{A_{V} \cdot V_{i} Z_{L}}{R_{o}^{1}+Z_{L}}$
$\frac{V_{o}}{V_{i}}=A=\frac{A_{V} \cdot Z_{L}}{R_{o}^{1} S+Z_{L}}$
$A=A_{v} \cdot \frac{\frac{Z_{2}\left(Z_{1}+Z_{3}\right)}{Z_{1}+Z_{2}+Z_{3}}}{R_{0}^{1}+\frac{Z_{2}\left(Z_{1}+Z_{3}\right)}{Z_{1}+Z_{2}+Z_{3}}}$
$A=\frac{A_{v} \cdot Z_{2}\left(Z_{1}+Z_{3}\right)}{Z_{2}\left(Z_{1}+Z_{3}\right)+R_{0}^{1}\left(Z_{1}+Z_{2}+Z_{3}\right)}$
$V_{0}$ gets divided between $Z_{3} \& Z_{1}$
$V_{F}=\frac{V_{0} Z_{1}}{Z_{1}+Z_{3}}$
$\frac{V_{F}}{V_{0}}=\beta=\frac{Z_{1}}{Z_{1}+Z_{3}}$
Loop gain $=A \times \beta$
$=\frac{A_{v} Z_{1} Z_{2}}{R_{0}^{1}\left(Z_{1}+Z_{2}+Z_{3}\right)+Z_{2}\left(Z_{1}+Z_{3}\right)}$
Put $Z_{1}=j X_{1}, Z_{2}=j X_{2}, Z_{3}=j X_{3}$
Consider only purely reactive components
Loop gain $=\frac{-A_{V} X_{1} X_{2}}{j \operatorname{Ro}_{0}^{1}\left(X_{L}+X_{2}+X_{3}\right)-X_{2}\left(X_{1}+X_{3}\right)}$
At $\omega_{o}$, phase of loop gain should be $360^{\circ}$
Hence, $R_{0}{ }^{1}\left(X_{1}+X_{2}+X_{3}\right)=0$
$X_{1}+X_{2}+X_{3}=0$ at $\omega=\omega_{0}$
Condition for oscillation to occur
At $\omega=\omega_{0}$,
Loop gain $=\frac{-A_{v} X_{1} X_{2}}{j o-X_{2}\left(X_{1}+X_{3}\right)}=\frac{A_{v} X_{1}}{X_{2}}$
For sustained oscillation; |loop gain| $\geq 1$
$\left|A_{v}\right| \frac{X_{1}}{X_{2}} \geq 1$
$\left|A_{v}\right| \geq \frac{X_{2}}{X_{1}}$
3. In the circuit shown below diodes are ideal, input is varied from 0 to 50 V . Plot transfer characteristics.


Sol.


Let $D_{1}, D_{2} \& D_{3}$ be off
$\rightarrow V_{x}=0$ initially but as $D_{1}$ is $O N$
Then $V_{x}=\frac{5}{5+5} \times 6=3 V$
(a) $\mathrm{V}_{\mathrm{i}}<3 \mathrm{~V}: \mathrm{D}_{3} \rightarrow$ OFF, $\mathrm{D}_{2} \rightarrow$ OFF
$\& D_{1} \rightarrow O N$
$V_{0}=V_{x}=3 V$
(b) If $\mathrm{V}_{\mathrm{i}}>3 \mathrm{~V}: \mathrm{D}_{3} \rightarrow \mathrm{ON}$

KCL at $X$ :
$\frac{V_{i}-V_{x}}{2.5}+\frac{6-V_{x}}{5}=\frac{V_{x}-0}{5}$

START FREE TRIAL

## A Course for ESE \& CATE Electronics Aspirants

$$
\begin{aligned}
& 2 V_{i}-2 V_{x}+6-V_{x}=V_{x} \\
& V_{x}=\frac{2 V i+6}{4}=\frac{V_{i}+3}{2}
\end{aligned}
$$

$D_{1}$ remains On, if
$V_{x}<6$
$\frac{V_{i}+3}{2}<6$
$\mathrm{V}_{\mathrm{i}}<9 \mathrm{~V}$
(c) $3<V_{i}<9: D_{1} \& D_{3}$ are $O N$
$\mathrm{D}_{2}=\mathrm{OFF}$
$v_{0}=V_{x}=\frac{V_{i}+3}{2}$
(d) $\mathrm{V}_{\mathrm{i}}>$ 9: D1 $\rightarrow$ OFF

Let $D_{2}$ be OFF

$V_{x}=\frac{5}{2.5+5} \times V_{i}$
$v_{x}=\frac{2}{3} V_{i}$
$\mathrm{D}_{2}$ remains off $\mathrm{V}_{\mathrm{x}}<20$
$\frac{2 \mathrm{~V}_{\mathrm{i}}}{3}<20$
$V_{i}=30 \mathrm{~V}$
(i) If $9<\mathrm{V}_{\mathrm{i}}<30:-\mathrm{D}_{1} \& \mathrm{D}_{2} \rightarrow$ OFF
$D_{3}$ is $O N \& V_{o}=V_{x}=\frac{2}{3} V_{i}$

## Vision 2021 Batch-3

(ii) If $\mathrm{V}_{\mathrm{i}}>30$ : $\mathrm{D}_{2}$ becomes ON
$\mathrm{D}_{3}$ is ON
$D_{1}$ is OFF
KCL at $\mathrm{X}: \frac{\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{x}}}{2.5}=\frac{\mathrm{V}_{\mathrm{x}}-20}{10}+\frac{\mathrm{V}_{\mathrm{x}}}{5}$
$\mathrm{V}_{\mathrm{x}}=\frac{4 \mathrm{~V}_{\mathrm{i}}+20}{7}$

4. Explain the BJT model using Eber-molls model.

Sol. Ebers- moll model of BJT: consider Coupled diode model for PNP transistor

$\rightarrow$ The two diodes represent $\mathrm{J}_{\mathrm{E}} \& \mathrm{~J}_{\mathrm{C}}$.
$\rightarrow$ Ien is the current through emitter June in normal active mode.
$\mathrm{I}_{\mathrm{EN}}=\operatorname{IEs}\left(\mathrm{e}_{\mathrm{EB}} /{ }^{\mathrm{V}} \mathrm{T}-1\right)$
$\rightarrow$ ICR $\rightarrow$ current thorough collector June in reverse active mode.
$I_{C R}=I_{C S}\left(\mathrm{e}^{\left.\mathrm{V}_{C B} / V^{\mathrm{V}} \mathrm{T}-1\right)}\right.$
$\rightarrow$ Dependent source $a_{\text {n.Ien }}$ represents current through collector Junction in normal active mode.
$\rightarrow$ Dependent source $\mathrm{a}_{\mathrm{R}}$.Icr represents current through $\mathrm{J}_{\mathrm{E}}$ in reverse active mode.
$\mathrm{a}_{\mathrm{N}}=$ large signal current gain of normal active mode
$a_{R}=$ large signal current gain of Reverse Active mode.
$\rightarrow a_{N} \gg a_{R}\left(a_{N} \cong 1 \& a_{R}\right.$ signally greater than zero (Because BJT is unsymmetrical $N_{E} \neq N_{C}$ )
KCL at Emitter:
$\mathrm{I}_{\mathrm{E}}+\mathrm{a}_{\mathrm{R}} \mathrm{Icr}=\mathrm{Ien}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{EN}}-\mathrm{a}_{\mathrm{R}} \mathrm{I}_{\mathrm{CR}}$
$I_{E}=I_{E S}\left(e^{V_{E B} / V_{T}-1}\right)-a_{R} \operatorname{Ics}\left(e^{V_{C B}} / V_{T 1}\right)$.
KCL at collector:-
$\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{CR}}=\mathrm{a}_{\mathrm{N}} \mathrm{IEN}_{\mathrm{EN}}$
$\mathrm{Ic}=\mathrm{a}_{\mathrm{NI}} \mathrm{En}-\mathrm{IcR}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{a}_{\mathrm{N}} \mathrm{I}_{\mathrm{ES}}\left(\mathrm{e}_{\mathrm{EB}} / \mathrm{V}_{\mathrm{T}}-1\right)-\mathrm{ICS}\left(\mathrm{e}^{\mathrm{V}_{C B}} / \mathrm{V}_{\mathrm{T}}-1\right)$ $\qquad$
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{c}}$ by equation (2)-(4)
$I_{B}=\left(1-a_{N}\right) I_{E S}\left(e^{\left.V_{E B} / V_{T}-1\right)+\left(1-a_{R}\right)} \operatorname{ICS}\left(e^{v_{C B}} / V_{T}-1\right)\right.$
Eqn. (2), (4) \& (5) are known as equation they can be used to calculate $\mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{c}}$ \& $\mathrm{I}_{\mathrm{B}}$ for all modes of operation.

Combine eqn. (1) \& (3) $\rightarrow$
$\mathrm{I}_{\mathrm{e}}=\mathrm{I}_{\mathrm{en}}-\mathrm{a}_{\mathrm{R}}\left(\mathrm{a}_{\mathrm{n} \text { Ien }}-\mathrm{Icr}\right)$
$I_{E}=\left(1-a_{R} \cdot a_{N}\right) I_{E N}+a_{R} I_{C R}$
$I_{E}=\left(1-a_{R} \cdot a_{N}\right) I_{E S}\left[e^{v_{E B}} /{ }^{v} T-1\right]+a_{R} I_{C R}$
$\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}}\left[\mathrm{e}_{\mathrm{EB}} / \mathrm{V}_{\mathrm{T}}-1\right]+\mathrm{a}_{\mathrm{R}} \mathrm{Ic}$.
When $\mathrm{I}_{\mathrm{eo}}=\left(1-\mathrm{a}_{\mathrm{R}} \mathrm{a}_{\mathrm{N}}\right) \mathrm{I}_{\text {es }}$.
Ieo - called Reverse sat n current of emitter June. When collector terminal is open circuited.
Form eqn. (3):
$\mathrm{I}_{\mathrm{C}}=\mathrm{a}_{\mathrm{N}} \mathrm{I}_{\mathrm{EN}}-\mathrm{I}_{\mathrm{CR}}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{a}_{\mathrm{N}}\left[\mathrm{I}_{\mathrm{E}}+\mathrm{a}_{\mathrm{R}} \mathrm{I}_{\mathrm{CR}}\right]-\mathrm{I}_{\mathrm{CR}}$ $\qquad$
$\mathrm{I}_{\mathrm{C}}=\mathrm{a}_{\mathrm{NIE}}-\left(1-\mathrm{a}_{\mathrm{N}} \mathrm{a}_{\mathrm{R}}\right) \mathrm{I}_{\mathrm{cR}}$
$\mathrm{Ic}=\mathrm{a}_{\mathrm{NIE}}-\left(1-\mathrm{a}_{\mathrm{N}} \mathrm{a}_{\mathrm{R}}\right) \operatorname{Ics}\left(\mathrm{e}_{\mathrm{CB}} / \mathrm{V}_{\mathrm{T}}-1\right)$
$I_{C}=\mathrm{a}_{\mathrm{N}} \mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{Co}}\left(\mathrm{e}_{\mathrm{CB}} / \mathrm{V}_{\mathrm{T}}-1\right)$
Ico $\rightarrow$ Reverse saturation current of [where Ico $=\left(1-\mathrm{a}_{\mathrm{N}} \mathrm{a}_{\mathrm{B}}\right) \mathrm{I}_{\mathrm{cs}}$ ]
Collection June when emitter is open Circuit.
5. BJT has $\beta=100 \& \mathrm{~V}_{\mathrm{BE}}=0.7$ Volt, Design self-bias circuit to operate BJT at $\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=$ 1.5 mA . Assume stability factor $\mathrm{S}=8$

Sol. Step 1: Draw simplified self-bias circuit

$\mathrm{V}_{\mathrm{Th}}=\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$R_{\text {Th }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
Where $\mathrm{V}_{\mathrm{cc}}$ is the voltage supply of the self bias circuit and $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ form self bias resistors.
Step 2: Calculate Rc \& RE by using KVL in collector loop
$+V_{C C}-R_{C} I_{C}-V_{C E}-R_{E} I_{E}=0$
$R_{C}+R_{E}=\frac{V_{C C}-V_{C E}}{I_{C}}$
$=\frac{12-6}{1.5}=4 \mathrm{k} \Omega$
$\left\{\mathrm{V}_{\mathrm{CE}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2}(\mathrm{OR}) \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}_{\mathrm{CE}}\right\}$
Select Rc $>2 R_{E}$
Let $\mathrm{Rc}_{\mathrm{c}}=2.8 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{E}}=1.2 \mathrm{k} \Omega$

## Vision 2021 Batch-3

Step 3: calculate $R_{\text {th }}$ by using stability factor value.
$S=\frac{1+\beta}{1+\frac{\beta R_{E}}{R_{T h}+R_{E}}}$
$\mathrm{S}=\frac{101}{1+\frac{100 \times 1.2}{\mathrm{R}_{\text {Th }}+1.2}}=8$
$\mathrm{R}_{\mathrm{Th}}=9.12 \mathrm{k} \Omega=\mathrm{R}_{\mathrm{B}}$
Step 4: Calculate $\mathrm{V}_{\text {th }}$ by using KVC in base loop
$\mathrm{V}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{B}} \cdot \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+\mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}$
$=\frac{1.5}{100} \times 9.12+0.7+1.5 \times 1.2$
$\mathrm{V}_{\mathrm{Th}}=2.63$ volt
Step 5: Calculate $R_{1} \& R_{2}$

$\frac{R_{\text {Th }}}{V_{\text {Th }}}=\frac{\frac{R_{1} \cdot R_{2}}{\left(R_{1}+R_{2}\right)}}{\frac{V_{\mathrm{CC}} \cdot R_{2}}{\left(R_{1}+R_{2}\right)}}=\frac{R_{1}}{V_{\text {cC }}}$
$R_{1}=\frac{V_{C C}}{V_{T h}} \times R_{\text {Th }}$
$=\frac{12}{2.63} \times 9.12$
$\mathrm{R}_{1}=41.61 \mathrm{k} \Omega$

## Vision 2021 Batch-3

START FREE TRIAL

## A Course for ESE \& CATE Electronics Aspirants

$R_{T h}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \Rightarrow R_{2} \frac{R_{\text {Th }} \cdot R_{1}}{R_{1}-R_{\text {Th }}}$
$\mathrm{R}_{2}=11.7 \mathrm{k} \Omega$
Note: If stability factor value is not provided then $R_{T h}$ is calculated by using the condition $(1+\beta) R_{E} \gg R_{T h}$
Take $(1+\beta) R_{E}=10 R_{\text {Th }}$
$\mathrm{R}_{\mathrm{Th}}=\frac{(1+\beta)}{10} \mathrm{R}_{\mathrm{E}}$
Thus $\mathrm{R}_{1}=41.61 \mathrm{k} \Omega, \mathrm{R}_{2}=11.7 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}, \mathrm{Rc}_{\mathrm{c}}=2.8 \mathrm{k} \Omega, \mathrm{Re}_{\mathrm{E}}=1.2 \mathrm{k} \Omega$

## OUR TOP GRADIANS IN GATE 2020


Himanshu Kumar
AIR-9
EE


Nikhil Kumar
AIR-9
EE
(a)
Raja Majhi
AIR-30
ECE


## Classroom

## Vision 2021-Course for ESE \& GATE (Batch-3)

Electronics \& Communication Engineering


## Vision 2021

A Course for ESE \& GATE Electronics Aspirants Batch-3

Why take this course?
>650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
, Subject \& Full-Length Mock Tests for GATE \& ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

