Classroom

ESE Mains
 Achiever's Study Plan

Electronics \& Communication Engineering

Analog Circuits Part-1

1. A full wave rectifier has load resistance of 500Ω and the used diodes has internal resistance of 50Ω. If turn ratio from primary to half of secondary of transformer is $5: 1$ and primary winding voltage is $240 \mathrm{~V} \mathrm{rms}, 50 \mathrm{~Hz}$ then calculate:
(i) dc and ac output current
(ii) dc and ac output voltage
(iii) dc diode voltage and current
(iv) efficiency and regulation factor
(v) PIV and ripple frequency
(vi) RMS output current

Sol.

$R\left\llcorner=500 \Omega, \quad R_{f}=50 \Omega\right.$
Rms secondary voltage $=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}=48$
$\Rightarrow V_{m}=48 \sqrt{2}=67.88 \mathrm{~V}$
$\therefore I_{m}=\frac{V_{m}}{R_{f}+R_{L}}=\frac{67.88}{550}=123 \mathrm{~mA}$
(i) $\mathrm{I}_{\mathrm{DC}}=\frac{2 \mathrm{I}_{\mathrm{m}}}{\pi}=\frac{2 \times 123}{\pi}=78.3 \mathrm{~mA}$

AC output current I'rsm ,
So, I^{\prime} rms $=r \times \mathrm{I}_{\mathrm{DC}}=0.483 \times 78.3$
$I^{\prime}{ }^{\prime}{ }^{2}=37.82 \mathrm{~mA}$
(ii) $V_{D C}=I_{D C}, R_{L}=78.3 \times 10^{-3} \times 500=39.15 \mathrm{~V}$

AC output voltage V^{\prime} rms $=r . \mathrm{V}_{\mathrm{DC}}$
$=0.483 \times 39.15$
$\mathrm{V}^{\prime}{ }_{\mathrm{rms}}=18.9 \mathrm{~V}$
(iii) $V_{\text {diode, DC }}=-\frac{2 V_{m}}{\pi}=-\frac{2 \times 67.88}{\pi}=-43.16 \mathrm{~V}$
$\mathrm{I}_{\text {diode, } \mathrm{DC}}=\frac{\mathrm{I}_{\mathrm{m}}}{\pi}=39.15 \mathrm{~mA}$

Vision 2021 Batch-3

(iv) $\% \eta=81 \times \frac{R_{L}}{R_{f} \times R_{L}}=81 \times \frac{500}{550} \%$
$\% \eta=73.63 \%$
\%Regulation $=\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{L}}} \times 100 \%=\frac{50}{500} \times 100 \%=10 \%$
(v) PIV $=V_{m}$
$=2 \times 67.88=135.76 \mathrm{~V}$
Ripple frequency $=2 \mathrm{f}_{0}=100 \mathrm{~Hz}$
(vi) RMS output current
$I_{\text {rms }}=\frac{I_{m}}{\sqrt{2}}=\frac{123}{\sqrt{2}} \mathrm{~mA}$
$\Rightarrow \mathrm{I}_{\mathrm{rms}}=86.97 \mathrm{~mA}$
2. For the network shown below, determine the value of following parameters by using complete hybrid-equivalent model.
A. Z_{i} and $Z_{i}{ }_{i}$
B. $A v$
C. $A_{i}=\frac{I_{o}}{I_{i}}$ and $A_{i}^{\prime}=\frac{I_{o}}{I_{i}^{\prime}}$
D. Z_{0}

The h -parameters of the transistor are:
$\mathrm{h}_{\mathrm{fe}}=110 ; \mathrm{h}_{\mathrm{ie}}=1.6 \mathrm{k} \Omega$
$\mathrm{h}_{\mathrm{fe}}=2 \times 10^{-4} ; \mathrm{h}_{\mathrm{oe}}=20 \mu \mathrm{v}$

Vision 2021 Batch-3

Sol. Redrawing the AC equivalent circuit

Substituting h -parameter equivalent circuit:

Current gain (A_{i}):

$\mathrm{I}_{\mathrm{o}} \frac{+\mathrm{h}_{\mathrm{fe}} \mathrm{I}_{\mathrm{i}} \frac{1}{\mathrm{~h}_{\mathrm{o}}}}{\frac{1}{\mathrm{~h}_{\mathrm{oe}}}+4.7 \mathrm{k} \Omega}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{o}}}{\mathrm{I}_{\mathrm{i}}}=\mathrm{A}_{\mathrm{i}} \frac{+\mathrm{h}_{\mathrm{fe}}}{1+\mathrm{h}_{\mathrm{oe}} \times 4.7 \mathrm{k} \Omega}=\frac{+110}{1+20 \times 10^{-6} \times 4.7 \times 10^{3}}$
$\Rightarrow A_{i}=\frac{110}{1+0.094}=100.548$

Input impedance ($\mathbf{Z}_{\mathbf{i}}$:

Applying KVL in input loop

$$
\begin{aligned}
V_{i} & =h_{i} I_{i}+h_{r e} V_{o}=h_{r e} V_{o}=h_{i} I_{i}+h_{r e} \times\left(I_{0} \times 4.7 \mathrm{k} \Omega\right) \\
& =h_{i} I_{i}-h_{r e}(+4.7 \mathrm{k} \Omega) A_{i} I_{i}
\end{aligned}
$$

$$
\begin{aligned}
\frac{V_{i}}{I_{i}}=Z_{i} & =h_{i}-h_{r e} \times 4.7 \times 10^{3} \times 100.548 \\
& =1600-2 \times 10^{-4} \times 4.7 \times 10^{3} \times 100.548
\end{aligned}
$$

$\mathrm{Z}_{\mathrm{i}}=1.5 \mathrm{k} \Omega$

Voltage gain (A_{v}):

$$
\begin{aligned}
A_{v} & =\frac{V_{0}}{V_{i}}=\frac{I_{0} \times 4.7}{V_{i}}=\frac{A_{i} I_{i} \times 4.7}{V_{i}} \\
& =\frac{A_{i} \times 4.7}{Z_{i}}=\frac{100.548 \times 4.7}{1.5}
\end{aligned}
$$

Output impedance (Z_{o}):

Step 1: Disable external sources present in the input.
Step 2: Disconnect load resistance RLform output circuit.
Step 3 : Assume that voltage V_{x} is applied at output port and current I_{x} is flowing into output node then R_{o} is calculated as V_{x} / I_{x}.

KCL at output node
$\mathrm{I}_{\mathrm{x}}=\mathrm{h}_{\mathrm{o}} \mathrm{V}_{\mathrm{x}}+\mathrm{h}_{\mathrm{f}} \mathrm{I}_{\mathrm{i}}$
$\Rightarrow \frac{I_{x}}{V_{x}}=h_{o}+h_{f} \cdot \frac{I_{i}}{V_{x}}$
$\frac{1}{Z_{o}}=\frac{I_{x}}{V_{x}}=h_{o}+h_{f} \cdot \frac{I_{i}}{V_{x}}$
KVL in input loop
$\mathrm{I}_{\mathrm{i}}(1 \mathrm{k} \Omega| | 470 \mathrm{k} \Omega)+1.6 \mathrm{k} \Omega \mathrm{I}_{\mathrm{i}}+\mathrm{h}_{\mathrm{r}} \mathrm{V}_{\mathrm{x}}=0$
$\rightarrow 0.9978 \mathrm{I}_{\mathrm{i}}+1.6 \mathrm{I}_{\mathrm{i}}=\mathrm{h}_{\mathrm{r}} \mathrm{V}_{\mathrm{x}}$
$\Rightarrow \frac{I_{i}}{V_{x}}=\frac{2}{2.56 \mathrm{k} \Omega}=\frac{2 \times 10^{-4}}{2.56 \times 10^{3}}$
Now $\frac{1}{Z_{o}}=20 \times 10^{-6}+110 \times \frac{2 \times 10^{-4}}{2.56 \times 10^{3}}$

$\frac{1}{Z_{o}}=2.86 \times 10^{-5}$
$\therefore \mathrm{Z}_{\mathrm{o}}=34.97 \mathrm{k} \Omega \simeq 35 \mathrm{k} \Omega$
$Z_{i}^{\prime}: Z_{i}^{\prime}=470 \mathrm{k} \Omega \| Z_{i}=\frac{470 \times 1.5}{470+1.5}=1.495 \mathrm{k} \Omega$
$A_{i}^{\prime}: A_{i}^{\prime}=\frac{I_{0}}{I_{i}^{\prime}}=\frac{I_{o}}{I_{i}} \cdot \frac{I_{i}}{I_{i}^{\prime}}=A_{i} \frac{I_{i}}{I_{i}^{\prime}}$
$I_{i}=I_{i}^{\prime} \frac{470 k \Omega}{Z_{i}+470 k \Omega}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{i}}}{\mathrm{I}_{\mathrm{i}}^{\prime}}=\frac{470 \mathrm{k} \Omega}{1.5 \mathrm{k} \Omega+470 \mathrm{k} \Omega}=0.9968$
$\therefore \mathrm{A}_{\mathrm{i}}{ }^{\prime}=100.548 \times 0.9968$
$A_{i}^{\prime}=100.226$
3. For the circuit shown in figure,
(i) Determine the operating point
(ii) Find the stability factor. Given: $\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}, \beta=50$

Vision 2021 Batch-3

Sol. Thevenin equivalent of the given circuit:

$\mathrm{V}_{\mathrm{Th}}=\frac{47 \mathrm{k} \Omega \times 15 \mathrm{~V}}{39 \mathrm{k} \Omega+47 \mathrm{k} \Omega}=1.61327 \mathrm{~V}$.
$\mathrm{R}_{\mathrm{Th}}=4.7 \mathrm{k} \Omega \| 39 \mathrm{k} \Omega=4.1945 \mathrm{k} \Omega$
(i) Step (1): KVL for input section
$V_{t h}-I_{b} R_{t h}-V_{b e}-\left(I_{e} \times 1 \mathrm{k} \Omega\right)=0$
$\rightarrow\left(\mathrm{I}_{\mathrm{B}} \times 4.195 \mathrm{k} \Omega\right)+\left((1+\beta) \mathrm{I}_{\mathrm{B}} \times 1 \mathrm{k} \Omega\right)-1.61327 \mathrm{~V}-0.6 \mathrm{~V}$
$\Rightarrow \mathrm{I}_{\mathrm{B}}=\frac{1.01327 \mathrm{~V}}{4.1945 \mathrm{k}+5 \mathrm{~K}}=\frac{1.01327 \mathrm{~V}}{55.1945 \mathrm{k}}$
$\therefore I_{c Q}=\beta I_{B}=50 \times 0.018358 \mathrm{~mA}$
$=0.1979 \mathrm{~mA}$
Step (2): KVL for output section
$15 \mathrm{~V}-\left(4.7 \mathrm{k} \Omega \times \mathrm{I}_{\mathrm{c}}\right)-\mathrm{V}_{\mathrm{CE}}-\left(1 \mathrm{k} \Omega \times \mathrm{I}_{\mathrm{E}}\right)=0$
$\mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}-(4.7 \mathrm{~K} \Omega \times 0.9179 \mathrm{~mA})-1 \mathrm{k} \Omega\left(\frac{1+\beta}{\beta}\right) \mathrm{I}_{\mathrm{c}}$
$=15 \mathrm{~V}-4.31413 \mathrm{~V}-0.936258 \mathrm{~V}$
$\therefore \mathrm{V}_{\text {CEQ }}=9.7496 \mathrm{~V}$ \qquad (10)
$\therefore \mathrm{Q}=(9.7496 \mathrm{~V}, 9.9176 \mathrm{~mA})$
(ii) Stability factor, $\mathrm{S}=\frac{\partial \mathrm{I}_{\mathrm{c}}}{\partial \mathrm{I}_{\mathrm{C}_{0}}}$

In self bias arrangement, stability factor,
$S=\frac{1+\beta}{1+\beta\left[\frac{R_{E}}{R_{E}+R_{\text {Th }}}\right]} \ldots$.(1)
$\Rightarrow S=\frac{1+50}{1+50\left(\frac{1 \mathrm{~K}}{1 \mathrm{~K}+4.1945 \mathrm{k}}\right)}$
$=\frac{51}{1+50(0.1925)}=\frac{51}{1+9.625}$
$\therefore \mathrm{S}=4.8$
$\mathrm{V}_{\mathrm{Th}}=\frac{\mathrm{R}_{2} \mathrm{~V}_{\mathrm{CC}}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{5 \mathrm{k} \Omega \times 3 \mathrm{~V}}{5 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=1.5 \mathrm{~V}$
$R_{T h}=R_{1}\left\|R_{2}=5 \mathrm{k} \Omega\right\| 5 \mathrm{k} \Omega=2.5 \mathrm{k} \Omega$
Step (1): KVL for base-emitter loop
$V_{t h}-I_{B} R_{t h}-V_{B E}-(1+\beta) I_{B} \times 1 k \Omega=0$
$I_{B}=\frac{1.5 \mathrm{~V}-0.7 \mathrm{~V}}{2.5 \mathrm{k} \Omega+(5 \times 1 \mathrm{k} \Omega)}=\frac{0.8 \mathrm{~V}}{47.5 \mathrm{k} \Omega}=0.016842 \mathrm{~mA}$
$\therefore I_{C Q}=\beta I_{B}=0.741 \mathrm{~mA}$
Step (2): KVL for output section
$3 \mathrm{~V}-\mathrm{V}_{\text {CEQ }}-\left(\mathrm{I}_{\mathrm{E}} \times 1 \mathrm{k} \Omega\right)=0$
$\mathrm{V}_{\text {Сео }}=3 \mathrm{~V}-(1+\beta) \mathrm{I}_{\mathrm{B}} \times 1 \mathrm{k} \Omega$
$=3 \mathrm{~V}-0.75789 \mathrm{~V}$
$\therefore \mathrm{V}_{\text {Ceo }}=2.24211 \mathrm{~V}$
$\therefore \mathrm{Q}=$ [2.24211V, 0.741 mA$]$
4. Find the various voltages and current in the regulator circuit. Find the power dissipation in the Zener and transistor Q_{1}

Vision 2021 Batch-3

START FREE TRIAL

A Course for ESE \& GATE Electronics Aspirants

Sol.

Form the figure it is clear that
$\mathrm{V}_{\mathrm{B}_{2}}=\mathrm{V}_{\mathrm{Z}}+\mathrm{V}_{\mathrm{BE}_{2}}=10 \mathrm{~V}+0.7=10.7 \mathrm{~V}$
$\therefore \mathrm{I}=\frac{\mathrm{V}_{\mathrm{B}_{2}}}{2 \mathrm{k}}=\frac{10.7}{2 \mathrm{k}}=5.35 \mathrm{~mA}$
Here the β is not given. Assume high value of β that implies base current can almost be neglected
$\therefore \mathrm{I}=5.35 \mathrm{~mA}$
$\therefore \mathrm{V}_{0}=\mathrm{I} \times[1 \mathrm{k}+2 \mathrm{k}]=3 \mathrm{k} \times 5.35 \mathrm{~m}=16.05 \mathrm{~V}$
$\therefore \mathrm{R}_{\mathrm{L}}=\frac{16.05}{0.5}=32.1 \Omega$
From the fig
$V_{B_{1}}=V_{0}+V_{B E_{1}}$
$=16.05+0.7=16.75 \mathrm{~V}$
$\therefore \mathrm{I}_{\mathrm{R}_{2}}=\frac{\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{B}_{1}}}{2 \mathrm{k}}$
$=\frac{30-16.75}{2 \mathrm{k}}$
$=\frac{13.25}{2 \mathrm{k}}=6.625 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{R}_{1}}=\frac{\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{z}}}{10 \mathrm{k}}$
$=\frac{30-10}{10 \mathrm{k}}=\frac{20}{10 \mathrm{k}}=2 \mathrm{~mA}$

Vision 2021 Batch-3

A Course for ESE \& GATE Electronics Aspirants

As β is very high
$\mathrm{I}_{\mathrm{B}_{1}} \approx 0 \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}_{2}}=\mathrm{I}_{\mathrm{R}_{2}}=6.625 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{C}_{2}}=\mathrm{I}_{\mathrm{E}_{2}}=6.25 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\mathrm{E}_{2}}+\mathrm{I}_{\mathrm{R}_{1}}=2 \mathrm{~mA}+6.625 \mathrm{~mA}$
$=8.625 \mathrm{~mA}$
From the figure, KCL at output node
$\mathrm{I}_{\mathrm{E}_{1}}=\mathrm{I}+\mathrm{I}_{\mathrm{L}}=5.35 \mathrm{~mA}+0.5 \mathrm{~A}$
$=0.50535 \mathrm{~A}$
β is very high
$\mathrm{I}_{\mathrm{B}_{1}} \approx 0 \Rightarrow \mathrm{I}_{\mathrm{E}_{1}}=\mathrm{I}_{\mathrm{C}_{1}}=0.50535 \mathrm{~A}$
Power dissipation in the zener diode:
$\mathrm{P}=\mathrm{V}_{\mathrm{z}} \times \mathrm{I}_{z}$
$\mathrm{P}=10 \times 8.625 \mathrm{~mA}$
$\mathrm{P}=86.25 \mathrm{Mw}$
Power dissipation in the transistor Q_{1} :
$\mathrm{P}=\mathrm{V}_{\mathrm{CE} 1} \times \mathrm{I}_{\mathrm{C} 1}$
$P=\left(V_{C_{1}}-V_{E_{1}}\right) \times I_{C_{1}}$
$P=(30-16.05) \times 0.50535$
$\mathrm{P}=7.049 \mathrm{~W}$
5. What is meant by feedback. Write a short note on negative feedback \& mention it's advantages \& disadvantages.

Sol. Introduction to feedback

Feedback is used in virtually all amplifier systems. Harold black, an electronics engineer with the Western Electric company, invented the feedback amplifier in 1928 while searching for methods to stabilize the gain of amplifiers for use in telephone repeaters.
In a feedback system, a signal that is proportional to the output is fed back to the input and combined with the input signal to produced a desired system response. As we will see, external feedback is used deliberately to achieve particular undesired system response may be produced.
Feedback can be either negative or positive. In negative feedback, a portion of the output signal is subtracted from the input signal; in positive feedback, a portion of the output signal is added to the input signal. Negative feedback, for example tends to maintain a constant value of amplifier voltage gain against variations in transistor parameters, supply Voltage and temperature. Positive feedback is used in the design of oscillators and in a number of other applications.

START FREE TRIAL

Advantages and Disadvantages of Negative feedback Advantages

1. Gain sensitivity: Variations in the circuit transfer function (gain) as a result of changes in transistor parameters are reduced by feedback. This reduction in sensitivity is one of the most attractive features of negative feedback.
2. Bandwidth extension: The bandwidth of a circuit that incorporates negative feedback is larger than of the basic amplifier.
3. Noise sensitivity: Negative feedback may increase the signal-to -noise ratio if noise is generated within the feedback loop.
4. Reduction of nonlinear distortion: Since transistors have nonlinear characteristics, distortion may appear in the input signals, especially at large signal levels, Negative feedback reduces this distortion.
5. Control of impedance level: The input an output impedances can be increased or decreased with the proper type of negative feedback.

Disadvantages

1. Circuit gain: The overall amplifier gain, with negative feedback, is reduced compared to the basic amplifier used in the circuit.
2. Stability: There is a possibility that the feedback circuit may become unstable (oscillate) at high frequencies.

START FREE TRIAL

OUR TOP GRADIANS IN GATE 2020

Himanshu Kumar
AIR-9
EE

Nikhil Kumar
AIR-9
EE
(a)
Raja Majhi
AIR-30
ECE

Classroom

Vision 2021-Course for ESE \& GATE (Batch-3)

Electronics \& Communication Engineering

Vision 2021

A Course for ESE \& GATE Electronics Aspirants Batch-3

Why take this course?
>650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
, Subject \& Full-Length Mock Tests for GATE \& ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

