Classroom

ESE Mains

Achiever's Study Plan

Electronics \& Communication Engineering

Networks Part-1

1. Define and prove maximum power transfer theorem also find power dissipated by load resistor R_{L} in maximum power transfer case.

Sol. Maximum power transfer theorem states that maximum power is transferred from source to load if load impedance is equal to the source impedance (or impedance seen across load terminal)

Prove of MPT:
Consider a circuit as shown below:

Consider a voltage source V_{s} having impedance Rs_{s} and having load impedance RL.
Current (I) in circuit $=\frac{V_{s}}{R_{s}+R_{L}}$
Power dissipated in load resistance
$\left(R_{L}\right)=I^{2} R_{L}$
$P=I^{2} R L$
For finding maximum power find
$\frac{d P}{d R_{L}}=0$
So, $\frac{d P}{d R_{L}}=\frac{d}{d R_{L}} I^{2} R_{L}=\frac{d}{d R_{L}} \frac{V_{s}^{2}}{\left(R_{s}+R_{L}\right)^{2}} R_{L}$
$=V_{s}^{2}\left[\frac{d}{d R_{L}} \frac{R_{L}}{\left(R_{s}+R_{L}\right)^{2}}\right]$

Vision 2021 Batch-3

$=V_{s}^{2}\left[\frac{\left(R_{s}+R_{L}\right)^{2} \times 1-R_{L}\left(2\left(R_{s}+R_{L}\right)\right)}{\left(R_{s}+R_{L}\right)^{2}}\right]$
$=V_{s}^{2} \frac{\left(R_{s}+R_{L}\right)\left[\left(R_{s}+R_{L}\right)-2 R_{L}\right]}{\left(R_{s}+R_{L}\right)^{2}}=0$
So, $\left(R_{L}=R_{s}\right)$
Which is condition of maximum power transfer theorem.
Solution of numerical:
Net load resistance:
$R_{\mathrm{L}}^{\prime}=R_{\mathrm{L}} \| \frac{R_{\mathrm{L}}}{2}=\frac{1}{3} R_{\mathrm{L}}$
Thevenin's resistance across load resistance:

Replace the independent sources with internal impedance.
$\mathrm{R}_{\mathrm{Th}}=(20| | 180)+10 \Omega$
$R_{\text {Th }}=18+10=28 \Omega$
Open circuit voltage across RL

By nodal analysis
$\frac{V-100}{20}+\frac{V-0}{180}=2$
$\mathrm{V}\left(\frac{1}{20}+\frac{1}{180}\right)=2+\frac{100}{20}=7$
$\mathrm{V}=18 \times 7=126 \mathrm{~V}$

Vision 2021 Batch-3

START FREE TRIAL

A Course for ESE \& GATE Electronics Aspirants

$\mathrm{V}=\mathrm{Voc}$ (as current in 10Ω resistor is zero)
By MPT, $R_{T h}=$ load resistance $R_{L}^{\prime}=\frac{1}{3} R_{L}$
$\mathrm{R}_{\mathrm{L}}=3 \times \mathrm{R}_{\mathrm{Th}}=28 \times 3=84 \Omega$
So, equivalent circuit will be :

By nodal analysis:
$\frac{V^{\prime}-126}{28}+\frac{V^{\prime}-0}{84}+\frac{V^{\prime}-0}{42}=0$
$V^{\prime}\left(\frac{1}{28}+\frac{1}{84}+\frac{1}{42}\right)=\frac{126}{28}$
$=63 \mathrm{~V}$
Power dissipated in
$R_{L}=\frac{\left(V^{\prime}\right)^{2}}{R_{L}}=\frac{63^{2}}{84}=47.25 \mathrm{watt}$
The power dissipated in load resistor of R_{L} is 47.25 W
2. State superposition theorem. Find i_{0} in the circuit using superposition theorem.

Sol. superposition theorem states that in a circuit having more than one independent sources the response in any branch can be calculated by algebraic sum of individual responses of each source and replacing all other source with their internal impedance. Consider 5A current source:

Vision 2021 Batch-3

START FREE TRIAL

Applying loop equations:
In loop (1):
$\mathrm{I}_{1}=5 \mathrm{~A}$
In loop (2)
$-2 \mathrm{I}_{1}+4 \mathrm{I}_{2}-\mathrm{I}_{3}-5 \mathrm{i}^{\prime}=0$
$\therefore \mathrm{I}^{\prime}{ }_{0}=\mathrm{I}_{1}-\mathrm{I}_{3}$
By (ii) \& (iii)
$-2 \mathrm{I}_{1}+4 \mathrm{I}_{2}-\mathrm{I}_{3}-5\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)=0$
$-7 I_{1}+4 I_{2}-6 I_{3}=0$ (iv)

In loop (3)
$-5 I_{1}-I_{2}+10 I_{3}+5 i^{\prime} 0=0$
$-\mathrm{I}_{2}+5 \mathrm{I}_{3}=0$
By (i), (iv) \& (v)
$\mathrm{I}_{1}=5 \mathrm{~A}$
$\mathrm{I}_{2}=12.5 \mathrm{~A}$
$\mathrm{I}_{3}=2.5 \mathrm{~A}$
$\mathrm{i}^{\prime} 0=\mathrm{I}_{1}-\mathrm{I}_{3}=2.5 \mathrm{~A}$.(vi)

Vision 2021 Batch-3

Considering voltage source of 20 V :

In loop 4
$4 \mathrm{I}_{4}-\mathrm{I}_{5}-5 \mathrm{i}^{\prime \prime} 0=0$ \qquad
$4 \mathrm{I}_{4}-\mathrm{I}_{5}-5\left(-\mathrm{I}_{5}\right)=0\left(\therefore \mathrm{I}^{\prime \prime}{ }_{0}=-\mathrm{I}_{5}\right)$
$4 \mathrm{I}_{4}+\mathrm{I}_{5}=0$. .(viiii)

In loop 5:
$-\mathrm{I}_{4}+10 \mathrm{I}_{5}+5 \mathrm{i}^{\prime \prime} 0-20=0$
$-\mathrm{I}_{4}+5 \mathrm{I}_{5}=20$.(ix)
By (viii) \& (ix)
$I_{4}=\frac{-10}{3} A$
$I_{5}=\frac{10}{3} A$
$i_{0}{ }_{0}=-I_{5}=\frac{-10}{3}=-3.33 \mathrm{~A}$
\therefore response $\mathrm{i}_{0}=\mathrm{i}^{\prime}{ }_{0}+\mathrm{i}^{\prime \prime}{ }_{0}=2.5-3.33$
$=-\frac{5}{6}=-0.833 \mathrm{~A}$
3. Determine current in various branches of circuit shown below using mesh analysis

Sol. In the above given circuit taking currents as

A Course for ESE \& GATE Electronics Aspirants

\because Current source exists in loop so super mesh exits
Applying loop equation in ABGHDFE
$-20+10\left(i_{1}-i_{2}\right)+10\left(i_{3}-i_{2}\right)+15 i_{3}=0$
$10 \mathrm{i}_{1}-20 \mathrm{i}_{2}+25 \mathrm{i}_{3}=20$
Applying loop equation in GBCH
$10\left(i_{2}-i_{1}\right)+(5+5) i_{2}+10\left(i_{2}-i_{3}\right)=0$
$-10 \mathrm{i}_{1}+30 \mathrm{i}_{2}-10 \mathrm{i}_{3}=0$ \qquad (ii)

Loop equation can't be applied EABGF \& GHDF as it is super mesh By KCL at node G :
$\mathrm{i}_{3}-\mathrm{i}_{1}=5$
$-\mathrm{i}_{1}+\mathrm{i}_{3}=5$
Writing equation in matrix form:
$\left[\begin{array}{rrr}10 & -20 & 25 \\ -10 & 30 & -10 \\ -1 & 0 & 1\end{array}\right]=\left[\begin{array}{l}20 \\ 0 \\ 5\end{array}\right]$
$\Delta=\left[\begin{array}{rrr}10 & -20 & 25 \\ -10 & 30 & -10 \\ -1 & 0 & 1\end{array}\right] \operatorname{Det}(\Delta)=1050$
$\mathrm{i}_{1}=\frac{\Delta_{1}}{\Delta}$
$\Delta_{1}=\left[\begin{array}{crr}20 & -20 & 25 \\ 0 & 30 & -10 \\ 5 & 0 & 1\end{array}\right] \Rightarrow \operatorname{Det}\left|\Delta_{1}\right|=-2150$
$\Delta_{2}=\left[\begin{array}{crr}10 & 20 & 25 \\ -10 & 0 & -10 \\ -1 & 5 & 1\end{array}\right] \Rightarrow \operatorname{Det}\left|\Delta_{2}\right|=-350$
$\Delta_{3}=\left[\begin{array}{rrr}10 & 20 & 20 \\ -10 & 30 & 0 \\ -1 & 0 & 5\end{array}\right] \Rightarrow \operatorname{Det}\left|\Delta_{3}\right|=3100$

Current in different branches are

Vision 2021 Batch-3

START FREE TRIAL
$\mathrm{i}_{1}=\frac{\Delta_{1}}{\Delta}=-2.047 \mathrm{~A}$
$\mathrm{i}_{2}=\frac{\Delta_{2}}{\Delta}=-0.33 \mathrm{~A}$
$\mathrm{i}_{3}=\frac{\Delta_{3}}{\Delta}=2.95 \mathrm{~A}$
4. Explain Millman's theorem. In the circuit given below, find the net response using Millman's theorem i.e. find current through ZL.

$\mathrm{V}_{1}=5 \angle 0^{\circ}, \mathrm{Z}_{1}=1.5 \angle 0^{\circ} \Omega$
$I_{2}=2 \angle 0^{\circ}, Z_{2}=5 \Omega$
$V_{3}=10 \angle 45^{\circ}, Z_{3}=10 \Omega$
Sol. Millman's Theorem:
Millmans theorem states that in any network having independent voltage source having internal resistances and connected parallel, the entire combination above can be replaced by single voltage source V in series with resistance R where

$V=\frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\ldots .+\frac{V_{n}}{R_{n}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots+\frac{1}{R_{n}}}$
$R=\frac{1}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \ldots+\frac{1}{R_{n}}\right)}$
Rearranging the circuit given in question by source transformation

$$
\begin{aligned}
& V_{2}=I_{2} Z_{2}=2 \times 5=10 \angle 0^{\circ} V \\
& V=\frac{V_{1} G_{1}+V_{2} G_{2}+V_{3} G_{3}}{G_{1}+G_{2}+G_{3}}=\frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)} \\
& V=\frac{\frac{5}{1.5}+\frac{10}{5}+\frac{10 \angle 45^{\circ}}{10}}{\left(\frac{1}{1.5}+\frac{1}{5}+\frac{1}{10}\right)} \\
& =\frac{6.04+j 0.707}{0.967} \\
& =6.246+j 0.73 \\
& Z=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{\left(\frac{1}{1.5}+\frac{1}{5}+\frac{1}{10}\right)}} \\
& =\frac{30}{29}=1.03 \Omega
\end{aligned}
$$

So net reduced circuit

Vision 2021 Batch-3

A Course for ESE \& GATE Electronics Aspirants

$i=\frac{V}{z+z_{L}}=\frac{6.246+j 0.73}{(1.03+1+j 2)}$
$\mathrm{i}=2.215 \angle-35.92^{\circ} \mathrm{A}$
The current through load
$Z_{L}=2.215 \angle-37.92^{\circ} \mathrm{A}$
5. For the network shown below determine ratio of current $\mathrm{I}_{1} / \mathrm{I}_{2}$.

Sol.

Applying KCL at node C,
$\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}^{\prime}$
KVL in node 1 :
$2 \mathrm{I}_{2}+4 \mathrm{I}^{\prime}-\mathrm{I}_{3}=0$
$2 \mathrm{I}_{2}+4\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)-\mathrm{I}_{3}=0$
$4 I_{1}+6 I_{2}-I_{3}=0$
KVL in node 2 :
$-1\left(\mathrm{I}_{1}+\mathrm{I}^{\prime}+\mathrm{I}_{3}\right)-2 \mathrm{I}_{3}-\mathrm{I}_{3}=0$
$\mathrm{I}_{1}+\mathrm{I}_{3}+\mathrm{I}_{1}+\mathrm{I}_{2}+2 \mathrm{I}_{3}+\mathrm{I}_{3}=0$
$2 \mathrm{I}_{1}+\mathrm{I}_{2}+4 \mathrm{I}_{3}=0$
Equation (ii) $\times 4$ and adding to (iii)
$4 \mathrm{I}_{1}+6 \mathrm{I}_{2}-4 \mathrm{I}_{3}+2 \mathrm{I}_{1}+\mathrm{I}_{2}+4 \mathrm{I}_{3}=0$
$6 \mathrm{I}_{1}+7 \mathrm{I}_{2}=0$
$\frac{I_{1}}{I_{2}}=\frac{-7}{6}$ is the required ratio:

START FREE TRIAL.

A Course for ESE \& GATE Electronics Aspirants

OUR TOP GRADIANS IN GATE 2020

Himanshu Kumar
AIR-9
EE

Nikhil Kumar
AIR-9
EE
(a)
Raja Majhi
AIR-30
ECE

Classroom

Vision 2021-Course for ESE \& GATE (Batch-3)

Electronics \& Communication Engineering

Vision 2021

A Course for ESE \& GATE Electronics Aspirants Batch-3

Why take this course?
>650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
, Subject \& Full-Length Mock Tests for GATE \& ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

