75+ Advance Maths Ques. PDF Asked in SSC CPO 2019/18/17

1. If $a+b+c=19, a b+b c+c a=120$,
then what is the value of $a^{3}+b^{3}+c^{3}-$
$3 a b c$?
A. 31
B. 23
C. 19
D. 18

Ans. C
Sol.
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
$a+b+c=19$
Squaring both sides
$a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=361$
$a^{2}+b^{2}+c^{2}=361-240$
$a^{2}+b^{2}+c^{2}=121$
$a^{3}+b^{3}+c^{3}=19(121-120)$
$a^{3}+b^{3}+c^{3}-3 a b c=19$
2. If $x^{6}-512 y^{6}=\left(x^{2}+A y^{2}\right)\left(x^{4}-B x^{2} y^{2}\right.$ $\left.+C y^{4}\right)$, then what is the value of $(A+B-$
C)?
A. - 72
B. 72
C. -80
D. 48

Ans. C
Sol.
$x^{6}-512 y^{6}=\left(x^{2}+A y^{2}\right)\left(x^{4}-B x^{2} y^{2}+C y^{4}\right)$
$\left(x^{2}\right)^{3}+\left(-8 y^{2}\right)^{3}=\left(x^{2}+A y^{2}\right)\left(x^{4}-B x^{2} y^{2}+C y^{4}\right)$
$a^{3}+b^{3}=(a+b)\left(a^{2}+a b+b^{2}\right)$
$\left(x^{2}\right)^{3}+\left(-8 y^{2}\right)^{3}=\left(x^{2}-8 y^{2}\right)\left(x^{4}-(-8) x^{2} y^{2}+64 y^{2}\right)$
On comparing-
$A=-8, B=-8, C=64$
Required
$A+B-C=-8-8-64$
$=-80$.
3. Solve the following:
$(a+b+c)(a b+b c+c a)-a b c=$?
A. $(a+b)(b+c)(c-a)$
B. $(a-b)(b-c)(c-a)$
C. $(a+b)(b-c)(c+a)$
D. $(a+b)(b+c)(c+a)$

Ans. D
Sol.
$(a+b+c)(a b+b c+c a)-a b c$
$=\left(a^{2} b+a b c+a^{2} c\right)+\left(a b^{2}+b^{2} c+a b c\right)$
$+\left(a b c+b c^{2}+a c^{2}\right)-a b c$
$=c a^{2}+a^{2} b+b^{2} c+a b^{2}+b c^{2}+c^{2} a+$ 2abc
$=a^{2}(b+c)+\left(b^{2}+2 b c+c^{2}\right) a+b^{2} c+$ $b c^{2}$
$=(b+c) a^{2}+(b+c)^{2} a+b c(b+c)$
$=(b+c)\left[a^{2}+(b+c) a+b c\right]$
$=(b+c)(a+b)(a+c)$
$=(a+b)(b+c)(c+a)$
4. If $(2 x-5)^{3}+(x+2)^{3}+(3 x-9)^{3}=$ $(2 x-5)(3 x-9)(3 x+6)$, then find the value of x ?
A. 7
B. 5
C. 2
D. 18

Ans. C
Sol.
We know that, $a^{3}+b^{3}+c^{3}=3 a b c$
when $a+b+c=0$
So, $(2 x-5)^{3}+(x+2)^{3}+(3 x-9)^{3}=$ $3(2 x-5)(3 x-9)(x+2)$
Hence,
$\Rightarrow(2 x-5)+(3 x-9)+(x+2)=0$
$\Rightarrow 6 x=12$
$\Rightarrow x=2$.
5.If
$(x-6)^{3}+(x-4)^{3}+(x-5)^{3}=(3 x-15)(x-4)(x-6)$,
then find the value of $X_{\text {? }}$
A. 3
B. 5
C. 7
D. 18

Ans. B
Sol.
$a^{3}+b^{3}+c^{3}=3 a b c$
When $a+b+c=0$
$(x-6)^{3}+(x-4)^{3}+(x-5)^{3}=(3 x-15)(x-4)(x-6)$
Then, $x-6+x-4+x-5=0$
$3 x-15=0$
$x=5$
6. If $a+b-c=7, a b-b c-c a=21$,
then $a^{3}+b^{3}-c^{3}+3 a b c=$
A. 117
B. 98
C. 124
D. -98

Ans. D
Sol.
$a+b-c=7$
$a b-b c-c a=21$
$a^{3}+b^{3}-c^{3}+3 a b c=(a+b-c)\left(a^{2}+b^{2}+c^{2}-a b+b c+\right.$
$=7\left[a^{2}+b^{2}+c^{2}-(a b-b c-c a)\right]$
$=7\left[a^{2}+b^{2}+c^{2}-21\right]$
$=7\left[\left\{(a+b-c)^{2}-2(a b-b c-c a)\right\}-21\right]$
$=7[49-2 \times 21-21]$
$=7[-14]$
$=-98$.
7. If $x^{2}+\frac{1}{x^{2}}=11$, then $x-\frac{1}{x}$ is equal to:
A. 2
B. 3
C. 5
D. 4

Ans. B
Sol.
$x^{2}+\frac{1}{x^{2}}=11 \ldots \ldots \ldots$ (1)(Given)
$\left(x-\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}-2 \ldots \ldots \ldots$
Using (1), (2) yield
$\left(x-\frac{1}{x}\right)^{2}=9$ or $x-\frac{1}{x}=3$
8. What is the simplified value of $3+\sqrt{3}+\frac{1}{3-\sqrt{3}}+\frac{1}{3+\sqrt{3}}$?
A. $2+\sqrt{3}$
B. $2-\sqrt{3}$
C. $4-\sqrt{3}$
D. $4+\sqrt{3}$

Ans. D
Sol. $3+\sqrt{3}+\frac{1}{3-\sqrt{3}}+\frac{1}{3+\sqrt{3}}$
$3+\sqrt{ } 3+\frac{3+\sqrt{3}+3-\sqrt{3}}{6}$
$3+\sqrt{ } 3+1$
$4+\sqrt{ } 3$
9. What is the simplified value of
$\left(x^{32}+\frac{1}{x^{32}}\right)\left(x^{8}+\frac{1}{x^{8}}\right)\left(x-\frac{1}{x}\right)\left(x^{16}+\frac{1}{x^{16}}\right)\left(x+\frac{1}{x}\right)\left(x^{4}+\frac{1}{x^{4}}\right)$
A. $\left(x^{64}+\frac{1}{x^{64}}\right)$
B. $\frac{\left(x^{64}-\frac{1}{x^{64}}\right)}{\left(x^{2}+\frac{1}{x^{2}}\right)}$
C. $\frac{\left(x^{64}-\frac{1}{x^{64}}\right)}{\left(x+\frac{1}{x}\right)}$
D. $\frac{\left(x^{32}-\frac{1}{x^{32}}\right)}{\left(x+\frac{1}{x}\right)}$

Ans. B
Sol.
$\left(x^{32}+\frac{1}{x^{32}}\right)\left(x^{8}+\frac{1}{x^{8}}\right)\left(x-\frac{1}{x}\right)\left(x^{16}+\frac{1}{x^{16}}\right)\left(x+\frac{1}{x}\right)\left(x^{4}+\frac{1}{x^{4}}\right)$
Multiplying and dividing the above
equation by-

$$
\left(\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}\right)
$$

We get,

so on, this equation will reduce to-

$$
\frac{\left(x^{64}-\frac{1}{x^{64}}\right)}{\left(x^{2}+\frac{1}{x^{2}}\right)}
$$

10. If $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$ for $x>0$, then what is the value of $x^{3}+\frac{1}{x^{3}}$?
A. $(3 \sqrt{ } 3) / 5$
B. $(3 \sqrt{ } 15) / 5$
C. $(3 \sqrt{ } 15) / 8$
D. $(3 \sqrt{ } 5) / 8$

Ans. C
Sol. $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=\frac{7}{4}+2$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=\frac{15}{4}$
Taking square-root of both sides, we get
$\left(x+\frac{1}{x}\right)=\frac{\sqrt{15}}{2}$
Now, taking cube of both sides, we get
$x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=\frac{15 \sqrt{15}}{8}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{15 \sqrt{15}}{8}-\frac{3 \sqrt{15}}{2}$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=\frac{3 \sqrt{15}}{8}$
11. If $3 x^{2}-9 x+3=0$, then what is the value of $\left(x+\frac{1}{x}\right)^{3}$?
A. 9
B. 729
C. 81
D. 27

Ans. D
Sol. $3 x^{2}-9 x+3=0$
$3 x(x+1 / x)=9 x$
$\left(x+\frac{1}{x}\right)=3$
Cube on both the sides
$\left(x+\frac{1}{x}\right)^{3}=27$
12. If $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$ for $x>0$ then what is the value of $x^{4}+\frac{1}{x^{4}}$?
A. 1
B. $17 / 16$
C. $15 / 16$
D. $51 / 16$

Ans. B
Sol. $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$
Square on both the sides
$x^{4}+\frac{1}{x^{4}}+2=\frac{49}{16}$
$x^{4}+\frac{1}{x^{4}}=\frac{17}{16}$
13. If $x+y=4$, then what is the value of $x^{3}+y^{3}+12 x y$?
A. 16
B. 32
C. 64
D. 256

Ans. C
Sol. $X+y=4$
Cube on the both the side
$x^{3}+y^{3}+3 x y(x+y)=64$
$x^{3}+y^{3}+12 x y=64$
14. if $x^{4}+\frac{1}{x^{4}}=98$ and $x>1$, then what is the value of $\mathrm{x}-\frac{1}{x}$?
A. 2
B. $2 \sqrt{ } 2$
C. $\sqrt{ } 5$
D. $\sqrt{ } 3$

Ans. B
Sol. $x^{4}+\frac{1}{x^{4}}=98$
$\Rightarrow x^{4}+\frac{1}{x^{4}}+2=100$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=10^{2}$
Taking square-root of both sides, we get $\left(x^{2}+\frac{1}{x^{2}}\right)=10$
Again, $x^{2}+1 / x^{2}-2=10-2$
$\Rightarrow x-1 / x=2 \sqrt{ } 2$
15. If $N=(\sqrt{ } 6-\sqrt{ } 5) /(\sqrt{ } 6+\sqrt{ } 5)$, then what is the value of $N+(1 / N)$?
A. 10
B. 11
C. 12
D. 22

Ans. D
Sol. $N=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$
Multiply both the numerator and denominator by $\sqrt{ } 6-\sqrt{ } 5$
We get
$\mathrm{N}=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}=\frac{6+5-2 \sqrt{30}}{1}$
$N=11-2 \sqrt{ } 30$
$\frac{1}{N}=\frac{1}{11-2 \sqrt{30}}$
Multiply both the numerator and denominator by $11+2 \sqrt{ } 30$
Then $\frac{1}{N}=11+2 \sqrt{30}$

So
$N+\frac{1}{N}=11-2 \sqrt{30}+11+2 \sqrt{30}=22$
16. If $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$ for $x>0$, then what is the value of $x+\frac{1}{x}$?
A. 2
B. $\sqrt{ } 15 / 2$
C. $\sqrt{ } 5$
D. $\sqrt{ } 3$

Ans. B
Sol. $x^{2}+\frac{1}{x^{2}}=\frac{7}{4}$
Add 2 on the both the sides
$x^{2}+\frac{1}{x^{2}}+2=\frac{7}{4}+2$
$\left(x+\frac{1}{x}\right)^{2}=\frac{15}{4}$
$x+\frac{1}{x}=\frac{\sqrt{15}}{2}$
17. If $x^{2}-8 x+1=0$, then what is the value of $X^{2}+\frac{1}{x^{2}}$?
A. 18
B. 34
C. 40
D. 62

Ans. D
Sol. $x^{2}-8 x+1=0$
dividing both sides by x, we get
$\Rightarrow x-8+1 / x=0$
$\Rightarrow(x+1 / x)=8$
Taking square of both sides, we get
$x^{2}+\frac{1}{x^{2}}+2=64$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=62$
18. If $a^{3}+b^{3}=5824$ and $a+b=28$, then $(a-b)^{2}+a b$ is equal to :
A. 208
B. 152
C. 180
D. 236

Ans. A

Sol.
$a^{3}+b^{3}=5824$
$(a+b)\left(a^{2}+b^{2}-a b\right)=5824$
$\left(a^{2}+b^{2}-a b\right)=5824 / 28=208$
$\left(a^{2}+b^{2}-2 a b+a b\right)=208$
$(a-b)^{2}+a b=208$
19.If $\mathrm{x}+\frac{1}{x}=8$, then $\mathrm{x}^{2}+\frac{1}{x^{2}}$ is equal to:
A. 62
B. 68
C. 64
D. 66

Ans. A
$\underline{1}=8$
Sol. $\mathrm{x}+x$
Then, $\mathrm{x}^{2}+\frac{1}{x^{2}}=(8)^{2}-2$
$=64-2=62$
20. If $x+y+z=10, x y+y z+z x=25$
and $x y z=100$, then what is the value of
$\left(x^{3}+y^{3}+z^{3}\right)$?
A. 450
B. 540
C. 550
D. 570

Ans. C
Sol.
Since $x+y+z=10$
Squaring both sides we get $x^{2}+y^{2}+z^{2}$
$+2(x y+y z+z x)=100$
$x^{2}+y^{2}+z^{2}+2 \times 25=100$
$x^{2}+y^{2}+z^{2}=50$
We know that $x^{3}+y^{3}+z^{3}-3 x y z=$ $(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$x^{3}+y^{3}+z^{3}-3 \times 100=(10)(50-25)$
$x^{3}+y^{3}+z^{3}=250+300=550$
21. $A B C D$ is a cyclic quadrilateral. The tangents to the circle at the points A and C on it, interest at P. If $\angle A B C=98^{\circ}$, then what is the measure of $\angle \mathrm{APC}$?
A. 14°
B. 22°
C. 16°
D. 26°

Ans. C
Sol.

$\angle C D A=180-98$
$\angle \mathrm{CDA}=82^{\circ}$
$\angle A O C=2 \angle D$
$\angle A O C=164^{\circ}$
$\angle \mathrm{COA}+\angle \mathrm{APC}=180$
$\angle \mathrm{APC}=180-164$
$\angle \mathrm{APC}=16^{\circ}$
22. PA and PB are two tangents drawn from a point P outside of the circle of center O. Point A and B are on the circle.
If $\angle O A B=35^{\circ}$, then $\angle A P B$ is equal to:
A. 70°
B. 25°
C. 35°
D. 20°

Ans. A
Sol.

Since $O A=O B$
Then, $\angle O A B=\angle O B A$
$\angle A O B=180-2 \angle O A B$
$=180-70=110^{\circ}$
$\angle A P B=180-110=70^{\circ}$.
23. The angles of a triangle are $2 \mathrm{x}-3$, x $+12, x-1$ respectively. Find the largest angle
A. 42
B. 83
C. 94
D. 55

Ans. B
Sol.
A.T.Q.
$2 x-3+x+12+x-1=180^{\circ}$
$4 x+8=180^{\circ}$
$4 x=172^{\circ}$
$x=43^{\circ}$
Required
Angle
$2 x-3=86-3=83^{\circ}$.
24. The base of an isosceles triangle is 6 cm and its perimeter is 16 cm . Find its area:
A. $11 \mathrm{~cm}^{2}$
B. $10 \mathrm{~cm}^{2}$
C. $12 \mathrm{~cm}^{2}$
D. $9 \mathrm{~cm}^{2}$

Ans. C
Sol.

Let equal sides be $=a$
A.T.Q.
$a+a+6=16$
$2 a=10$
$a=5$
$A D=\sqrt{5^{2}-3^{2}}=4$
Area $=\frac{1}{2} \times 6 \times 4=12 \mathrm{~cm}^{2}$.
25. $A B C D$ is a cyclic quadrilateral in which $A B$ is the diagonal of a circle. Angle ADC $=130^{\circ}$, then find the angle BAC?
A. 60°
B. 50°
C. 150°
D. 40°

Ans. D
Sol.

$\angle A D C=130^{\circ}$
Since $A B C D$ is a cyclic quadrilateral.
Then, $\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
$\angle A B C=180^{\circ}-130^{\circ}$
$\angle A B C=50^{\circ}$
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$50^{\circ}+90^{\circ}+\angle B A C=180^{\circ}$
$\angle B A C=180^{\circ}-140^{\circ}$
$\angle B A C=40^{\circ}$.
26. The ratio of base angle and vertical angle of an isosceles triangle (whose base angles are equal) is $2: 5$. Find the vertical angle.
A. 80°
B. 140°
C. 100°
D. 40°

Ans. C
Sol.

$2 x+2 x+5 x=180^{\circ}$
$9 x=180^{\circ}$
$x=20^{\circ}$
Required $5 x=100^{\circ}$.
27. Side $A B$ of a triangle $A B C$ is 80 cm long, whose perimeter is 170 cm . If angle $A B C=60^{\circ}$, the shortest side of triangle ABC measures \qquad cm .
A. 17
B. 15
C. 25
D. 21

Ans. A
Sol.

$A B=80 \mathrm{~cm}$
$A B+B C+C A=170$ (given)
$B C+C A=90 \mathrm{~cm}$
From cosine rule

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{A B^{2}+B C^{2}-C A^{2}}{2 \cdot A B \cdot B C} \\
& \frac{1}{2}=\frac{(80)^{2}+B C^{2}-A C^{2}}{2 \times 80 \times B C} \\
& 80 B C=6400+(B C-A C)(B C+A C) \\
& =6400+[B C-(90-B C)] \times 90 \\
& =6400+[B C+B C-90] \times 90
\end{aligned}
$$

$80 B C=6400+180 B C-8100$
$100 B C=1700$
$B C=17$.
28. $A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and angle $A D C=125^{\circ}$. Then angle BAC is equal to:
A. 20°
B. 30°
C. 60°
D. 35°

Ans. D
Sol.

$A B C D$ is cyclic quadrilateral.
So, $\angle A D C+\angle A B C=180^{\circ}$
$125^{\circ}+\angle A B C=180^{\circ}$
$\angle A B C=55^{\circ}$
We know that angle made in semicircle by it's diameter is always 90°.
So, $\angle A C B=90^{\circ}$
In triangle $A B C$,
$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$
$\angle B A C+55^{\circ}+90^{\circ}=180^{\circ}$
$\angle B A C=35^{\circ}$
29. PA and PB are two tangents to a circle with centre 0 , from a point P outside the circle. A and B are points on the circle. If $\angle \mathrm{APB}=86^{\circ}$, then $\angle \mathrm{OAB}$ is equal to:
A. 43°
B. 45°
C. 50°
D. 20°

Ans. A
Sol.

In quadrilateral OAPB,
$\angle A O B+\angle O A P+\angle A P B+\angle O B P=360^{\circ}$
$\angle A O B+90^{\circ}+86^{\circ}+90^{\circ}=360^{\circ}$
$\angle A O B=94^{\circ}$
In triangle $A O B$,
$O A=O B=r$
So, $\angle O B A=\angle O A B=x^{0}$
Now,
$\angle A O B+x^{0}+x^{0}=180^{\circ}$
$94^{0}+2 x=180^{\circ}$
$X=43^{0}$
30. $A B C D$ is a cyclic quadrilateral such that $A B$ is the diameter of the circle circumscribing it and angle $B A C=50^{\circ}$. Then angle ADC is equal to:
A. 60°
B. 150°
C. 130°
D. 140°

Ans. D
Sol.

90° because triangle inscribed in a semicircle is always a right angle triangle
$\angle B A C=50^{\circ}$ (Given)
From the property of Δ
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
Then $\angle \mathrm{ABC}=180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ}$
From the property of cyclic quadrilateral
$\angle A B C+\angle A D C=180^{\circ}$
$\angle \mathrm{ADC}=180^{\circ}-40^{\circ}=140^{\circ}$
31. Triangle $P Q R$ is a right-angled at Q. if $\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{PR}=10 \mathrm{~cm}$ then QR is equal to:
A. 5 cm
B. 8 cm
C. 7 cm
D. 9 cm

Ans. B
Sol.
$Q R=\sqrt{P R^{2}-P Q^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
32. ABCD is a trapezium, such that $\mathrm{AB}=$
$C D$ and $A D \| B C, A D=10 \mathrm{~cm}$ and $B C=18$
cm. If the area of $A B C D$ is 70 cm , then what is the value of $C D$?
A. 5
B. $\sqrt{29}$
C. $\sqrt{41}$
D. 6

Ans. A
Sol. Area of $A B C D=70 \mathrm{~cm}$
AD=10
$B C=18$
Then
area of trapezium $=\frac{1}{2}(A D+B C) \times C D$
$2 \times 70=28 \times C D$
$\mathrm{CD}=5 \mathrm{~cm}$
33. In $\triangle P Q R$, a line parallel to side $Q R$ cuts the side $P Q$ and $P R$ at points M and N respectively and point M divide $P Q$ in the ratio of $1: 2$. If area of $\triangle P Q R$ is 360 cm^{2}, then what is the area (in cm^{2}) of quadrilateral MNRQ?
A. 160
B. 320
C. 120
D. 96

Ans. B
Sol. We know that,
$\frac{\text { area of } \triangle P M N}{\text { area of } \triangle P Q R}=\frac{(P M)^{2}}{(P Q)^{2}}$
$\Rightarrow \frac{\text { area of } \triangle P M N}{360}=\frac{(1)^{2}}{(1+2)^{2}}$
\Rightarrow area of triangle $P M N=40 \mathrm{~cm}^{2}$
\therefore Area of quadrilateral $M N R Q=$ Area of (triangle PQR - triangle PMN)
= 360-40
$=320 \mathrm{~cm}^{2}$
34. In an isosceles triangle $D E F, \angle D=110$
.. If I is the incentre of the triangle, then
what is the value (in degrees) of $\angle E I F$?
A. 110
B. 130
C. 145
D. 155

Ans. C
Sol. We know that, if I is the incentre of a triangle DEF, then
$\angle E I F=90^{\circ}+\angle D / 2$
$=90^{\circ}+110 / 2$
$=145^{\circ}$
35. The radius of a wheel is 3.5 cm . What is the distance (in cm) travelled by the wheel in 20 revolutions?
A. 220
B. 440
C. 880
D. 1320

Ans. B
Sol. Given: Radius of the wheel $=3.5 \mathrm{~cm}$ Distance travelled by the wheel in 1 revolution $=2 п \mathrm{r}$
$=2 \times(22 / 7) \times 3.5$
$=22 \mathrm{~cm}$
\therefore Distance travelled by the wheel in 20 revolution $=20 \times 22$
$=440 \mathrm{~cm}$
36. $\triangle P Q R$ is a right angled at Q. If $P Q=$ 8 cm and $P R=(Q R+2) \mathrm{cm}$. What is the value (in
cm) of PR?
A. 17
B. 15
C. 19
D. 18

Ans. A
Sol. Triangle $P Q R$ is a right angled triangle
$P Q=8 \mathrm{~cm}$
$\mathrm{PR}=\mathrm{QR}+2$
We know the Pythagoras theorem
Then $P R^{2}=P Q^{2}+Q^{2}$
$\mathrm{QR}^{2}+4+4 \mathrm{QR}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$4 Q R=64-4=60$
$\mathrm{QR}=15$
Then $\mathrm{PR}=\mathrm{QR}+2=15+2=17 \mathrm{~cm}$
37. In the given figure what is the value $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8+\angle 9$
of $+\angle 10$

A. 600
B. 720
C. 900
D. 1080

Ans. B

Sol. .
38. In $\triangle A B C, \angle A: \angle B: \angle C=3: 3: 4 \mathrm{~A}$ line parallel to $B C$ is drawn which touches $A B$ and $A C$ at P and Q respectively. What is the value of $\angle A Q P-\angle A P Q$?
A. 12
B. 18
C. 24
D. 36

Ans. B

Sol.

$\angle A: \angle B: \angle C=3: 3: 4$
Let $A=3 x, B=3 x$ and $C=4 x$
We know that sum of all angles of a triangle $=180^{\circ}$
Then $3 x+3 x+4 x=180$
X=18
Then angle $\mathrm{A}=54=\mathrm{B}=54$ and $\mathrm{C}=72$
$P Q$ is parallel to $B C$ then $\angle A P Q=\angle A B C=54$ (corresponding angle are equal)
Angle $A Q P=A C B=72$ (corresponding angle are equal)
So $\angle \mathrm{AQP}-\angle \mathrm{APQ}=72-54=18^{\circ}$
39. Two identical circles each of radius 2 cm intersect each other such that the circumference of each one passes through the centre of the other. What is the area (in cm^{2}) of the intersecting region?
A. $\frac{8 \pi}{3}-2 \sqrt{3}$
B. $\frac{8 \pi}{3}-\sqrt{3}$
C. $\frac{4 \pi}{3}-\sqrt{3}$
D. $\frac{4 \pi}{3}-2 \sqrt{3}$

Ans. B
Sol. .
40. In the given figure, $O Q=Q R=R T$ and O is the center of the circle. What is the $\angle \mathrm{PTR}$?

SSC CPO 2020
 A Complete Course Hindi

A. 30
B. 60
C. 45
D. 90

Ans. B
Sol. Given:
$\mathrm{OQ}=\mathrm{QR}=\mathrm{OR}(\because \mathrm{OQ}=\mathrm{OR}$ radius of the circle)
$\therefore \angle O Q R=60^{\circ}$
Similarly, OP = OS = PS
And $\angle O P S=60^{\circ}$
Now, in triangle PQT
$\angle \mathrm{QPT}+\angle \mathrm{PQT}+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow 60+60+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow \angle P T R=60^{\circ}$
41. In $\triangle A B C, \angle A+\angle B=145^{\circ}$ and $\angle C+$ $2 \angle B=180^{\circ}$. State which one of the following relations is true?
A. $C A=A B$
B. $C A<A B$
C. $B C<A B$
D. $C A>A B$

Ans. D

Sol.

$\angle A+\angle B=145^{\circ}$
$\angle C=180^{\circ}-145^{\circ}=35^{\circ}$
$\angle C+2 \angle B=180^{\circ}$
$2 \angle B=180^{\circ}-35^{\circ}=145^{\circ}$
$\angle B=145^{\circ} / 2=72.5^{\circ}$
Since $\angle B>\angle C$
So, $A C>A B$
42. The ratio of the volumes of two right circular cylinders A and B is $\frac{x}{y}$ and the ratio of their heights is a : b What is the ratio of the radius of A and B ?
A. $\sqrt{\frac{x b}{y a}}$
B. $\frac{x b}{y a}$
C. $\sqrt{\frac{x a}{y b}}$
D. $\frac{y b}{x a}$

Ans. A
Sol.
$\frac{\text { Volume of cylinder } \mathrm{A}}{\text { Volume of cylinder } \mathrm{B}}=\frac{\pi r_{A}^{2} h_{A}}{\pi r_{B}^{2} h_{B}}$
$\frac{\pi r_{A}^{2} \times a}{\pi r_{B}^{2} \times b}=\frac{x}{y}$
$\frac{r_{A}}{r_{B}}=\sqrt{\frac{x b}{y a}}$.
43. The length and breadth of a cuboidal store are in the ratio $2: 1$ and its height is 3.5 meters. If the area of its four walls (including doors) is $210 \mathrm{~m}^{2}$, then its volume is \qquad _.
A. $700 \mathrm{~m}^{3}$
B. $679 \mathrm{~m}^{3}$
C. $567 \mathrm{~m}^{3}$
D. $1050 \mathrm{~m}^{3}$

Ans. A
Sol.
Area of four walls $=2(1+b) h$
$2\left(2^{x}+x\right) \times 3.5=210$
$3^{x}=30$
$x=10$
Then,
Length $=20 \mathrm{~m}$, breadth $=10 \mathrm{~m}$ and height $=3.5 \mathrm{~m}$
Volume of cubes $=1 \times b \times h$
$=20 \times 10 \times 3.5$
$=700 \mathrm{~m}^{3}$.
44. A circle is inscribed in an equilateral triangle of side 24 cm . What is the area (in cm2) of the square inscribed in the circle?
A. 48
B. 72
C. 96
D. 54

Ans. C
Sol.
Side of an equilateral triangle $=24 \mathrm{~cm}$

Inradius of an equilateral triangle $=$ side of equilateral triangle
$2 \sqrt{3}=$
$\frac{24}{2 \sqrt{3}}=\frac{12}{\sqrt{3}} \mathrm{~cm}$
Inradius of an equilateral triangle $=$ Radius of inscribed circle $=\frac{12}{\sqrt{3}} \mathrm{~cm}$

Diameter of inscribed circle $=$ Diagonal of inscribed square $=2 \times \frac{12}{\sqrt{3}} \mathrm{~cm}=\frac{24}{\sqrt{3}} \mathrm{~cm}$ Diagonal of square = $\sqrt{2} \times$ side of square
$\sqrt{2} \times$ side of square $=\frac{24}{\sqrt{3}} \mathrm{~cm}$
Side of square $=\frac{24}{\sqrt{6}} \mathrm{~cm}$
Area of square = $\left(\frac{24}{\sqrt{6}}\right)^{2}=\frac{24 \times 24}{6}=96 \mathrm{~cm}^{2}$
45. A box has enough color to paint an area of $11.28 \mathrm{~m}^{2}$. How many boxes of dimension of $30 \mathrm{~cm} \times 25 \mathrm{~cm} \times 12 \mathrm{~cm}$ can be painted?
A. 12
B. 32
C. 40
D. 24

Ans. C
Sol.
T.S.A. of a box $=2(l b+b h+h l)$
$=2(30 \times 25+25 \times 12+12 \times 30)$
$=2(75+300+360)$
$=2820 \mathrm{~cm}^{2}$.
Number of boxes X $2820=112800$
No. of Boxes $=40$.
46. Area of a parallelogram is $338 \mathrm{~m}^{2}$. If its height is two times of its base, then its base is:
A. 14
B. 28
C. 13
D. 26

Ans. C
Sol.
Area of parallelogram $={ }_{\text {height }} \times$ base
Let base $=x$
Height $=2 x$
$x \times 2 x=338$
$x^{2}=169$
$x=13$.
47. If the surface area of a cube is $1944 \mathrm{~m}^{2}$, then find the volume of the cube?
A. $1648 \mathrm{~m}^{3}$
B. $4912 \mathrm{~m}^{3}$
C. $2744 \mathrm{~m}^{3}$
D. $5832 \mathrm{~m}^{3}$

Ans. D
Sol.
Let the side of cube $=a$
$6 a^{2}=1944$
$a^{2}=324$
$a=18 \mathrm{~m}$
Volume $=a^{3}=18^{3}=5832 \mathrm{~m}^{2}$.
48. A square of side 2 cm is cut from all four corners of a square of side 12 cm . To make a box of depth 2 cm , resulting flaps are folded. Find the volume of this box.
A. $128 \mathrm{~cm}^{3}$
B. $94 \mathrm{~cm}^{3}$
C. $102 \mathrm{~cm}^{3}$
D. $112 \mathrm{~cm}^{3}$

Ans. A
Sol.

$h=2 \mathrm{~cm}$
After cutting the new side $=8 \mathrm{~cm}$
Volume $=8 \times 8 \times 2=128 \mathrm{~cm}^{3}$.
49. The price of petrol was raised by 15\%.
By how much percentage should a motorist reduce the consumption of petrol so that the expenditure on it does not increase?
9 $\frac{2}{11}$
A. 11%
B. $15 \frac{3}{13} \%$
$13 \frac{1}{23} \%$
D. $6 \frac{7}{8} \%$

Ans. C
Sol.
We know that
price \times consumption $=$ expenditure
Let the price before increment is 100.

	Before	After
Price	100	115
Consumption	115	100
Expenditure	11500	11500

\% decrease in consumption= $\frac{115-100}{115} \times 100$
$=13 \frac{1}{23} \%$
50. If a cuboid has $/=24 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$, $h=7.5 \mathrm{~cm}$, its lateral surface area is:
A. $720 \mathrm{~cm}^{2}$
B. $2880 \mathrm{~cm}^{2}$
C. $600 \mathrm{~cm}^{2}$
D. $1440 \mathrm{~cm}^{2}$

Ans. C
Sol.
Lateral surface area $=2(\mathrm{lh}+\mathrm{bh})$
$=2(24 \times 7.5+16 \times 7.5)$
$=2(180+120)=600 \mathrm{~cm}^{2}$
51. Three cubes with edge 6 cm each are joined end to end to form a cuboid. The total surface area of the cuboid is :
A. $432 \mathrm{~cm}^{2}$
B. $504 \mathrm{~cm}^{2}$
C. $648 \mathrm{~cm}^{2}$
D. $720 \mathrm{~cm}^{2}$

Ans. B
Sol.
When three cube joined end to end I become 18 cm
$\mathrm{W}=6 \mathrm{~cm} \& \mathrm{~h}=6 \mathrm{~cm}$
Total surface area of cuboid $=2(l w+w h+$ hl)
$=2 \times(18 \times 6+6 \times 6+6 \times 18)=504 \mathrm{~cm}^{2}$
52. A solid metallic sphere of radius 8.4 cm is melted and recast into a right circular cylinder of radius 12 cm . What is the height of the cylinder? (Your answer should be correct to one decimal place.)
A. 6.5 cm
B. 5.5 cm
C. 7.0 cm
D. 6.0 cm

Ans. B
Sol.
$\frac{4}{3} \pi r^{3}=\pi r^{2} h$
$\frac{4}{3} \pi \times 8.4 \times 8.4 \times 8.4=\pi \times 12 \times 12 \times h$
Solving we get $h=5.48$ or 5.5 cm
53. Total surface area of a right circular cylinder is $1848 \mathrm{~cm}^{2}$. The ratio of its total surface area to the curved surface area is 3 : 1. What is the volume of the $\pi=\frac{22}{7}$)?
cylinder(Take
A. $4312 \mathrm{~cm}^{3}$
B. $3696 \mathrm{~cm}^{3}$
C. $4002 \mathrm{~cm}^{3}$
D. $4851 \mathrm{~cm}^{3}$

Ans. A
Sol.
According to the question,
Total Surface Area
Curved Surface Area $=\overline{1}$
18483
$2 \pi r h=1$
$6^{\pi r h}=1848$
$\pi r h=308$
Now curved surface area $=1848$
$2 \Pi_{r(r+h)}=1848$
$\pi_{r(r+h)}=924$
$\pi r^{2}+\frac{61687}{}=924$
$r^{2}=\frac{22}{22}$
$r=14$
Put value of r in (1)
$\pi \times 14 \times h=308$
$\mathrm{h}=\frac{22 \times 7}{22}$
$h=7$
Now, Volume $=\pi_{r^{2} h}=$ $\frac{22}{7} \times 14 \times 14 \times 7=4312 \mathrm{~cm}^{3}$
54. The radius of the base of a solid right circular cone is 8 cm and its height is 15 cm . The total surface area of the cone is:
A. 200 п
B. $120 п$
C. 136 п
D. 128 п

Ans. A
Sol.
Calculating slant height, $I=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}=$ $\sqrt{225+64}=17$
Total surface area $=\pi_{r l}+\pi r^{2}$
$=\pi \times 8(17+8)$
$=200{ }^{\pi} \mathrm{cm}^{2}$
55. The length, width and height of a box are $506 \mathrm{~cm}, 345 \mathrm{~cm}$ and 230 cm respectively. Find the maximum length of a scale, which can measure the all three sides of the box?
A. 23 cm
B. 15 cm
C. 30 cm
D. 46 cm

Ans. A
Sol.
Maximum side length $=\operatorname{HCF}(506,345$, 230)

Required Length $=23 \mathrm{~cm}$.
56. 5 cubes, each of edge 4 cm , are joined end to end. What is the total surface area of the resulting cuboid?
A. $352 \mathrm{~cm}^{2}$
B. $486 \mathrm{~cm}^{2}$
C. $720 \mathrm{~cm}^{2}$
D. $526 \mathrm{~cm}^{2}$

Ans. A
Sol.
when 5 cubes put side by side, they form a cuboid with the length equal to the sum of length of 5 cubes and height and width remain same as cube.
$l=4 \times 5=20 \mathrm{~cm}, h=4 \mathrm{~cm}, b=4 \mathrm{~cm}$
Surface area of cuboid,
$s=2(l b+b h+h b) \rightarrow 2(20 \times 4+4 \times 4+4 \times 20)$
$s=2 \times(80+16+80) \rightarrow 352 \mathrm{~cm}^{2}$
57. If $\cos ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \varnothing$, then which of the following is true?
A. $\cos \theta \cos \emptyset=1$
B. $\cos \theta \cos \emptyset=\sqrt{ } 2$
C. $\cos ^{2} \emptyset-\sin ^{2} \emptyset=\cot ^{2} \theta$
D. $\cos ^{2} \emptyset-\sin ^{2} \emptyset=\tan ^{2} \theta$

Ans. D
Sol.
$\cos ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \phi$
$\cos ^{2} \theta-\sin ^{2} \theta=\sec ^{2} \varphi-1$
$\frac{\cos ^{2} \theta-\sin ^{2} \theta}{1}=\frac{1-\cos ^{2} \varphi}{\cos ^{2} \varphi}$
$\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\frac{\sin ^{2} \varphi}{\cos ^{2} \varphi}$
Apply componendo and dividendo
$-\frac{2 \cos ^{2} \theta}{2 \sin ^{2} \theta}=\frac{\sin ^{2} \varphi+\cos ^{2} \varphi}{\sin ^{2} \varphi-\cos ^{2} \varphi}$
$\operatorname{Cos}^{2} \varphi-\sin ^{2} \varphi=\tan ^{2} \theta$.
58. If $X=\mathrm{a} \cos \theta+\mathrm{b} \sin \theta$ and $\mathrm{y}=\mathrm{a} \sin \theta$

- b $\cos \theta$, the value of $x^{2}+y^{2}$ is:
A. $a^{2}-b^{2}$
B. $a-b$
C. $a^{2}+b^{2}$
D. $a+b$

Ans. C
Sol.
$X=\mathrm{a} \cos \theta+\mathrm{b} \sin \theta$
$x^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta$
\qquad .(1)
And
$y^{2}=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta$
\qquad
By adding equation (1) and (2)

$$
\begin{aligned}
& x^{2}+y^{2}=\left(a^{2}+b^{2}\right) \sin ^{2} \theta+\left(a^{2}+b^{2}\right) \cos ^{2} \theta \\
& x^{2}+y^{2}=\left(a^{2}+b^{2}\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{aligned}
$$

$x^{2}+y^{2}=a^{2}+b^{2}$.
$\sin ^{2} \theta+\cos ^{2} \theta=1$
59. $(\operatorname{cosec} A-\sin A)^{2}+(\sec A-\cos A)^{2}-$ $(\cot A-\tan A)^{2}$ is equal to :
A. 2
B. 0
C. 1
D. -1

Ans. C
Sol.
$\operatorname{cosec}^{2} A+\sin ^{2} A-2 \operatorname{cosec} A \sin A+\sec ^{2} A+\cos ^{2} A-2 \cos A \sec A-\cot ^{2} A$

$$
-\tan ^{2} A+2 \cot A \tan A
$$

$=\sin ^{2} A+\cos ^{2} A+\operatorname{cosec}^{2} A-\cot ^{2} A+\sec ^{2} A-\tan ^{2} A-2-2+2$
$=1+1+1-4+2$
$=1$.
60. What is the value of $\frac{\sin 30^{\circ}+\cos 30^{\circ}}{\cos 30^{\circ}-\sin 30^{\circ}}$?
A. $2-\sqrt{ } 3$
B. $2+\sqrt{ } 3$
C. 1
D. $-(2-\sqrt{ } 3)$

Ans. B
Sol. .
61. If $\sin A=x-\cos A$ and $\sec A=y-$ cosec A, then the value of $y\left(x^{2}-1\right)$ is equal to:
A. $3 x$
B. $2 x$
C. $2 x y$
D. 0

Ans. B
Sol. $x=\sin A+\cos A$
$x^{2}=\quad=\quad \sin ^{2} A+\cos ^{2} A+2 \sin A \cos A$
$=1+2 \sin A \cos A$
$y=\sec A+\operatorname{cosec} A$
Then $y\left(x^{2}-1\right)$
$(\sec A+\operatorname{cosec} A)(1+2 \sin A \cos A-1)$
$=\frac{\sin A+\cos A}{\sin A \cos A}(1+2 \sin A \cos A-1)=2(\sin A+\cos A)$
62. If $3 \cot \theta=4 \cos \theta$, then what is the value of $\cos 2 \theta$?
A. $2 / 16$
B. $-1 / 8$
C. $7 / 16$
D. $9 / 16$

Ans. B
Sol. $3 \cot \theta=4 \cos \theta$
$\Rightarrow 3 \cos \theta / \sin \theta=4 \cos \theta$
$\Rightarrow \operatorname{Sin} \theta=3 / 4$ and $\cos \theta=\sqrt{ } 7 / 4 \Rightarrow \cos \theta=$ $\sqrt{ }\left(1-\sin ^{2} \theta\right)$
And, $2 \cos \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$2 \cos \theta=7 / 16-9 / 16 \Rightarrow(-2) / 16 \Rightarrow(\mathbf{- 1}) / 8$
Hence, the correct option is \mathbf{B}
63. If $\operatorname{cosec} \theta-\sin \theta=I$ and $\sec \theta-\cos$ $\theta=m$, then the value of $I^{2} m^{2}\left(I^{2}+m^{2}+3\right)$ is
A. -1
B. 0
C. 1
D. 2

Ans. C
Sol. $\left.{ }^{\left(/^{2}\right.} \cdot m^{2}\right)\left(/^{2}+m^{2}+3\right)$
$\Rightarrow(\operatorname{cosec} \theta-\sin \theta)^{2}(\sec \theta-\cos \theta)^{2}$
$\left\{(\operatorname{cosec} \theta-\sin \theta)^{2}+(\sec \theta-\cos \theta)^{2}+3\right\}$
$=\left(\frac{1}{\sin \theta}-\sin \theta\right)^{2}\left(\frac{1}{\cos \theta}-\cos \theta\right)^{2}$
$\left\{\left(\frac{1}{\sin \theta}-\sin \theta\right)^{2}+\left(\frac{1}{\cos \theta}-\cos \theta\right)^{2}+3\right\}$
$=\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)^{2}\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)^{2}$
$\left\{\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)^{2}+\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)^{2}+3\right\}$
$=\left(\frac{\cos ^{2} \theta}{\sin \theta}\right)^{2}\left(\frac{\sin ^{2} \theta}{\cos \theta}\right)^{2}$
$\left\{\left(\frac{\cos ^{2} \theta}{\sin \theta}\right)^{2}\left(\frac{\sin ^{2} \theta}{\cos \theta}\right)^{2}+3\right\}$
$=\frac{\cos ^{4} \theta}{\sin ^{2} \theta} \times \frac{\sin ^{4} \theta}{\cos ^{2} \theta}$
$\left\{\cos ^{4} \theta \cdot \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+3\right\}$
$=\cos ^{2} \theta \times \sin ^{2} \theta$
$\left\{\frac{\cos ^{5} \theta+\sin ^{5} \theta+3 \cos ^{2} \theta \cdot \sin ^{2} \theta}{\cos ^{2} \theta \cdot \sin ^{2} \theta}\right\}$
$=\cos ^{5} \theta+\sin ^{5} \theta+3 \cos ^{2} \theta \cdot \sin ^{2} \theta$
$=\left(\cos ^{2} \boldsymbol{\theta}+\sin ^{2} \boldsymbol{\theta}\right)^{3}$
$=1$
64. From a point P on a level ground, the angle of the elevation of the top of a tower is 30°. If the tower is 270 m high, the distance of point P form the foot of the tower is:
A. 467.65 m
B. 476.65 m
C. 376.65 m
D. 367.65 m

Ans. A
Sol.

A.T.Q.
$\angle Q P R=30^{\circ}$
$\tan 30^{\circ}=h / d=\frac{270}{d}$
$d=\frac{270}{\tan 30^{\circ}}=270 \sqrt{3}$
$=270 \times 1.732=467.64$
$=467.65$ (approx.)
65. From the top of a 10 m high building, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is φ and $\tan \varphi$ $=2 / 3$. What is the approximate height of the tower of in metres?
A. 34 m
B. 35 m
C. 36 m
D. 33 m

Ans. C
Sol.

Suppose AC=h.
$\triangle C D E$,
$\tan \varphi=\frac{D E}{C D}, C D=\frac{3 \times 10}{2} \rightarrow 15 m$ and
$B E=C D$
$\triangle A B E$,
$\tan 60=\frac{A B}{B E}, A B=15 \times \sqrt{3}=15 \times 1.732 \rightarrow 25.98 \mathrm{~m}$

Height of the tower, $h=A B+B C \rightarrow 10+25.98 \rightarrow 36 m$
66. The value of $\sin ^{2} 30^{\circ} . \cos ^{2} 45^{\circ}+$ $2 \tan ^{2} 30^{\circ}-\sec ^{2} 60^{\circ}$ is equal to:
A. $-\frac{13}{12}$
B. $-\frac{77}{24}$
C. $-\frac{25}{12}$
D. $-\frac{1}{12}$

Ans. B
Sol.
$\sin ^{2} 30^{\circ} \cdot \cos ^{2} 45^{\circ}+2 \tan ^{2} 30^{\circ}-\sec ^{2} 60^{\circ}$
$=\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}+2\left(\frac{1}{\sqrt{3}}\right)^{2}-(2)^{2}$
$=\frac{1}{8}+\frac{2}{3}-4=-\frac{77}{2.4}$
67. From the top of a 120 m high tower, the angle of depression of the top of a pole is 45° and the angle of depression of the foot of the pole is θ, such that $\tan \theta=\frac{3}{2}$. What is the height of the pole?
A. 80 m
B. 75 m
C. 60 m
D. 40 m

Ans. D
Sol.

We are given,
Height of the tower, $A E=120 m$ and $\tan \theta=\frac{3}{2}$

SSC CPO 2020
 A Complete Course Hindi

Because $\angle A B E$ and the angle of depression of the foot of the pole θ are alternate angles, so $\angle A B E=\theta$,
And $\angle D C E$ and the angle of depression of the top of the pole 45° are also alternate angles, so $\angle D C E=45^{\circ}$,
In $\triangle E A B$
$\tan \theta=\frac{A E}{A B}=\frac{3}{2}$
$\therefore A B=\frac{2}{3} \times 120=80 \mathrm{~m}$
In rectangle $A B C D$,
$A B=D C=80 \mathrm{~m}$ and $\mathrm{BC}=\mathrm{AD}$
In $\triangle E D C$,
$\tan 45^{\circ}=\frac{E D}{D C}=1$
$\therefore E D=D C$
$E D=80 \mathrm{~m}$
Now height of the pole, $B C$
$\because B C=A D$,
$A D=A E-E D=120-80=40 m$
68. A sum of $₹ 12,800$ is invested partly at 15% per annum and the remaining at 12% per annum simple interest. If the total interest at the end of 3 years is ₹5,085, then how much money was invested at 15% per annum?
A. ₹ 5,200
B. ₹ 7,500
C. ₹ 5,800
D. ₹ 5,300

Ans. D
Sol.
Effective rate of interest on the full sum

Interest $\times 100$

$=$ Principal $\times t i m e$

$$
5085 \times 100
$$

$=12800 \times 3=1695 / 128 \%$
Now by applying allegation,
1215
1695/128
225/128 159/128
7553
Therefore the amount put at 15% interest
$=12800 \times 53 /(53+128)=$ Rs 5300
69. If $\tan 3 x=\cot \left(30^{\circ}+2 x\right)$, then what is the value of x ?
A. 18^{0}
B. 12^{0}
C. 10^{0}
D. 15^{0}

Ans. B
Sol.
$\tan 3 x=\cot (30+2 x)$
Since tan $=$ cot, the sum of their angles must be equal to 90°.
$3 x+2 x+30^{\circ}=90^{\circ}$
$5 x=60^{\circ}$
$x=12^{\circ}$
70.The length of shadow of a vertical pole on the ground is 24 m . If the angle of elevation of the sun at that time is θ, such $\sin \theta=\frac{5}{13}$,
that
A. 8 m
B. 10 m
C. 18 m
D. 12 m

Ans. B
Sol.

In $\triangle A B C$,
$\sin \theta=\frac{A B}{A C}=\frac{5}{13}$
$B C=\sqrt{A C^{2}-A B^{2}}$
$=\sqrt{13^{2}-5^{2}}$
$=\sqrt{169-25}$
$=\sqrt{144}$
$=12$ units
12 units represent 24 m
1 unit will represent 2 m
Therefore, Height of the pole $=A B=5$ units,
$5 \times 2=10 \mathrm{~m}$
71. If the height of a pole and the distance between the pole and a man standing nearby are equal, what would be
the angle of elevation to the top of the pole?
A. 60°
B. 90°
C. 30°
D. 45°

Ans. D
Sol.

the height of a pole and the distance between the pole and a man standing nearby are equal.
$A B=B C=h \mathrm{~cm}$
From fig.
$\tan x^{0}=\frac{A B}{B C}=\frac{h}{h}=1$
$x^{0}=45^{0}$
72. 45789 number is divisible by which one-digit number?
A. Only 3
B. Only 3 and 9
C. Only 9
D. Only 3 and 7

Ans. A
Sol.
If the sum of any number is divisible by 9 then it will be divisible by 3 also.
And, if the sum is divisible only 3 then it will not divisible by 9 .
$4+5+7+8+9=33$ (It is divisible b 45789 is not divisible by 9 and 7 .
Hence, it is divisible only by 3.
73. The value of $\frac{1}{\sqrt{7-4 \sqrt{3}}}$ is closest to:
A. 1.2
B. 4.1
C. 4.2
D. 3.7

Ans. D
Sol.
The expression in the question can be written as follows:
$=\frac{1}{\sqrt{2^{2}+(\sqrt{3})^{2}-2 \times 2 \sqrt{3}}}$
$=\frac{1}{2-\sqrt{3}}$
Rationalizing
We get,
$2+\sqrt{3}=2+1.73$
$=3.73$
74. Which one among the following is the smallest?
A. $\sqrt{101}-\sqrt{99}$
B. $\sqrt{201}-\sqrt{199}$
C. $\sqrt{301}-\sqrt{299}$
D. $\sqrt{401}-\sqrt{399}$

Ans. D
Sol.
If we observe that the difference between the numbers is 2 .
As $101-99=2$
$201-199=2$
Similarly for the other numbers.
As the number increases the difference of roots decreases.
Or larger the numbers, smaller is the difference between their roots.
So $\sqrt{401}-\sqrt{309}$ has the smallest difference.
$\begin{array}{ll}75 . \quad \text { The } & \text { value } \\ \frac{(\sqrt{0.6912}+\sqrt{0.5292})}{\sqrt{0.6912}-\sqrt{0.5292}} & \text { is: }\end{array}$
A. 15
B. 1.5
C. 0.9
D. 9

Ans. A
Sol.
Here
$\frac{(\sqrt{0.6912}+\sqrt{0.5292})}{\sqrt{0.6912}-\sqrt{0.5292}}$
$=\frac{(\sqrt{6912}+\sqrt{5292})}{\sqrt{6912}-\sqrt{5292}}$
This number is divisible by 3 and 4 both so the numbers are divisible by 12 also. Hence dividing the both numbers by 12 .

$$
\begin{aligned}
& \frac{\left(\sqrt{\frac{6912}{12}}+\sqrt{\frac{5292}{12}}\right)}{\sqrt{\frac{6912}{12}}-\sqrt{\frac{5292}{12}}} \\
& \frac{\sqrt{576}+\sqrt{441}}{\sqrt{576}-\sqrt{441}}=\frac{24+21}{24-21} \\
& =15
\end{aligned}
$$

76. Find the value of $7-\{4 \times 3-(-10) \times$ $8 \div(-4)\}$.
A. -1
B. 0
C. 53
D. 15

Ans. D
Sol.
$7-\{4 \times 3-(-10) \times 8 \div(-4)\}$
$=7-\left\{4 \times 3+10 \times \frac{8}{-4}\right\}$
$=7-\{12-20\}$
$=7+8$
$=15$
77. Find the value of $10-\{17-12 \div(5$ $+9 \times 2-17)\}$:
A. -5
B. 5
C. 7
D. ${ }^{-7}$

Ans. A
Sol.
$10-\{17-12 \div(5+9 \times 2-17)\}$
$=10-\{17-12 \div(5+18-17)\}$
$=10-\{17-12 \div 6\}$
$=10-\{17-2\}$
$=10-15=-5$
78. What is the value of $13 \div\{4$ of $2-3$ $+4 \times(6-4)\}$?
A. $-2 \frac{1}{13}$
B. 0
C. 1.3
D. 1

Ans. D
Sol.
$13 \div\{4$ of $2-3+4 \times(6-4)\}$
$=13 \div\{4$ of $2-3+4 \times 2\}$
$=13 \div\{4 \times 2-3+8\}$
$=13 \div\{8-3+8\}$
$=13 \div 13$
$=1$
79. $(-4) \times(-8) \div(-2)+3 \times 5$ is equal to:
A. -1
B. 1
C. 31
D. -31

Ans. A
Sol.
$(-4) \times(-8) \div(-2)+3 \times 5$
$=(-4) \times 4+3 \times 5$
$=-16+15=-1$
80. Find the value of $\frac{\operatorname{cosec} 31^{\circ}}{\sec 59^{\circ}}$:
A. 3
B. 2
C. 1
D. 0

Ans. C
Sol.
$\frac{\operatorname{cosec} 31^{\circ}}{\sec 59^{\circ}}=\frac{\operatorname{cosec}\left(90^{\circ}-59^{\circ}\right)}{\sec 59^{\circ}}$
$=\frac{\sec 59^{\circ}}{\sec 59^{\circ}}$
$=1$.
81. Find the value of $1+\frac{\tan ^{2} \mathrm{~A}}{1+\sec \mathrm{A}}$?
A. cosec A
B. $\cos A$
C. $\sec A$
D. $\sin A$

Ans. C
Sol.
$1+\frac{\tan ^{2} A}{1+\sec A}$
Let $A=60^{\circ}$
$1+\frac{\tan ^{2} 60^{\circ}}{1+\sec 60^{\circ}}$
$=1+\frac{3}{1+2}$
$=1+1=2=\sec 60^{\circ}$
$=\sec A$.
82. If $4 \tan \theta=3$, then find the value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+3 \cos \theta}$
A. ${ }^{\frac{1}{9}}$
B. $\frac{1}{9}$
C. 3
D. 9

Ans. B
Sol.
$4 \tan \theta=3$
$\tan \theta=\frac{3}{4}$
$5 \sin \theta-3 \cos \theta$
$5 \sin \theta+3 \cos \theta$
$=\frac{\cos \theta(5 \tan \theta-3)}{\cos \theta(5 \tan \theta+3)}$
$=\frac{5 \times \frac{3}{4}-3}{5 \times \frac{3}{4}+3}$
$=\frac{15-12}{15+12}$
$=\frac{3}{27}$
$=\frac{1}{9}$

Classroom

SSC CPO 2020

A Complete Course (Hindi)

Don't miss the chance to serve your nation!

Top features of the Course/Why take this course

, Prepare for the exam from Basic to Advanced Level
, Designed by SSC Qualified Experts
> Based on Latest Pattern of SSC CPO Exam
, Complete Conceptual Clarity

Sandeep Sharma, Vinod Shankaran, Kushal Anand, Chandan Raushan

