

NIIELIT
 Scientist 'B'

Technical Assistant 'A'
Electronics \& Communication Engineering

Mega Mock Challenge (May 30- May 31 2020)

Questions \&

 Solutions1. Perform the convolution of these two signals,

A.

B.

C.

D.

Ans. B
Sol. upper limit $=$ sum of upper limits $=3+1=4$
Lower limit $=$ sum of lower limits $=-3-1=-4$
And we will have slope of duration equal to the total width of small rectangle on both the sides in the convolution and slope will be equal to product of amplitudes. So final convolution will be.

2. A MOD-6 ripple up-counter is to be designed using three flip-flops as shown in below figure. The flip-flops can be reset to their initial condition $\left(\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}\right)=(000)$ by providing an active low external trigger to the CLR input. If the counter starts counting the sequence from $\left(\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}\right)=(000)$, then the combinational circuit can be constructed by using-

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
A. An OR gate followed by a NOT gate
B. An AND gate followed by a NOT gate
C. An EX-OR gate followed by a NOT gate
D. An EX-OR gate followed by a buffer gate

Ans. B
Sol. For A MOD 6 ripple up-counter there should be 6 pulses and output will be $\left(\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}\right)=$ (110)

So the combinational circuit is NAND GATE which is equivalent to AND GATE followed by NOT GATE.

INPUTs		OUTPUTs
\mathbf{A}	\mathbf{B}	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

3. The irredundant minimised logic expression corresponding to the K - map shown below is

YZ
wX
:---:
1

A. $X Z$
B. $\bar{w} x \bar{y}+\bar{w} y z+w \bar{y} z+w x y$
C. $\bar{w} x \bar{y}+\bar{w} y z+w \bar{y} z+w x \bar{y}$
D. $x z+\bar{w} y z+w x \bar{y}+w \bar{y} z+w x y$

Ans. B
Sol.

$Z=\bar{w} x \bar{y}+w x y+\bar{w} y z+w \bar{y} z$
4. What is the minimum number of 2 -input NOR gates required to implement a 4-variable function expressed in sum of min terms form as $f=\Sigma(1,3,4,6,9,11,12,14)$? Assume that all the inputs and their complements are available.

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
A. 1
B. 2
C. 3
D. 4

Ans. C
Sol. $f=\Sigma m(1,3,4,6,9,11,12,14)$
$=$ пM ($0,2,5,7,8,10,13,15$)
Drawing k-map, we get

$f=(\bar{B}+\bar{D})(B+D)$
$=\overline{\overline{\bar{B}+\bar{D}}+\overline{B+D}}$

Total 3 NOR gates are required (C) option is correct.
5. In the figure, the value of I will be given by

A. $\frac{13}{3} \mathrm{~A}$
B. $-\frac{5}{3} \mathrm{~A}$
C. 5 A
D. $-\frac{3}{5} \mathrm{~A}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Ans. B
Sol.

Current I can be solved easily using mesh equation
In the right mesh
$-2(I-4)-1(I)-3[I-(-6)]=0$
$-2 \mathrm{I}+8-\mathrm{I}-3 \mathrm{I}-18=0$
$-6 \mathrm{I}=10$
$I=-\frac{5}{3} A$
6. Consider the following circuit.

They y - parameters are
A. $\left(\begin{array}{cc}-3 / 2 & -1 \\ 2 & 5 / 3\end{array}\right)$
B. $\left(\begin{array}{cc}5 / 3 & -1 \\ 2 & -3 / 2\end{array}\right)$
C. $\left(\begin{array}{cc}-1 & 5 / 3 \\ -3 / 2 & 2\end{array}\right)$
D. $\left(\begin{array}{cc}2 & 5 / 3 \\ -3 / 2 & 1\end{array}\right)$

Ans. A
Sol.
Nodal $\Rightarrow-I_{1}+\frac{V_{1}}{2}+\frac{V_{1}-3 V_{1}-V_{2}}{1}=0$
$\Rightarrow I_{1}=\frac{-3}{2} V_{1}-V_{2}$
$-\mathrm{I}_{2}+\frac{\mathrm{V}_{2}}{1.5}+\frac{\mathrm{V}_{2}+3 \mathrm{~V}_{1}-\mathrm{V}_{1}}{1}=0$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

$$
\begin{aligned}
& I_{2}=2 V_{1}+\left(\frac{2}{3}+1\right) V_{2} \\
& =2 V_{1}+\frac{5}{3} V_{2} \\
& \Rightarrow y=\left(\begin{array}{cc}
-3 / 2 & -1 \\
2 & 5 / 3
\end{array}\right)
\end{aligned}
$$

7. The minimum number of 2 input NAND gate required to implement the Boolean function $F=(\bar{x}+\bar{y})(z+W)$ is \qquad
A. 6
B. 3
C. 5
D. 4

Ans. D
Sol.

$$
F=(\bar{x}+\bar{y})(z+W)
$$

$F=\overline{x y} \cdot z+\overline{x y} W=\overline{\overline{\overline{x y} z+\overline{x y} W}}$
$=\overline{\overline{(\overline{x y} z)}) \overline{\overline{x y} W})}$

8. A certain 8-bit successive approximation type analog to digital converter has full scale voltage of 2.65 V , if the conversion time for $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{~V}$ is $75 \mu \mathrm{~s}$, then the conversion time for $V_{A}=2.5 \mathrm{~V}$ is.
A. $75 \mu \mathrm{sec}$
B. $25 \mu \mathrm{sec}$
C. $225 \mu \mathrm{sec}$
D. $150 \mu \mathrm{sec}$

Ans. A
Sol. For successive approximation type of converter, the conversion time is independent of V_{A}. Here, option (A) is correct
9. Given a vector field
$\vec{D}=\left(k x^{2} y+y z\right) \widehat{a}_{x}+\left(x y^{2}-x z^{3}\right) \widehat{a}_{y}-\left(6 x y z-2 x^{2} y^{2}\right) \widehat{a}_{z}$
If the vector field $\overline{\mathrm{D}}$ is solenoidal, then the value of K will be
A. 1
B. 2
C. 4
D. -2

Ans. B

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Sol. For a solenoidal field
$\nabla \cdot \overline{\mathrm{D}}=0$
$\nabla \cdot \overline{\mathrm{D}}=\frac{\partial \mathrm{D}_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{D}_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \mathrm{D}_{\mathrm{z}}}{\partial \mathrm{z}}=0$
$2 k x y+2 x y-6 x y=0$
$2 k x y-4 x y=0$
2k $=4$
$\mathrm{K}=2$
10. If $A_{1} A_{0}$ and $B_{1} B_{0}$ are two 2-bit numbers, then the following circuit represents which of the following function.

A. 2-bit Summer
B. 2-bit Subtractor
C. 2-bit Magnitude Comparator
D. None of these

Ans. C

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Sol. From the circuit, we can make the truth-table as follows, and conclude that the circuit behaves as 2-bit magnitude comparator.

Inputs					Outputs		
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{1}}$	\mathbf{B}_{0}	$\mathbf{A}>\mathbf{B}$	$\mathbf{A}=\mathbf{B}$	$\mathbf{A}<\mathbf{B}$	
0	0	0	0	0	1	0	
0	0	0	1	0	0	1	
0	0	1	0	0	0	1	
0	0	1	1	0	0	1	
0	1	0	0	1	0	0	
0	1	0	1	0	1	0	
0	1	1	0	0	0	1	
0	1	1	1	0	0	1	
1	0	0	0	1	0	0	
1	0	0	1	1	0	0	
1	0	1	0	0	1	0	
1	0	1	1	0	0	1	
1	1	0	0	1	0	0	
1	1	0	1	1	0	0	
1	1	1	0	1	0	0	
1	1	1	1	0	1	0	

11. The circuit shown below is used to implement the function $Z=f(A, B)=\bar{A}+B$, the values of P and Q are

A. $P=A, Q=B$
B. $P=B, Q=\bar{A}$
C. $P=\bar{B}, Q=0$
D. $P=0, Q=\bar{B}$

Ans. D
Sol.

$$
\begin{aligned}
\overline{\mathrm{Z}}= & (\mathrm{P}+\mathrm{A})(\mathrm{Q}+\overline{\mathrm{A}}) \\
= & \mathrm{PQ}+\mathrm{AQ}+\mathrm{PA} \\
& =\overline{\mathrm{A}}+\mathrm{B}
\end{aligned}
$$

$$
\bar{Z}=\overline{\bar{A}+B}=A \bar{B}
$$

$$
\mathrm{Q}=\overline{\mathrm{B}}, \mathrm{P}=0
$$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
12. Consider the RLC network shown in the figure below:

The resonant frequency $\left(\omega_{0}\right)$ of the above network is given by
A. ${ }^{\omega_{0}}=\frac{1}{\sqrt{\mathrm{LC}}}$
B. ${ }^{\omega_{0}}=\frac{\mathrm{k}}{\sqrt{\mathrm{LC}}}$
C. ${ }^{\omega}{ }_{0}=\frac{1}{\sqrt{\mathrm{LC}(2-\mathrm{k})}}$
D. $\omega_{0}=\frac{1}{\sqrt{L C}(1-\mathrm{k})}$

Ans. D
Sol. Considering the circuit into phasor domain

$$
\begin{aligned}
& I_{1}=I_{R}+I_{L}+I_{C} \\
& =\frac{V_{1}}{R}+\frac{V_{1}}{j \omega L}+\frac{V_{1}-k V_{1}}{(1 / \omega C)}=V_{1}\left[\frac{1}{R}+\frac{1}{j \omega L}+j \omega C(1-k)\right]
\end{aligned}
$$

Input admittance,
$y(j \omega)=\frac{I_{1}}{V_{1}}=\frac{1}{R} j\left[\omega C(1-k)-\frac{1}{\omega L}\right]$
At resonance, imaginary part of admittance becomes zero
$\omega_{0} C(1-k)-\frac{1}{\omega_{0} L}=0$
$\omega_{0}^{2}=\frac{1}{\mathrm{LC}(1-\mathrm{k})}$
$\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}(1-k)}}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
13. Consider the random process $X(t)=A \cos \left(\omega_{0} t+\varphi\right)$ where A and ω_{0} are constants and φ is random variable distributed on $[-\pi, \pi]$. Find $E\left[X^{2}(t)\right]$ and $R_{X}(\tau)$?
A. $E\left[X^{2}(t)\right]=0$ and $R_{X}(\tau)=\frac{A^{2}}{2}$
B. $E\left[X^{2}(t)\right]=\frac{A^{2}}{2}$ and $R_{X}(\tau)=\frac{A^{2}}{2}$
C. $E\left[X^{2}(t)\right]=0$ and $R_{X}(\tau)=\frac{\mathrm{A}^{2}}{2} \cos \omega_{0} \tau$
D. $E\left[X^{2}(t)\right]=\frac{A^{2}}{2}$ and $R_{X}(\tau)=\frac{\mathrm{A}^{2}}{2} \cos \omega_{0} \tau$

Ans. D
Sol. Time average

$$
\begin{aligned}
& \langle X(t)\}=\operatorname{Ltt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} X(t) d t \\
& =\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} A \cos \left(\omega_{0} t+\phi\right) d t=0 \\
& \langle X(t)\rangle=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} X^{2}(t) d t=\frac{A^{2}}{2} \\
& \langle X(t) X(t+\tau)\rangle=\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} X(t) X(t+\tau) d t \\
& =\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} A \cos \left(\omega_{0} t+\phi\right) \\
& A \cos \left(\omega_{0}(t+\tau)+\phi\right) d t \\
& =\operatorname{Lt}_{T \rightarrow \infty} \frac{1}{2 T} \int_{-\pi}^{\pi} \cos \left(\omega_{0} t+\phi\right) \\
& \cos \left(\omega_{0}(t+\tau)+\phi\right) d t \\
& =\frac{\mathrm{A}^{2}}{2} \cos (\omega \tau) .
\end{aligned}
$$

Statistical average
$E[X(t)]=\int_{-\pi}^{\pi} A \cos \left(\omega_{0} t+\phi\right) d \phi=0$
$E\left[X^{2}(t)\right]=\int_{-\pi}^{\pi} A^{2} \cos ^{2}\left(\omega_{0} t+\phi\right) d \phi=\frac{A^{2}}{2}$
and autocorrelation function
$R_{X}(\tau)=E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

$$
\begin{aligned}
& =\frac{A^{2}}{2} E\left[\cos \omega_{0}\left(t_{1}-t_{2}\right)+\cos \left(\omega t_{1}+\omega t_{2}+2 \phi\right)\right] \\
& =\frac{A^{2}}{2} E\left[\cos \omega_{0}\left(t_{1}-t_{2}\right)\right]+0 \\
& R_{X}(\tau)=\frac{A^{2}}{2} \cos \omega_{0} \tau
\end{aligned}
$$

14.If X and Y logic inputs are available and their respective complements \bar{X} and \bar{Y} are not available, then the minimum number of two input NAND gate required to implement $X \oplus Y$ is \qquad
A. 7
B. 5
C. 4
D. 3

Ans. C
Sol.

15. Find the simplified Boolean expression for the output f?

A. \bar{A}
B. A
C. 0
D. 1

Ans. A
Sol.

16. The numbers of 4 line to 16 line decoders with enable input required to make an 8 line to 256 line decoder is \qquad
A. 12
B. 17
C. 21
D. 16

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Ans. B
Sol.

$$
\frac{256}{16}+\frac{16}{16}=16+1=17
$$

\therefore Number of 4×16 decoder to make 8×256 decode is 17 .
17. 24 MHz clock frequency is applied to a cascaded counter of MOD-3, MOD-4 and MOD-5 counters. The lowest output frequency and the overall MOD value of the cascaded counter are
A. $600 \mathrm{KHz}, 60$
B. $400 \mathrm{KHz}, 60$
C. $400 \mathrm{KHz}, 160$
D. $600 \mathrm{KHz}, 120$

Ans. B
Sol. Overall MOD $=3 \times 4 \times 5=60$
Lowest frequency is output frequency
$f_{\text {out }}=\frac{24 \times 10^{6}}{60}=400 \mathrm{KHz}$
18. If $(211)_{x}=(152)_{8}$ then the value of x is \qquad
A. 16
B. 2
C. 9
D. 7

Ans. D
Sol. Converting to decimal equivalent

$$
\begin{aligned}
& (211)_{x}=\left(2 x^{2}+x+1\right)_{10} \\
& (152)_{8}=(64+40+2)_{10}=(106)_{10} \\
& 2 x^{2}+x+1=106 \\
& 2 x^{2}+x-105=0 \\
& x=7
\end{aligned}
$$

19. The resolution of a 10 -bit analog to digital convertor is \qquad \%.
A. 0.071
B. 0.012
C. 0.121
D. 0.097

Ans. D
Sol. \% Resolution $=\frac{100}{2^{n}-1}=\frac{100}{2^{10}-1}=\frac{100}{1023}=0.097 \%$
20. An FM signal with a deviation δ is passed through a mixer and has its frequency reduced fivefold. The deviation in the output of the mixer is
A. 5δ
B. intermediate
C. $\frac{8}{5}$
D. δ

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Ans. D
Sol. Given the deviation of FM signal $\Delta f=\delta$
As the mixer modifies the carrier frequency of FM signal only, so the deviation remain unchanged. Therefore, the frequency deviation at the output of mixer will be $\Delta \mathrm{f}=\delta$.
21. The differential entropy $H(X)$ of the uniformly distributed random variable X with probability density function $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{cl}\frac{1}{M} & 0 \leq x \leq M \\ 0 & \text { otherwise }\end{array}\right.$
A. $\log _{2} M$
B. $\log _{2} 1 / M$
C. $M \log _{2} M$
D. $1 / M \log _{2} M$

Ans. A
Sol.
$H(X)=-\int_{-\infty}^{\infty} f_{X}(x) \cdot \log _{2} f_{x}(x) d x$
$=-\int_{0}^{M} \frac{1}{M} \log _{2} \frac{1}{M} d x$
$=\log _{2} M$
22. The message signal $m(t)=\operatorname{sinc}^{2}(1000 t)$ AM modulates a sinusoidal carrier signal. The minimum channel bandwidth required to transmit the modulated signal will be
A. 0.5 kHz
B. 1 kHz
C. 2 kHz
D. 4 kHz

Ans. C
Sol.
$\sin C(t) \stackrel{\text { CTFT }}{\longleftrightarrow} r e c t(t)$
$\sin C(100 \mathrm{t}) \stackrel{\mathrm{CTFT}}{\longleftrightarrow} \frac{1}{10^{3}} \operatorname{rect}\left(\frac{1}{10^{3}}\right)$
$\sin C^{2}(1000 \mathrm{t}) \stackrel{\mathrm{cTrT}}{\longleftrightarrow}\left[\frac{1}{10^{3}} \operatorname{rect}\left(\frac{1}{10^{3}}\right)\right] \times\left[\frac{1}{10^{3}} \operatorname{rect}\left(\frac{1}{10^{3}}\right)\right]$

\Downarrow

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

So, $f_{\text {m(max })}=100 \mathrm{~Hz}=1 \mathrm{kHz}$
For an AM modulated signal, minimum channel BW required is,
$(B W)_{\min }=2 f_{w(\max)}=2 \mathrm{kHz}$
23. Find the Thevenin's equivalent voltage or open-circuited voltage across the terminal a-b.
[Take reference 'a' terminal at positive terminal]

A. 25 V
B. 26 V
C. 32 V
D. 48 V

Ans. B
Sol. For V_{th} :

Applying KVL in the loop
$48-16 \mathrm{I}+8 \mathrm{I}-16 \mathrm{I}=0$
$24 \mathrm{I}=48$
$\mathrm{I}=2 \mathrm{~A}$

$V_{T h}-10-32+16=0$
$V_{T h}=42-16$
$V_{T h}=26$ volts
Electronics \& Communication Engg. Exams
Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
24. Let X be a zero-mean unit variance Gaussian random variable. $E[|X|]$ is equal to \qquad
A. 0.8
B. 1.34
C. 5
D. 6

Ans. A
Sol.

$$
\begin{aligned}
& X \sim N(0,1) \Rightarrow f(X)=\frac{1}{\sqrt{2 \pi}} e^{-x / 2},-\infty<X<\infty \\
& \therefore E\{|X|\}=\int_{-\infty}^{\infty}|X| f(X) d x \\
& =\frac{1}{\sqrt{2 \pi}} X^{2} \int_{0}^{\infty} X e^{-x} / 2 d x \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-u} d u=\sqrt{\frac{2}{\pi}}=0.797=0.8
\end{aligned}
$$

25. The three-stage Johnson counter is clocked at a constant frequency of f from the starting state of $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=101$. What will be the frequency of the output $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$?

A. $2 f$
B. f
C. f/4
D. $\mathrm{f} / 2$

Ans. D
Sol.

$\mathrm{J}_{2} \mathrm{~K}_{2}$	$\mathrm{~J}_{1} \mathrm{~K}_{1}$	$\mathrm{~J}_{0} \mathrm{~K}_{0}$	$\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$
			101
01	10	01	010
10	01	10	101
01	10	01	010
10	01	10	101

Since the output $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=101$ repeats every two cycles, the frequency is $\mathrm{f} / 2$
26. Consider an angle modulated signal $x(t)=10 \cos \left(\omega_{\mathrm{c}} \mathrm{t}+3 \sin \omega_{\mathrm{m}} \mathrm{t}\right)$ assume it PM signal and $f_{m}=1 \mathrm{KHz}$.Calculate modulation index and bandwidth if f_{m} is decreased by one -half.
A. $3,4 \mathrm{kHz}$
B. $1.5,16 \mathrm{kHz}$
C. $3,16 \mathrm{kHz}$
D. $1.5,8 \mathrm{kHz}$

Ans. A

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Sol. $x(t)=10 \cos \left(\omega_{c} t+3 \sin \omega_{m} t\right)$
and $\beta=k_{p} A_{m}$
$\beta=3, f_{m}=1 \mathrm{KHz}$
Modulation index $=3$
Band width $=2(1+\beta) f_{m}=2(1+3) 1 k$
If f_{m} is decreased by $1 / 2 \Rightarrow f_{m}=1 / 2 \mathrm{KHz}$
$\beta=3$
$B w=2(1+3) 1 / 2=4$
27. Five symbols are encoded into binary format using 4 different source coding schemes.

From the table shown below find out most efficient coding?

Symbol (xi)	Probability P(xi)	Coding scheme 1	Coding scheme 2	Coding scheme 2	Coding scheme 3
x_{0}	$\frac{1}{2}$	1	1111	00	111
x_{1}	$\frac{1}{4}$	10	1110	01	11
x_{2}	$\frac{1}{4}$	$\frac{1}{8}$	110	110	10
x_{3}	$\frac{1}{16}$	1111	1	11	10
x_{4}		111	00		

A. coding scheme 1
B. coding scheme 2
C. coding scheme 3
D. coding scheme 4

Ans. C
Sol. coding efficiency $=\eta=\frac{H}{L}$
But in each case H is same as it only depends upon probability so efficiency will be maximum when L is minimum
(i) For coding scheme 1
$L=\Sigma P(x i) L_{i}$
$=\frac{1}{2} \times 1+\frac{1}{4} \times 2+\frac{1}{4} \times 3+\frac{1}{2} \times 4+\frac{1}{16} \times 4$
$L=2.5$
(ii) For coding scheme 2
$L=\Sigma P(x i) L i$
$=\frac{1}{2} \times 4+\frac{1}{4} \times 4+\frac{1}{4} \times 3+\frac{1}{8} \times 2+\frac{1}{16} \times 1$
$L=4.0625$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
(iii) For coding scheme 3
$L=\Sigma P(x i) L i$
$=\frac{1}{2} \times 2+\frac{1}{4} \times 2+\frac{1}{4} \times 2+\frac{1}{8} \times 2+\frac{1}{16} \times 3$
$L=2.4375$
(iv) For coding scheme 4
$L=\Sigma P(x i) L i$
$=\frac{1}{2} \times 3+\frac{1}{4} \times 2+\frac{1}{4} \times 2+\frac{1}{8} \times 2+\frac{1}{16} \times 2$
$\mathrm{L}=2.875$
$\therefore \mathrm{L}$ is minimum for coding scheme 3
28. A signal $m(t)$ is band limited to ω_{m}. It is frequency translated by multiplying it by signal $\cos \omega_{c} t$. Find ω_{c} so that the bandwidth of transmitted signal is 1 percent of the carrier frequency ω_{c}.
A. $\omega_{c}=100 \omega_{m}$
B. $\omega_{c}=200 \omega_{m}$
C. $\omega_{\mathrm{c}}=400 \omega_{\mathrm{m}}$
D. $\omega_{\mathrm{c}}=50 \omega_{\mathrm{m}}$

Ans. B
Sol.
$\Rightarrow m(t) \cos 2 \pi f_{c} t \Rightarrow m(t) \cos \omega_{c} t \Rightarrow$

Band width $=2 \omega_{m}=1 / 100 \omega_{c}$
Therefore, $\omega_{c}=200 \omega_{\mathrm{m}}$
29. A random variable X is uniformly distributed in the range $[-1,2]$. Another random variable y is related to x as,
$y=2 x+3$. The probability $P(y \leq 3)$ is equal to \qquad .
A. 0.33
B. 0.50
C. 0.2
D. 1

Ans. A
Sol. $P(y \leq 3)=P(2 x+3 \leq 3)=P(2 x \leq 0)=P(x \leq 0)$

$P(x \leq 0)=$ Shaded area $=\frac{1}{3}$
$P(y \leq 3)=P(x \leq 0)=\frac{1}{3}=0.33$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
30. The equivalent capacitance seen across the terminals x and y if the circuit shown below is
\qquad $\mu \mathrm{F}$.

A. 1.176
B. 2.176
C. 0.766
D. 4.886

Ans. A
Sol. By redrawing the circuits

The equivalent capacitance seen across the terminals ' b ' and ' c ' is
$\mathrm{c}_{\mathrm{bc}}=\frac{1 \times 1}{1+1} \mu \mathrm{~F}+1 \mu \mathrm{~F}=1.5 \mu \mathrm{~F}$
Similarly, the equivalent capacitance seen across the terminals ' a ' and ' c ' are
$\mathrm{C}_{\mathrm{ac}}=\frac{2 \times 1.5}{1+1.5} \mu \mathrm{~F}+2 \mu \mathrm{~F}=2.857 \mu \mathrm{~F}$
\therefore The total capacitance between the terminals x and y is
$\mathrm{cxy}=(2857| | 2) \mu \mathrm{F}=1.176 \mu \mathrm{~F}$
31. A message signal periodic with T applied to an AM modulator with modulation index 0.5 . The modulation efficiency will be \qquad (in \%)

A. 5.1
B. 7.7
C. 6.1
D. 15.4

Ans. B

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Sol.
$100 \times \frac{k a^{2} P_{m}}{1+k_{a}^{2} P_{m}}=\eta(\%)$
$\mathrm{P}_{\mathrm{m}}=$ power of message signal $=\frac{v^{2} m}{3}$
$\eta=\frac{k_{a}^{2}\left(\frac{v_{m}^{2}}{3}\right)}{1+k_{a}^{2}\left(\frac{v_{m}{ }^{2}}{3}\right)} \times 100$
$\mu=k_{a} v_{m}$
hence $\mathrm{v}_{\mathrm{m}}=1, \mu=\mathrm{k}_{\mathrm{a}}$
$\eta=\frac{\mu^{2} / 3 \times 100}{1+\mu^{2} / 3}=\frac{(0.5) 2 / 3 \times 100}{\left.1+(0.5)^{2} / 3\right)}=7.7 \%$
32. The greater the propagation delay, the
A. Lower the maximum frequency
B. Higher the maximum frequency
C. Maximum frequency is unaffected
D. Minimum frequency is unaffected

Ans. A
Sol. The frequency is given by

$$
f=\frac{1}{t_{p d}}
$$

Where $t_{p d}$ - propagation delay.
33. In super heterodyne receiver, IF is 455 kHz . If it is tuned to 1000 kHz , then find the image frequency and rejection ratio if quality factor of receiver is 100.
A. 1810 kHz and 42.8 dB
B. 1910 kHz and 138.6 dB
C. 1910 kHz and 42.8 dB
D. 1810 kHz and 43.8 dB

Ans. C
Sol. given, $\mathrm{Q}=100$, $\mathrm{IF}=455 \mathrm{kHz}, \mathrm{f}_{\mathrm{s}}=1000 \mathrm{kHz}$
image frequency $=f_{s}+2 I F=1000+2(455)=1910 \mathrm{kHz}$
$\rho=\frac{f_{s i}}{f_{s}}-\frac{f_{s}}{f_{s i}}=\frac{1910}{1000}-\frac{1000}{1910}=1.386$
rejectionratio $=\alpha=\sqrt{1+Q^{2} \rho^{2}}$
$=\sqrt{1+100^{2}(1.386)^{2}}=138.6$
$=20 \log (\alpha)$
$=42.8 \mathrm{~dB}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
34. Which one of the following relations holds true for an irrotational field \bar{B} ?
A. $\nabla \times \bar{B} \neq 0$
B. $\nabla \times \bar{B}=0$
C. $\oint_{s}(\nabla \times \bar{B}) \cdot \overline{d s}=0$
D. $\int \overline{\mathrm{B}} \cdot \overline{\mathrm{dl}}=0$

Ans. B
Sol. For an irrotational field
$\nabla \times \bar{B}=0$
35. Consider a random process $x(t)$ and its derivative $x^{\prime}(t)=\frac{d}{d t} x(t)$. Assume that the derivatives are well defined. The cross correlation function $R_{x x}\left(t_{1}, t_{2}\right)$ is
A. $\frac{\partial}{\partial t_{1}} R_{x}\left(t_{1}, t_{2}\right)$
B. $\frac{\partial}{\partial t_{2}} R_{x}\left(t_{1}, t_{2}\right)$
C. $\frac{\partial}{\partial \mathrm{t}_{2}}\left[\frac{\partial}{\partial \mathrm{t}_{1}} \mathrm{R}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\right]$
D. $\frac{\partial}{\partial \mathrm{t}_{1}}\left[\frac{\partial}{\partial \mathrm{t}_{2}} \mathrm{R}_{\mathrm{x}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)\right]$

Ans. B
Sol.
$x^{\prime}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}(\mathrm{t})$
Cross correlation is given by

$$
\begin{aligned}
& R_{x x}\left(t_{1}, t_{2}\right)=E\left[x\left(t_{1}\right) \times\left(t_{2}\right)\right] \\
& =E\left[x\left(t_{1}\right) \frac{d}{d t} \times\left(t_{2}\right)\right] \\
& =E\left[\frac{\partial}{\partial t_{2}} \times\left(t_{1}\right) \times\left(t_{2}\right)\right] \\
& =\frac{\partial}{\partial t_{2}} E\left[x\left(t_{1}\right) \times\left(t_{2}\right)\right] \\
& R_{x x}\left(t_{1}, t_{2}\right)=\frac{\partial}{\partial t_{2}} R_{x}\left(t_{1}, t_{2}\right)
\end{aligned}
$$

36. Energy of signal $n u[n]$ is
A. $\frac{1}{2} n(n+1)$
B. $\frac{1}{6} n(n+1)(2 n+1)$
C. $\left(\frac{1}{2} n(n+1)\right)^{2}$
D. ∞

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Ans. D
Sol. $E=\sum_{-\infty}^{\infty}|n u[n]|^{2}=\sum_{0}^{\infty} n^{2}=\infty$
37. A spectrum of $(1000-1650) \mathrm{kHz}$ is assigned for DSB - SC AM transmission. The spectrum is shared for different users using frequency division multiplexing and quadrature carrier multiplexing and quadrature carrier multiplexing. If each user has a message BW of 5 kHz , then the maximum number of users that can simultaneously use the spectrum will be
A. 65
B. 130
C. 260
D. 650

Ans. B
Sol. BW required for each user $=2 \times 5=10 \mathrm{kHz}$
Number of 10 kHz bands possible $=\frac{1650-1000}{10}=65$
We can send two different signals through a single channel of 10 kHz using quadrature carrier multiplexing. So, maximum number of simultaneous users possible $=65 \times 2=130$
38. Consider in fig. below, determine the power dissipate in 5Ω resistor.
$\mathrm{i}(\mathrm{t})=2+5 \sin 2 \mathrm{t}$

5Ω
A. 145 Watt
B. 82.5 Watt
C. 72.5 Watt
D. 50 Watt

Ans. B
Sol.
$I_{\mathrm{rITs}}=\sqrt{2^{2}+\frac{5^{2}}{2}}$
$=4.06 \mathrm{Amp}$
$P=I^{2}{ }_{r m s} R$
$=82.5 \mathrm{Watt}$
39. Consider the signal $\mathrm{S}(\mathrm{t})$ shown in the figure below.

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

This signal is applied to its matched filter after contaminated with an AWGN noise. If the two sided PSD of the noise is $\frac{\mathrm{N}_{0}}{2}$, then the maximum signal to noise ratio possible at the output of the filter will be?
A. $\frac{3}{\mathrm{~N}_{0}}$
B. $\frac{6}{N_{0}}$
C. $\frac{9}{\mathrm{~N}_{0}}$
D. $\frac{12}{\mathrm{~N}_{0}}$

Ans. B
Sol. Maximum SNR possible at the output of a matched filter is
$(S N R)_{\text {max }}=\frac{2 E_{S}}{N_{0}}$
$\mathrm{E}_{\mathrm{s}}=$ Energy of the signal $\mathrm{S}(\mathrm{t})$
$F_{S}=\int_{-\infty}^{\infty}|S(t)|^{2} d t=\int_{0}^{1}(3 t)^{2} d t=\left[\frac{9 t^{3}}{3}\right]_{0}^{1}=3$
So, $(S N R)_{\max }=\frac{6}{\mathrm{~N}_{0}}$
40. A two-port network has parameters $A B C D$. If all the impedances in the network are doubled, then
A. A and D remain unchanged B is doubled and C is halved
B. A, B, C and D are all doubled
C. A and D are doubled, C and B remain unchanged
D. A and D remain unchanged, C is doubled and B is halved

Ans. A
Sol. $V_{1}=A V_{2}-B I_{2}$
$I_{1}=C V_{2}-D I_{2}$
Impedances are $B=\frac{V_{1}}{I_{2}}$
and $C=$ admittance $=\frac{V_{1}}{I_{2}}$
So, when impedance is doubled, B is doubled and C gets halved and all other parameters remain same.

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
41. Consider the circuit shown in the figure below:

The output ' f ' of the logic circuit represents as
A. $f=\overline{\overline{\bar{A} \bar{B} \bar{C}}+\bar{D} \bar{C}}$
B. $f=(\bar{A}+\bar{B}) \cdot C+\bar{C} D$
C. $f=\overline{(A+\bar{B})+\bar{C}}+C \bar{D}$
D. $f=(A+\bar{B})+\bar{C}+C \bar{D}$

Ans. B
Sol. The output logic function of the given circuit is minimised as

$$
\begin{aligned}
& f=\overline{(\overline{\overline{A B} \cdot C}) \cdot(\overline{\bar{C} D})} \\
& f=(\overline{A B} \cdot C)+\bar{C} D \\
& f=(\bar{A}+\bar{B}) \cdot C+\bar{C} D
\end{aligned}
$$

42. The instantaneous frequency of the signal $S(t)=\cos \left(200 \pi t+\pi t^{2}\right)$ can be expressed as
A. $\left(200+\frac{t^{2}}{2}\right) \mathrm{Hz}$
B. $\left(100+\frac{t^{2}}{2}\right) \mathrm{Hz}$
C. $\left(100+\frac{t}{2}\right) \mathrm{Hz}$
D. $(100+t) \mathrm{Hz}$

Ans. D
Sol. $S(t)=\cos \left(200 \pi t+\pi t^{2}\right)$
$\theta(t)=200 n t+\pi t^{2}$
instantaneous frequency,
$f_{i}=\frac{1}{2 \pi} \frac{d \theta(t)}{d t}=\frac{1}{2 \pi}[200 \pi+2 \pi t]$
$=(100+\mathrm{t}) \mathrm{Hz}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
43. The no of chips required to make up 128 K - bytes memory, if the available memory chip size is
2048×16
A. 16
B. 32
C. 4
D. 8

Ans. B
Sol. The no. of chips required $=\frac{\text { required chip size }}{\text { Available chip size }}$
$=\frac{128 \times 1024 \times 8}{2048 \times 16}=32$
44. The superposition theorem applies to
A. Current/voltage calculations
B. Power calculations
C. Current and power calculations
D. Voltage and power calculations

Ans. A
Sol. Since superposition theorem is based on linearity, it is not applicable to the effect on power $\left(=I^{2} R\right)$ due to each source. Note that power is a nonlinear mathematical operation. Therefore, it is applicable to current/voltage calculations.
45. Find $\mathrm{i}\left(0^{+}\right)$and $\mathrm{i}(\infty)$ in the given circuit.

A. Zero, Zero
B. Zero, 2.5 Amp
C. 1 A, 1.66 Amp
D. Zero, 5 Amp

Ans. B
Sol. The given circuit is the series connection of R and L .
At $t=0^{-}$, the switch is open so no current will flow through L.
$\mathrm{i}\left(0^{-}\right)=\mathrm{i}\left(0^{+}\right)=0 \mathrm{amp}$
Inductor behave as short circuit at $\mathrm{t}=\infty$
$i(\infty)=\frac{V}{R}=\frac{5}{2}=2.5 \mathrm{Amp}$
46. For a bit rate of 8 kbps best possible values of the transmitted frequencies in a coherent binary FSK system are
A. 16 kHz and 20 kHz
B. 20 kHz and 32 kHz
C. 20 kHz and 40 kHz
D. 32 kHz and 40 kHz

Ans. D

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Sol. $R_{b}=8 \mathrm{kbps}$
$\frac{1}{T_{b}}=8$
$\therefore f_{1} \& f_{2}$ should be multiple of 8
bcz in FSK, $f_{1}=n_{1} \frac{1}{T_{b}}$
$f_{2}=n_{2} \frac{1}{T_{b}}$
$n_{1} \& n_{2}$ are integers.
47. The capacity of a Binary Symmetric Channel (BSC) with cross-over probability 0.5 is
\qquad
A. 1
B. 0
C. 1.5
D. 2

Ans. B
Sol. Channel capacity of BSC is as
$C=P \log _{2} P+(1-P) \log _{2}(1-P)+1=0.5 \log _{2} 0.5+0.5 \log _{2} 0.5+1=0$
(since $\log _{2} 0.5=1$)
It is the case of channel with independent input and output.
Hence Capacity $=0$
Hence option B is correct
48. Express switching function $f(A B C)=B^{\prime}+C^{\prime}$ in terms of min term.
A. $f=\sum(1,0,3,4,5,6)$
B. $f=\sum(0,1,2,4,7,6)$
C. $f=\sum(0,1,2,4,5,6)$
D. $f=\sum(2,4,3,5,6,7)$

Ans. C

Sol. $f(A B C)=B^{\prime}+C^{\prime}$
Write the missing terms
$=\left(A+A^{\prime}\right)\left(C+C^{\prime}\right) B^{\prime}+\left(A^{\prime}+A\right)\left(B+B^{\prime}\right) C^{\prime}$
$=\left(A C+A C^{\prime}+A^{\prime} C+A^{\prime} C^{\prime}\right) B^{\prime}+\left(A^{\prime} B+A^{\prime} B^{\prime}+A B+A B^{\prime}\right) C^{\prime}$
$=A C B^{\prime}+A C^{\prime} B^{\prime}+A^{\prime} C B^{\prime}+A^{\prime} C^{\prime} B^{\prime}+A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B C^{\prime}+A B^{\prime} C^{\prime}$
$=A C B^{\prime}+A C^{\prime} B^{\prime}+A^{\prime} C B^{\prime}+A^{\prime} C^{\prime} B^{\prime}+A^{\prime} B^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B C^{\prime}$
$f=\sum(0,1,2,4,5,6)$
49. A data with a rate of 500 KbPS is to be transmitted using BPSK modulation. If the baseband modelling of the data is done by a raised cosine filter with a roll-off factor of 0.50 , then the minimum channel bandwidth required to transmit the BPSK modulated signal will be \qquad kHz.

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by
experts \& toppers with detailed performance analysis
A. 650 kHz
B. 650 kHz
C. 750 kHz
D. 700 kHz

Ans. C
Sol. BW of the baseband modelled data will be
$(B W)_{\text {Baseband }}=\frac{R_{b}}{2}(1+\alpha)$
BW of the BPSK signal will be
$(B W)_{\text {BPSK }}=2(B W)_{\text {Baseband }}=R_{b}(1+a)$
Given that, $R_{b}=500 \mathrm{KbPS}$ and $a=0.50$
$(B W)_{\text {BPSK }}=500(1+0.50)=750 \mathrm{kHz}$
50. A linear phase FIR system with real impulse has a real zero at $z_{o}=\frac{1}{2} e^{j \pi / 4}$. what are other possible zeros of FIR filter.
A. $\frac{1}{2} e^{\frac{-j \pi}{4}}, 2 e^{\frac{-j \pi}{4}}, 2 e^{\frac{j \pi}{4}}$
B. $\frac{1}{2}, \frac{1}{2} e^{\frac{-j \pi}{4}}, 2$
C. $\frac{1}{2}, \frac{-1}{2}, \frac{1}{2}$
D. $e^{j \pi / 4}, e^{-j \pi / 4}, \frac{1}{2}$

Ans. A
Sol. $\left|Z_{o}\right|=\frac{1}{2}, Z_{o}=\frac{e^{j \pi / 4}}{2}, Z_{o}{ }^{*}=\frac{1}{2} e^{-j \pi / 4}$
$Z_{o}^{-1}=\frac{2}{e^{j \pi / 4}}=2 e^{-j \pi / 4}$,
$\left(Z_{o}{ }^{*}\right)^{-1}=2 e^{j \pi / 4}$
51. Which of the following theorem is applicable for both linear and non-linear circuits?
A. Superposition theorem
B. Thevenin's theorem
C. Norton's theorem
D. None of these

Ans. D
Sol. Tellegen's theorem is valid for any linear or non linear circuit as it is on the basis of principles of conservation of energy and till basic laws i.e. KCL and KVL are valid

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by
experts \& toppers with detailed performance analysis
52. The combinational circuit given below implements which of the following

A. NOR gate
B. XOR gate
C. NAND gate
D. None of these

Ans. C
Sol. $Y=\overline{S_{0}} \cdot I_{0}+S_{0} I_{1}$

$$
\begin{aligned}
& =\overline{B C} \overline{B C}+\bar{A} B C \\
& =(\bar{B}+\bar{C})+\bar{A} B C \\
& =\bar{B}+\bar{A} C+\bar{C} \\
& =\bar{B}+\bar{A}+\bar{C} \\
& =\overline{A B C} \equiv \text { NAND gate }
\end{aligned}
$$

53. A lossy material has $\mu=5 \mu_{o}, \varepsilon=2 \varepsilon_{o}$. The phase constant is $10 \mathrm{rad} / \mathrm{m}$ at 5 Mhz

The loss tangent is
A. 2913
B. 1823
C. 2468
D. 1374

Ans. B
Sol. Loss tangent $=\frac{\sigma}{\omega \varepsilon}=X$
Phase constant $\beta=10=\omega \sqrt{\frac{\mu \varepsilon}{2} \sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}+1}$
$10=\frac{2 \pi \times 5 \times 10^{6}}{3 \times 10^{8}} \sqrt{\frac{5 \times 2}{2} \sqrt{1+x^{2}}+1}$
$x=\frac{\sigma}{\omega \varepsilon}=1823$
54. Four voice signals, Each limited to 4 KHz and sampled at Nyquist Rate are converted into binary PCM signal using 256 quantized levels. The bit transmission Rate for the timedivision multiplexed signal will be

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
A. 8 Kbps
B. 64 Kbps
C. 256 Kbps
D. 512 Kbps

Ans. C
Sol. Nyquist Rate $=2 \mathrm{f}_{\text {max }}$

$$
=2 \times 4 \mathrm{~K}=8 \mathrm{KHz}
$$

Total samples $=4 \times 8=32 \mathrm{~K}$ sample $/ \mathrm{sec}$.
$256=2^{8}$, so 8 bit are required
Bit rate $=n f_{s}$

$$
=32 \mathrm{~K} \times 8=256 \mathrm{Kbps}
$$

55. Consider the circuit shown in the figure below:

The value of the source current I is \qquad
A. 0 A
B. 0.54 A
C. 0.80 A
D. 1.6 A

Ans. C
Sol. Let us convert Δ abc to $Y x y z$
Where, R_{x}, R_{y}, R_{z} are the component resistors

$R_{\text {ad }}=\left[\left(R_{x}+3\right) \|\left(R_{y}+2 \Omega\right)\right]+R_{z}$
where,
$R_{x}=R_{y}=R_{z}=\frac{5}{3}=1.667 \Omega$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by
experts \& toppers with detailed performance analysis
$R_{\text {ad }}=[(1.667+3) \|(1.667+2)]+1.667=3.721 \Omega$
Source current,
$I=\frac{3}{3.721}=0.808 \mathrm{~A}$
56. In the circuit shown in figure below, what is the value of R_{L} such that maximum power is transferred to the load?

A. 20Ω
B. 18Ω
C. 25Ω
D. 16Ω

Ans. D
Sol. For maximum power to be transferred to the load,
$R_{L}=R_{T h}$

For calculating R_{Th}, independent sources are replaced by their internal resistance.
Therefore, the circuit reduces to

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Connect the 1 V source across the $a-b$ terminals,

$\mathrm{R}_{\mathrm{Th}}=\mathrm{V} / \mathrm{I}^{\prime}=1 / \mathrm{I}^{\prime}$
Applying KVL in the loop.
$1-10 \mathrm{I}-10 \mathrm{I}=0$
$1-20 \mathrm{I}=0$
$\mathrm{I}=1 / 20=0.05 \mathrm{~A}$
Voltage across 10Ω resistor $=10 \mathrm{I}=0.5 \mathrm{~V}$.
Current through 40Ω resistor $=0.5 / 40=0.0125$ Amp.
$I^{\prime}=$ current through 10Ω resistor + current through 40Ω resistor
$I^{\prime}=0.05+0.0125$
$I^{\prime}=0.0625 \mathrm{Amp}$
$\mathrm{R}_{\mathrm{Th}}=1 / 0.0625=16 \Omega$
$\mathrm{R}_{\mathrm{Th}}=16 \Omega$
57. The physical length of a transmission line is $\lambda / 4$, then what is its electrical length?
A. п/2
B. $п$
C. $3 \pi / 2$
D. 2π

Ans. A
Sol. If ' I ' is the physical length, then ' β '' is the electrical length.
We know that $\beta=2 п / \lambda \rightarrow \beta I=\pi / 2$.
58. For a message signal $m(t)$ with modulation index 60% and frequency 100 kHz , the maximum envelope time will be.
A. 10.3 ms
B. 13.3 ms
C. 33.3 ms
D. 10 ms

Ans. B

Sol.
envelopetime $=\frac{\sqrt{1-\mu^{2}}}{\mu \omega_{m}}$
given $\mu=0.6$
$\omega_{\mathrm{m}}=100$
$t=\frac{\sqrt{1-(0.6)^{2}}}{(0.6)(100)}$
$\mathrm{t}=13.3 \mathrm{~ms}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis
59. $111100,11100,1100$ are represented in corresponding signed 2 's complement then find its decimal equivalent.
A. $-3,-3,-3$
B. $-35,-23 .-12$
C. $-4,-4,-4$
D. $-12,-12,-12$

Ans. C
Sol. 1100 2's complement number is $0011+1=0100=-4$
11100 2's complement number is $00011+1=00100=-4$
111100 2's complement number is $000011+1=000100=-4$
60. An analog signal having 4 kHz bandwidth is sampled at 1.25 times the Nyquist rate and each sample is quantized into 256 equally likely levels. Find the minimum bandwidth required for error free transmission if S / N is 20 dB .
A. 10 kHz
B. 12 kHz
C. 14 kHz
D. 8 kHz

Ans. B
Sol. $f_{m}=4 \times 10^{3}, S / N=20 d B=10^{2}$
Nyquist rate $=2 \mathrm{fm}=8 \times 10^{3}$ samples/s
$r=8 \times 10^{3} \times 1.25=10^{4}$ samples/s
$H(x)=\log _{2} 256=8$ bits/samples
$\mathrm{R}=$ information rate $=\mathrm{rH}(\mathrm{x})=10^{4} \times 8$ bits $/ \mathrm{s}$.
$C=B \log _{2}(1+100) \geq 8 \times 10^{4}$
$B \geq \frac{8 \times 10^{4}}{\log _{2}^{101}}=1.2 \times 10^{4}=12 \mathrm{KHz}$

Electronics \& Communication Engg. Exams

Get unlimited access to all 150+ mock tests designed by experts \& toppers with detailed performance analysis

Upcoming Mini Mock Challenge

 in June Month
NIELIT Scientist ‘B'/Technical Assistant 'A'

Electronics \& Communication Engineering

Exam	Live Date	Syllabus	No. of Questions	Time
$\begin{gathered} \text { NIELIT } \\ \text { Scientist 'B'/ } \\ \text { Technical Assistant 'A' } \end{gathered}$	06 June 2020	Full Syllabus (Tech. (30 Q's) \& Non-Tech. (15 Q's))	50	60
$\begin{gathered} \text { NIELIT } \\ \text { Scientist 'B'/ } \\ \text { Technical Assistant 'A' } \end{gathered}$	13 June 2020	Full Syllabus (Tech. (30 Q's) \& Non-Tech. (15 Q's))	50	60
$\begin{gathered} \text { NIELIT } \\ \text { Scientist 'B'/ } \\ \text { Technical Assistant 'A' } \end{gathered}$	20 June 2020	Full Syllabus (Tech. (30 Q's) \& Non-Tech. (15 Q's))	50	60
$\begin{gathered} \text { NIELIT } \\ \text { Scientist 'B'/ } \\ \text { Technical Assistant 'A' } \end{gathered}$	27 June 2020	Full Syllabus (Tech. (30 Q's) \& Non-Tech. (15 Q's))	50	60

