gradeup

GATE 2020

Mechanical Engineering

Forenoon Shift

Solution

GENERAL APTITUDE

1.

Ans. D
Sol.
Build : Building :: Grow : Growth
2.

Ans. D
Sol.
He is known for his unscrupulous ways. He always sheds crocodile tears to deceive people.
3.

Ans. B
Sol.
4.

Ans. C
Sol.
Jofra Archer, the England fast bowler, is more fast than accurate.
5.

Ans. D
Sol.
$y=[x]$
Area under the curve $y=[x]$.

Area $=1 \times 1+1 \times 2+1 \times 3$
$=1+2+3$
$=6$

A Course for ESE \& GATE Mechanical Aspirants
6.

Ans. C
Sol.
Sucess Rate $(P)=\frac{280}{500} \times 100=56 \%$
Sucess Rate $(Q)=\frac{330}{600} \times 100=55 \%$

Sucess Rate $(R)=\frac{455}{700} \times 100=65 \%$

Sucess Rate $(S)=\frac{240}{400} \times 100=60 \%$

Average Success Rate $=\frac{56+55+65+60}{4}$
$=59 \%$
7.

Ans. B
Sol.
Summery of the above paragraph
Funds raised through voluntary contributions on web-based platforms.
8.

Ans. C

Sol.
9.

Ans. C

Sol.
Sum of first n term is
$=8+88+888+8888+\ldots \ldots$
$=8[1+11+111+1111+\ldots .$.
$=\frac{8}{9}[9+99+999+9999+\ldots .$.

A Course for ESE \& GATE Mechanical Aspirants

$$
\begin{aligned}
& =\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)\right] \\
& =\frac{8}{9}\left[10+10^{2}+10^{3}+10^{4} \ldots . . n\right] \\
& =\frac{8}{9}\left[10+10^{2}+10^{3}+10^{4} \ldots . n-(1+1 \ldots . n)\right] \\
& \frac{8}{9}\left[10 \cdot \frac{\left(10^{n}-1\right)}{10-1}-n\right] \\
& =\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n
\end{aligned}
$$

10.

Ans. A
Sol. Put $\mathrm{m}=2$, so $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\mathrm{x}^{\frac{1}{2}}$
And $\mathrm{x}=0.5$
$Y=x^{m}=0.5^{2}=0.25$
$y=x^{1 / m}=0.5^{0.5}=0.707$
so $x^{1 / m}$ will be above than x^{m}
Satisfy option C.

TECHNICAL

11.

Ans. C
Sol. Velocity for incompressible fluid flow,

$$
\vec{V}=2\left(x^{2}-y^{2}\right) \hat{i}+V \hat{j}+3 k
$$

From above velocity relation
$u=2\left(x^{2}-y^{2}\right)$
$\mathrm{V}=\mathrm{V}$
$\omega=3$
If the flow is incompressible continuity equation has to be satisfied,
$\frac{\partial u}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial \omega}{\partial z}=0$
$\frac{\partial}{\partial x}\left(2\left(x^{2}-y^{2}\right)\right)+\frac{\partial V}{\partial y}+\frac{\partial}{\partial z}(3)=0$
$\Rightarrow 4 x+\frac{\partial V}{\partial y}+0=0$
$\Rightarrow \frac{\partial V}{\partial y}=-4 x$
$\Rightarrow \mathrm{V}=-4 \mathrm{xy}+\mathrm{C}$
12.

Ans. (1.264)
Sol. Given
$\mathrm{C}_{1}=1 \mathrm{~mm}$ $(\mathrm{HRC})_{1}=250$
$C_{2}=$?
$(\mathrm{HRC})_{2}=400$
$C=0.0032 t \sqrt{\tau}$
$\mathrm{C} \propto \sqrt{\mathrm{C}} \propto \sqrt{\mathrm{HRC}}$
$\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\sqrt{\frac{(\mathrm{HRC})_{2}}{(\mathrm{HRC})_{1}}}$
$\Rightarrow \frac{C_{2}}{1}=\sqrt{\frac{400}{250}}$
$\mathrm{C}_{2}=1.264 \mathrm{~mm}$

A Course for ESE \& GATE Mechanical Aspirants
13.

Ans. A
Sol. Joule Thomson coefficient for real gas,
$\mu=\left(\frac{\partial T}{\partial P}\right)_{h}=\frac{1}{C_{P}}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right] \ldots(1)$
For an ideal gas, $\mathrm{PV}=\mathrm{RT}$
$T\left(\frac{\partial V}{\partial T}\right)_{P}-V$
So, $T\left(\frac{\partial V}{\partial T}\right)_{P} \times P=R$
$\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{R}{P} \cdots \cdots$.
Putting eqn (2) in eq (1)
$\mu=\frac{1}{C_{p}}\left[T \times \frac{R}{P}-V\right]$
Now, since, $\frac{12 T}{P}=V$
$\mu=\frac{1}{C_{P}}[V-V]=0$
$\mu=0$ (for ideal gas)
14.

Ans. (244.94)
Sol. Pressure after $1^{\text {st }}$ stage compression $\left(\mathrm{P}_{2}\right)$ for perfect intercooling.
Overall pressure ratio (r_{p}) overall $=6$
$\left(r_{p}\right)_{\text {overall }}=\frac{P_{3}}{P_{1}}$
For perfect intercooling, intermediate pressure $\left(\mathrm{P}_{2}\right)=\sqrt{\mathrm{P}_{1} \mathrm{P}_{3}}$
$\mathrm{P}_{1}=100 \mathrm{kPa}$
$\mathrm{P}_{3}=6 \mathrm{P}_{1}=600 \mathrm{kPa}$
$P_{2}=\sqrt{100 \times 600}$
$=\mathrm{P}_{2}=244.9 \mathrm{kPa}$
15.

Ans. (6)
Sol. $\vec{A}=2 \hat{j}-3 \hat{k}, \quad \vec{B}=-2 \hat{i}+\hat{k}$
$\vec{C}=3 \hat{i}-\hat{j}$

A Course for ESE \& GATE Mechanical Aspirants
$\vec{A}(\vec{B} \times \vec{C})$
$=\left|\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0\end{array}\right|$
$=-2(-3)-3(2)$
$=0$
$\therefore \overrightarrow{\mathrm{A}}(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})+6=6$
16.

Ans. C
Sol.

Reynolds No.	Inertia force/Viscous force
Grashoff	Buoyant/viscous
Nusselt	Conv. H.T/cond. H.T.
Prandtl No.	Momentum diffusivity /thermal diffusivity

17.

Ans. A
Tds equation are
Tds $=d U+p d v \rightarrow(1)$
Tds $=d U+p d V \rightarrow(2)$
From $1^{\text {st }}$ Tds relation
Tds = dU + pdV
At constant volume, $\mathrm{dV}=0$
$\mathrm{Tds}=\mathrm{dU}=\mathrm{CvdT}$

$$
\left(\frac{d T}{d s}\right)_{V}=\frac{T}{C_{V}} \text { at constant volume }
$$

So, at constant volume, slope of ($\mathrm{T}-\mathrm{S}$) is $\mathrm{T} / \mathrm{C}_{\mathrm{V}}$
From $2^{\text {nd }}$ Tds relation, $\mathrm{Tds}=\mathrm{dH}-\mathrm{vdP}$
At constant pressure, $\mathrm{dP}=0$
$T d s=d H=C_{p} d T$
$\left(\frac{\partial T}{\partial S}\right)_{p=c}=\frac{T}{C_{p}}$
So, ratio of slope of constant pressure \& volume $=\frac{T}{C_{p}} / \frac{T}{C_{v}}=\frac{C_{v}}{C_{p}}$
18.

Ans. C
Sol. The crystal of γ iron (austenite phase) is FCC
19.

Ans. D
Sol. The normal force can be resolved into three components as shown in figure.
Due to $f_{a}=$ axial force axial stress is Present in shaft
Due to $f_{T}=$ thrust force torsion will be present in shaft.
Due to for bending stress.
But due to fu also bending will be there but in different plane to that due to hence bending stress in two planes.
20.

Ans. C
Sol. $f(z)=\log z$
At $z=0$
$f(z)=\log z \Rightarrow$ not defined Hence out of all other functions logz is not analytic at $z=0$.
21.

Ans. D
Sol. apply L hospital rule, you get answer as $C / C+A$.
It is direct formula of effectiveness in the case of counter flow heat exchanger when hate capacity ratio is 1
22.

Ans. C
Sol. cost time slope $=\frac{\text { Crash Cost }- \text { Normal cost }}{\text { Normal time }- \text { Crash time }}$
23.

Ans. (49.33)
Sol. LMTD $=\frac{\Delta \mathrm{T}_{1}-\Delta \mathrm{T}_{2}}{\ln \left(\frac{\Delta \mathrm{~T}_{1}}{\Delta \mathrm{~T}_{2}}\right)}$
$\Delta \mathrm{T}_{1}=\mathrm{T}_{\mathrm{hi}}-\mathrm{T}_{\mathrm{co}}=60^{\circ}$
$\Delta T_{2}=T_{\text {ho }}-T_{\text {ci }}=40^{\circ}$
LMTD $=\frac{60-40}{\ln \left(\frac{60}{40}\right)}=49.33^{\circ} \mathrm{C}$

A Course for ESE \& GATE Mechanical Aspirants
24.

Ans. C
Sol. Froud Number is the ratio of inertia force/gravity force.
25.

Ans. B
Sol.

$$
\begin{aligned}
& \epsilon=\frac{F_{t}}{F_{0}} \\
& F_{t}=F_{0} \Rightarrow \epsilon=1
\end{aligned}
$$

$\omega=\sqrt{2} \times \omega_{\mathrm{n}}$
$=\sqrt{2} \times \sqrt{\frac{k}{m}}$
$\omega=\sqrt{\frac{2 k}{m}}$
26.

Ans. D
Sol.

Heat treatment process	Effect
P: Tempering	B. Toughening
Q: Quenching	C. Hardening
R: Annealing	D. Softening
S: Normalizing	A. Strengthening

27.

Ans. (0.1)
Sol. If mass A is removed, then system becomes unbalanced.

Fresultant $=$ Net unbalanced force
$=\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}}$
$\Sigma F_{x}=m r \omega^{2}\left(\cos 90^{\circ}+\cos 180^{\circ}+\cos 270^{\circ}\right)$
$=m r \omega^{2}(0-1+0)$
$\Sigma f_{x}=-0.1$
Similarly,
$\Sigma F_{y}=m r \omega^{2}\left(\sin 90^{\circ}+\sin 180^{\circ}+\sin 270^{\circ}\right)$
$\Sigma f_{y}=0$
$F_{r}=\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}}$
$F_{r}=0.1 \mathrm{~N}=$ Net unbalanced force.
28.

Ans. D
Sol. $L f(t)=\frac{1}{S^{2}+\omega^{2}}$
$L^{-1}\left(\frac{1}{S^{2}+\omega^{2}}\right)=f(t)$
or
$L \sin a t=\frac{a}{S^{2}+a^{2}}$
$\therefore \mathrm{L} \sin \omega \mathrm{t}=\frac{\omega}{\mathrm{S}^{2}+\omega^{2}}$
$\therefore \mathrm{L}^{-1}\left(\frac{1}{\mathrm{~S}^{2}+\omega^{2}}\right)=\frac{\sin \omega \mathrm{t}}{\omega}$
29.

Ans. D
Sol. Matrix multiplication is Associative but not commutative.
eg. $A B \neq B A$
But
$A(B C)=(A B) C \Rightarrow$ Associative

A Course for ESE \& GATE Mechanical Aspirants
30.

Ans. B
Sol.

31.

Ans. (0.93)
$m($ number of men $)=5$
n (number of woman) $=3$
number of vacancy $=4$
Probability that at least one woman is selected
= 1 - probability that no woman is selected
$=1-\frac{{ }^{5} C_{4}}{{ }^{8} C_{4}}$
$=1-\frac{5}{70}$
$=0.928$
32.

Ans. 1
$\omega_{\max }=110 \mathrm{rad} / \mathrm{s}$
$\omega_{\text {min }}=100 \mathrm{rad} / \mathrm{s}$
$\Delta \mathrm{E}=\mathrm{A} .05 \mathrm{~kJ}=1050 \mathrm{~J}$
$\mathrm{I}=$?
$\Delta E={ }_{2}^{1} I\left(\omega_{\text {max }}{ }^{2}-\omega_{\text {min }}{ }^{2}\right)$

A Course for ESE \& GATE Mechanical Aspirants
$1050={ }_{2}^{1} \mathrm{I}\left(110^{2}-100^{2}\right)$
$\mathrm{I}=1$
33.

Ans. D
For crank rocker, PQ should be shortest
$(s+I) \leq P+Q$
$600 \mathrm{~mm} \rightarrow$ longest link
$P=300 \mathrm{~mm}, \mathrm{Q}=400 \mathrm{~mm}$
$S+600 \leq(300+400)$
$S \leq 100$
34.

Ans. C
Sol. Moment at A
$(P \times 2 \ell)=\frac{R_{E}}{\sqrt{2}} \times 4 \ell$
$\Rightarrow R_{E}=\frac{P}{\sqrt{2}}$
Pt. E

$\frac{\mathbf{R}_{E}}{\sqrt{2}}$
$F_{1} \sin 45^{\circ}+\frac{R_{E}}{\sqrt{2}}=0$
$\frac{F_{1}}{\sqrt{2}}+\frac{R_{E}}{\sqrt{2}}=0$
$F_{1}=-R_{E}$
$F_{1}=-\frac{P}{\sqrt{2}}$
$F_{1} \cos 45+F_{2}+\frac{R_{E}}{\sqrt{2}}=0$
$\frac{-P}{2}+F_{2}+\frac{P}{2}=0$

A Course for ESE \& GATE Mechanical Aspirants
$F_{2}=0$
Correction option D
$B F=0$
DH $=0$
$\mathrm{GC}=0$
35.

Ans. D
Grinding \rightarrow for rough operations \rightarrow open structure wheels are preferred
0 to 16 so 12 will give more open
For rough operations brass tool with material is generally SiC
so C30Q12V will be the right choice
36.

Ans. B
Sol. $r=0.5 \mathrm{~mm}$
$\mathrm{T}_{0}=100^{\circ} \mathrm{C}$
$\mathrm{T}_{\infty}=20^{\circ} \mathrm{C}$
$\mathrm{T}=28^{\circ} \mathrm{C}$ after $\mathrm{t}=4.35 \mathrm{sec}$.
$\rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$
$C_{p}=400 \mathrm{~J} / \mathrm{kgk}$
$\mathrm{h}=$?
As it is lumped system
$\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-\frac{h A}{\rho V C_{p}} \times t}$
$\frac{28-20}{100-20}=e^{-\left(\frac{h \times 4 \pi r^{2}}{\rho \times \frac{4}{3} \pi r^{3} \times c_{p}} \times t\right)}$
$\frac{8}{80}=e^{-\frac{h \times 4.35}{8500 \times \frac{0.5 \times 10^{-3}}{3} \times 400}}$
$\mathrm{h}=299.95 \mathrm{w} / \mathrm{m}^{2} \mathrm{k}$
37.

Ans. (6.99)
Sol. Given

$D=100 \mathrm{~mm}$
$\mathrm{L}=300 \mathrm{~mm}$
$\mathrm{b}=25 \mathrm{~mm}$
$\mathrm{T}=20$
A (Approach) $=5 \mathrm{~mm}$
O (Overtravel) $=5 \mathrm{~mm}$.
$\mathrm{d}=5 \mathrm{~mm}$.
(f) $\mathrm{t}=0 \% \mathrm{~mm}$
$(V) \mathrm{s}=35 \mathrm{~m} / \mathrm{min}$.
Since d < slot dimension, the complete milling has to be done in 5 passes.
Necessary approach = Necessary overtravel
$=\frac{D}{2}-\sqrt{\left(\frac{D}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}}$
$\mathrm{AN}=\frac{100}{2}-\sqrt{\left(\frac{100}{2}\right)^{2}-\left(\frac{25}{2}\right)^{2}}$
$\mathrm{AN}=\mathrm{A} .587 \mathrm{~mm}$
Time Per Cut
$=\frac{L+A N+A+O}{f_{T} N T}$
$V=n \mathrm{D} N$
$\mathrm{N}=\frac{\mathrm{V}}{\pi \mathrm{D}}=\frac{35}{\pi \times 0.1}$
$\mathrm{N}=111.4 \mathrm{RPM}$
$(T)_{\text {per cut }}=\frac{300+1.587+5+5}{0.1 \times 111.4 \times 20}$
(T) per cut $=1.398 \mathrm{~min}$.
Total time $=(T)_{\text {per cut }} \times$ Number of cut
Total time $=1.398 \times 5$
$=6.99$ minutes
38.

Ans. (16)
Sol.
(A)

$$
\begin{aligned}
& r_{B}=\sqrt{50^{2}+50^{2}}=50 \sqrt{2} \\
& P_{B}^{\prime}=\frac{P}{\text { No. of bolt }}=\frac{10}{4}=2.5 \mathrm{kN} \\
& P_{B}^{\prime \prime}=\frac{P_{e} r_{B}}{\left(r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r_{d}^{2}\right)} \\
& =\frac{10 \times 10^{3} \times 0.4 \times\left(50 \sqrt{2} \times 10^{-3}\right)}{4 \times\left(50 \sqrt{2} \times 10^{-3}\right)^{2}}
\end{aligned}
$$

$$
=14.14 \mathrm{kN}
$$

Resultant $=\sqrt{\left(P_{B}^{\prime}\right)^{2}+\left(P_{B}^{\prime \prime}\right)^{2}+2 P_{B}^{\prime} \times P_{B}^{\prime \prime} \cos 45^{\circ}}$
$=16 \mathrm{kN}$
39.

Ans. A
Sol.

By shifting force

40.

Ans. A
Sol.

$\sigma=\frac{80 \times 10^{3}}{40 \times 40}=50 \mathrm{MPa}$

$T_{\text {max }}=25 \mathrm{MPa}$ which is greater than shear strength of material

A Course for ESE \& GATE Mechanical Aspirants

$T_{\max }=-25 \mathrm{MPa}$ which is greater than shear strength of material

$\tau=\frac{16 T}{\pi d^{3}}$
$=\frac{16 \times 64 \pi \times(100)^{3}}{\pi \times 4^{3}}$
$\mathrm{T}=16 \mathrm{MPa}$ which is less than shear strength of material

$\frac{\sigma}{y}=\frac{M}{I}$
$\sigma=\frac{\mathrm{My}}{\mathrm{I}}$
$=\frac{320 \times \frac{4}{2}}{\frac{a^{4}}{12}}=30 \times(100)^{3}=30 \mathrm{MPa}$

$\mathrm{T}=15 \mathrm{MPa}$ which is less than shear strength of material

A Course for ESE \& GATE Mechanical Aspirants
41.

Ans. B
Sol.
$\Delta h=\mu^{2} R$
$40-20=\mu^{2} \times 100$
$\mu^{2}=\frac{20}{100} \approx 0.45$
$\mu=0.45$
$1-\frac{\Delta h}{D}=\cos \alpha \Rightarrow \cos \alpha=1-\frac{20}{200}$
$a=0.451$
Arc length $=\mathrm{Ra}$
$=100 \times 0.451$
Arc length 45.1 mm
42.

Ans. (2)
Sol.
$f(z)=\left(x^{2}-y^{2}\right)+\xi(x, y)$
$Z=1+i$
$x=1, y=1$
$\partial v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y$
Those term of which not containing x for analytic f^{n}
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
$\Rightarrow u=x^{2}-y^{2}$
$2 x=\frac{\partial v}{\partial y} \frac{\partial v}{\partial x}=(-2 y)$
$\frac{\partial v}{\partial y}=2 x \frac{\partial v}{\partial x}=2 y$
$\partial v=2 y d x+\underset{\substack{\| \\ 0}}{2 x d y}$
$\partial v=2 y d x$
$v=2 x y$
$v(1,1)=2 \times 1 \times 1$
$v(1,1)=2$

A Course for ESE \& GATE Mechanical Aspirants
43.

Ans. *
44.

Ans. (23.53)
$r=\frac{I_{c}}{\mathrm{l}}=\frac{100}{250}=0.4$
Shear angle, $\tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha}$
$=\frac{0.4 \cos \left(20^{\circ}\right)}{1-0.4 \sin \left(20^{\circ}\right)}$
$\varphi=23.53$
45.

Ans. (4)
Sol.
specific steam consumption (ssc) $=\frac{3600}{W_{\text {net }}}$
Net work ($\mathrm{W}_{\text {net }}$) = Turbine work - Pump work
$=903-3=900 \mathrm{KJ} / \mathrm{Kg}$
specific steam consumption $=\frac{3600}{W_{\text {net }}}$
$=\frac{3600}{900}$
$=4 \mathrm{Kg} / \mathrm{Kwh}$
46.

Sol.
Tolerance of hole $=0.002 \mathrm{~mm}$
Tolerance of shaft $=0.001 \mathrm{~mm}$
allowance $=0.003 \mathrm{~mm} \Rightarrow$ minimum
basic size $=50 \mathrm{~mm}$

Max hole size
$=50+0.003+0.002$
$=50.005 \mathrm{~mm}$

A Course for ESE \& GATE Mechanical Aspirants
47.

Ans. (-1)
Sol.

$$
\begin{aligned}
& \mu(x)=\mu(y)=0.5 \\
& \therefore \sigma^{2}(x)=\sigma^{2}(y)=0.5=0.25 \\
& Z=x+Y \\
& \operatorname{Var}(z)=\operatorname{var} x+\operatorname{var} y+2 \operatorname{cov}(x, y) \\
& \therefore \operatorname{cov}(x, y)=\frac{-0.25-0.25}{2} \\
& =-0.25 \\
& \therefore r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
& =\frac{-0.25}{\sqrt{0.25} \sqrt{0.25}} \\
& =-1
\end{aligned}
$$

48.

Ans. (B)
Sol.
$\operatorname{div} F=\frac{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}\left[\begin{array}{l}-2 x^{2}+y^{2}+z^{2}+x^{2}-2 y^{2}+z^{2} \\ +x^{2}+y^{2}-2 z^{2}\end{array}\right]$
$=0$
$\iint \vec{F} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\iiint \operatorname{div} \mathrm{Fdv}=0$
49.

Ans. (0.375)
Sol. Given
$\mathrm{P}_{1}=0.36 \mathrm{KPa}$ (At Inlet)
$P_{2}=0 \quad$ (At outlet)
$A_{1}=0.1 \mathrm{~m} 2 \quad \rho$ air $P_{o}=\frac{f_{x}}{A}=\rho v^{2}=A .2 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{A}_{2}=0.02 \mathrm{~m} 2$ [Constant]
$P_{0}=$?
Apply Bernoulli's equation at Inlet and outlet section.
$\frac{P_{1}}{\rho_{g}}+\frac{V_{1}{ }^{2}}{2_{g}}+z_{1}=\frac{P_{2}}{\rho_{g}}+\frac{V_{2}{ }^{2}}{2_{g}}+z_{2}$
$Z_{1}+Z_{2}$,
$P_{2}=0$

A Course for ESE \& GATE Mechanical Aspirants
$\frac{P_{1}}{\rho_{g}}+\frac{V_{1}^{2}}{2_{g}}=\frac{V_{2}^{2}}{2_{g}}$
By Continuity equation.
$\rho_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2}$
$\rho 1=\rho 2$
$V_{1}=\frac{A_{2}}{A_{1}} V_{2}$
$V_{1}=\frac{0.02}{0.1} V_{2}$
$\mathrm{V} 1=0.2 \mathrm{~V}_{2}$
Putting in equation

$$
\begin{aligned}
& \frac{360}{1.2}=\frac{\mathrm{V}_{2}^{2}-\left(0.2 \mathrm{~V}_{2}\right)^{2}}{2} \\
& 300=\frac{0.96 \mathrm{~V}_{2} 2}{2}
\end{aligned}
$$

$\mathrm{V}_{2}=25 \mathrm{~m} / \mathrm{s}$
Apply Bernoulli's equation between 2 and 0 .
$\frac{P_{2}}{\rho g}+\frac{V_{2}{ }^{2}}{2 g}+Z_{1}=\frac{P_{0}}{\rho g}+\frac{V_{0}{ }^{2}}{2 g}+\tau_{0}$
$Z_{1}=Z_{0}$
$P_{2}=0$
$V_{0}=0$
$\frac{V_{2}^{2}}{2 g}=\frac{P_{0}}{\rho g}$
$P_{0}=\frac{\rho V_{2}^{2}}{2}$
$P_{0}=\frac{1.2 \times(25)^{2}}{2}$
$\mathrm{P}_{0}=375 \mathrm{~Pa}$
$\mathrm{P}_{0}=0.375 \mathrm{KPa}$
50.

Ans. (A)
Sol. $f(x)=x(x)$
$a=-1$
$b=1.4$
$h=0.6$

A Course for ESE \& GATE Mechanical Aspirants
number of Interval $=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{h}}=\frac{1.4+1}{0.6}$
$n=4$

y_{0}	y_{1}	y_{2}	y_{3}	y_{n}
-1	-0.16	0.04	0.64	A .96

By Simpson's $\frac{1}{3}$ rd Rule.

$$
\begin{aligned}
& \int_{-1}^{1.4} x|x|=\frac{h}{3}\left[y_{0}+y_{n}+2\left\{y_{2}\right\}+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{0.6}{3}[-1+1.96+2(0.04)+4(-0.16+0.64)] \\
& =0.592
\end{aligned}
$$

51.

Ans. (A)
Sol.
Production $=4$ units
$2^{\text {nd }}$ case
Production
$=4 \times 0.7=2.8$
2.8 units
$\%$ reduction $=\left(\frac{4-2.8}{4}\right) \times 100$
$=0.3 \times 100$
$=30 \%$
52.

Ans. (8)
Sol. Given
$v=-c\left(r^{2}-\frac{D^{2}}{4}\right)=-c\left(r^{2}-R^{2}\right)$
$v=c\left(R^{2}-r^{2}\right)$
$d(K E)=\frac{1}{2} d m\left(v^{2}\right)=\frac{1}{2} v^{2} \rho d v=\frac{1}{2} \rho v^{2} \times v d A$
$d(K E)=\frac{1}{2} \rho v^{3} d A$
$K E \int d(K E)=\int \frac{1}{2} \rho c\left(R^{2}-r^{2}\right)^{3} \times 2 \pi r d r$

A Course for ESE \& GATE Mechanical Aspirants

```
\(=\frac{1}{2} \rho c^{3} \int R^{6}+r^{6}-3 R^{2} r^{2}-3 R^{2} r^{2}\left(R^{2}-r^{2}\right) 2 \pi r d r\)
\(\frac{1}{2}{ }^{2 \pi \rho c^{3}} \int_{0}^{R} R^{6} r+r^{7}-3 R^{4} r^{3}+3 R^{2} r^{5} d r\)
\(K E=n \rho c^{3} R^{8} \times 0.625\)
\(K E=0.625 \times \pi \rho c^{3} \times R^{8}\)
\(K E \propto R^{8}\)
\(K E \propto D^{8}\)
\(K E \propto D^{n} \Rightarrow n=8\)
```

53.

Ans. (0.87)
Sol.
U.PT
$T_{1}=\frac{\mu P}{3}\left(\frac{D^{3}-d^{3}}{D^{2}-d^{2}}\right)$
$P_{1}=\frac{F_{1}}{\frac{\pi}{4}\left(D^{2}-d^{2}\right)}$
$T_{2}=\frac{\mu P}{4}(D+d)$
$\mathrm{D}=250 \mathrm{~mm}$
$\mathrm{d}=50 \mathrm{~mm}$
$\frac{T_{1}}{T_{2}}=\frac{\frac{\mu P_{1}}{3}\left(\frac{D^{3}-d^{3}}{D^{2}-d^{2}}\right)}{\frac{\mu P_{2}}{4}(D+d)}$
$\frac{P_{1}}{P_{2}}=\frac{\frac{(D+d)}{4}}{\frac{1}{3}\left(\frac{D^{3}-d^{3}}{D^{2}-d^{2}}\right)}=\frac{\frac{300}{4}}{\frac{1}{3}\left(\frac{250^{3}-50^{3}}{250^{2}-50^{2}}\right)}=\frac{75}{86.11}=0.871$
$\frac{P_{1}}{P_{2}}=0.871$
54.

Ans. (12.69)
Sol.

From, the above velocity diagram, Blade outlet angle (β) can be found by, $\tan \beta=\frac{C_{f}}{C_{b}}$
where, C_{f} is flow velocity C_{b} is blade velocity
Blade velocity $\left(C_{b}\right)=\frac{\pi D_{\text {mean }} N}{60}$
$=\frac{\pi \times 3 \times 300}{60}$
$47.12 \mathrm{~m} / \mathrm{sec}$.
Flow velocity $\left(C_{f}\right)=\frac{\text { volume flow rate }}{\text { net change in area }}$
Net change in area A.
$=\frac{\pi}{4}\left(4^{2}-2^{2}\right)$
$=\frac{\pi}{4} \times(16-4)$
$=\frac{\pi}{4} \times 12=3 \pi$
Flow velocity $\left(C_{f}\right)=\frac{100}{3 \pi}=10.61 \mathrm{~m} / \mathrm{sec}$
So, blade outlet angle (β),
$\tan \beta=\frac{C_{f}}{C_{b}}=\frac{10.61}{47.12}=0.225$
$\beta=\tan ^{-1}(0.225)$
$\beta=12.69^{\circ}$
55.

Ans. (5.04)
Sol. Given
$A_{s}=125 \mathrm{~cm} 2$
$A s=125 \times 10^{2} \mathrm{~mm}^{2}$
$(\eta)_{\text {cathode }}=0.15$
$\mathrm{I}=12+0.2 \mathrm{t}$
$\mathrm{t}=20$ minutes.
$\mathrm{C}($ Plating Constant $)=\mathrm{B} .5 \times 10^{-2} \mathrm{~mm}^{3} / \mathrm{As}$
$C=A .5 \mathrm{~mm}^{3} / \mathrm{A} \mathrm{min}$.
Since current is changing with time we have to Integrate
$\mathrm{T} \rightarrow$ thickness of coating

A Course for ESE \& GATE Mechanical Aspirants

$$
\begin{aligned}
& \frac{d T}{d t}=\frac{C I}{A_{s}} h_{c} \\
& \frac{d T}{d t}=\frac{(1.5)(12+0.2 \mathrm{t})(0.15)}{125 \times 100} \\
& \mathrm{dT}=\frac{(1.5)(12+0.2 \mathrm{t})(0.15) \mathrm{dt}}{125 \times 100} \\
& \mathrm{~T}=\int \mathrm{dT}=\int_{0}^{20} \frac{(0.15)(1.5)(12+0.2 \mathrm{t}) \mathrm{dt}}{125 \times 100} \\
& \mathrm{~T}=\frac{(1.5)(0.15)}{125 \times 100}\left[12 \mathrm{t}+\frac{0.2 \mathrm{t}^{2}}{2}\right]_{0}^{20} \\
& \mathrm{~T}=\frac{(1.5)(0.15)}{125 \times 100}[240+0.1 \times 400] \\
& \mathrm{T}=0.504 \times 10^{-2} \mathrm{~mm} \\
& \mathrm{~T}=5.04 \mu \mathrm{~m}
\end{aligned}
$$

56.

Ans. (48)
Sol. Follower motion equation
$y=4\left(2 \pi \theta-\theta^{2}\right)$
Velocity, $v=\frac{d y}{d \theta}$
$=8(п-\theta)$
Acceleration, $a=\frac{d^{2} y}{d \theta^{2}}$
$=-8$
For max. value of y,
$\frac{d y}{d \theta}=0$
$8(п-\theta)=0$
$\theta=п$
for minimum value of y
at $\theta=0,2 \pi$
$y=0=y_{\text {min }}$
$R_{\text {curvature }}=R_{\text {Base }}+(y+a)_{\text {min }}$
$40=R_{\text {Base }}+(0-8)$
$R_{\text {Base }}=48 \mathrm{~mm}$

A Course for ESE \& GATE Mechanical Aspirants
57.

Ans. (4.51)
Sol. Thermal efficiency of Otto engine $=1-\frac{1}{(r)^{\gamma-1}}$
Where, r is compression ratio $\eta=1-\frac{1}{(8)^{1.4-1}}$
$=0.5647=56.47 \%$
$\eta=\frac{\text { I.P }}{\text { Heat input }}$
Indicated Power (I.P) $=\eta \times$ Heat input
$=0.5647 \times 10=5.647 \mathrm{kw}$
Mechanical efficiency $\left(\eta_{m}\right)==\frac{\text { Brakepowe(B.P.) }}{\text { Indicatedpower(I.P.) }}$
$0.8=\frac{B . P .}{5.647}$
B.P. $=4.51 \mathrm{~kW}$

Brake power is 4.51 kW .
58.

Ans. (A)
Sol. $m=2 k g \quad k=5 N / m$
By applying energy balance

$\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} k x^{2}$
$=2 \times(1.5)^{2}=2 \times v_{f}^{2}+5 \times(.4)^{2}$
$\mathrm{V}_{\mathrm{b}}=1.360 \mathrm{~m} / \mathrm{s}$
59.

Ans. (10)
Sol. Let units of $A=x$

A Course for ESE \& GATE Mechanical Aspirants

Let units of $B=y$
For Aakash.

$X<15$
Given $\mathrm{y} \leq 10$
But $x \geq y$
$10 \leq x \leq 15$
Given above the feasible regions max. revenue will happen at $(15,10):$ max revenue $=$ $14 \times 2000+10 \times 3000$ \qquad (i)

For Shweta

Let units of $A=X_{1}$
Let units of $B=Y_{2}$
Given $X_{2} \leq 10 \& X_{1}<20 \& X_{1} \geq X_{2} \geq 10$.
$X_{2} \leq 10 \& 10 \leq X_{1}<20$.
Maxima will occur at (19, 10).
Max revenue $=19 \times 2000+10 \times 3000$ \qquad (ii)

Difference $=(\mathrm{ii})-(\mathrm{i})=5 \times 2000=10000$ Rs. $=10$ Thousands
60.

Ans. (20 kN)
Sol. Whenever we have internal hinge point, separate that portion

Moment at B
$40 \times 2=R c \times 4$
$\mathrm{Rc}_{\mathrm{c}}=20 \mathrm{kN}$

A Course for ESE \& GATE Mechanical Aspirants
61.

Ans. (114.8 KJ)
Sol. For a constant pressure process,
work done $(W)=p\left(V_{2}-V_{1}\right)$
$\mathrm{W}=\mathrm{mR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
[from ideal gas, eqn. $\mathrm{pV}=\mathrm{mRT}$)
$=m R T_{1}\left[\frac{T_{2}}{T_{1}}-1\right]$
$=1 \times 0.287 \times 400\left[\frac{T_{2}}{T_{1}}-1\right] \ldots$ (i)
Now, at constant pressure, Ideal gas eqn. becomes
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
Since, $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{2 \mathrm{~V}_{1}}{\mathrm{~V}_{1}}$
$\frac{T_{2}}{T_{1}}=2$
Putting eqn. (ii) in eqn. (i) we get
$W=1 \times 0.287 \times 400[2-1]$
$=114.8 \mathrm{KJ}$
62.

Ans. (1167.04 KN)
Sol. Given
$\mathrm{K}=210 \mathrm{MPa}$
$\mathrm{Hi}=20 \mathrm{~mm}$
$\mathrm{H}_{\mathrm{f}}=15 \mathrm{~mm}$
$R=450 \mathrm{~mm}$
$(\mathrm{V})_{\mathrm{R}}=28 \mathrm{~m} / \mathrm{min}$
$B=200 \mathrm{~mm}$
$\mathrm{n}=0.25$
$(\sigma)_{0}=\frac{K E_{T}{ }^{n}}{n+1}$
$E_{T}=$ True Strain $=\ln \frac{A_{i}}{A_{f}}=\ln \frac{I_{f}}{I_{i}}$
$A_{i}=B H_{i}$

A Course for ESE \& GATE Mechanical Aspirants

```
    \(A_{f}=B H_{f}\)
    \(\varepsilon_{\mathrm{T}}=\ln \frac{\mathrm{H}_{\mathrm{i}}}{\mathrm{H}_{\mathrm{f}}}=\ln \frac{20}{15}\)
    \(\epsilon_{\mathrm{T}}=0.2876\)
    \(\sigma_{0}=\) Average flow stress \(=\frac{210 \cdot(0.2876)^{0.25}}{1.25}\)
    \(\sigma_{0}=123.028 \mathrm{mPa}\)
    Rolling Force \(=\sigma_{o} . \mathrm{I} . \mathrm{B}\)
    \(I=\) Contact length \(=\sqrt{R \Delta h}\)
    \(\mathrm{I}=\sqrt{450 \times 5}\)
    \(\mathrm{I}=47.43 \mathrm{~mm}\)
    \(\mathrm{f}=123.028 \times 47.43 \times 200\)
    \(\mathrm{f}=1167.04 \mathrm{KN}\)
```

63.

Ans. ($245 \mathrm{~kJ} / \mathrm{kg}$)
Sol. Temperature at inlet of compressor $\left(\mathrm{T}_{1}\right)=310 \mathrm{k}$

For above (T-S) diagram of Brayton cycle,
Isentropic efficiency $\left(\eta_{\text {isen }}\right)=0.85=\frac{\text { Isentropic work }}{\text { Actual work }}$
$0.85=\frac{h_{2}-h_{1}}{h_{2}^{\prime}-h_{1}}$
$h_{2}^{\prime}-h_{1}=\frac{h_{2}-h_{1}}{0.85}=\frac{C_{p}\left(T_{2}-T_{1}\right)}{0.85}$
Now for $(1-2)$ isentropic process $=\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{y-1 / y}$
$\Rightarrow \mathrm{T}_{2}=517.22 \mathrm{k}$

A Course for ESE \& GATE Mechanical Aspirants

So actual difference in enthalpy $\left(h_{2}^{\prime}-h_{1}\right)=\frac{C_{p}\left(T_{2}-T_{1}\right)}{0.85}$
$=\frac{1.005(517.22-310)}{0.85}$
$=245 \mathrm{~kJ} / \mathrm{kg}$
64.

Ans. (105 KNm)
Sol. Hydrostatic force in $1^{\text {st }} \& 2^{\text {nd }}$ reservoir $=\rho g A \bar{x}$
$\mathrm{A}=\mathrm{h} \times 1$ as width is unity
A $=\mathrm{h}$
$\bar{x} \rightarrow$ centroid of centre of gravity
$=\frac{\mathrm{h}}{2}$
$F_{1}=F_{2}=\rho g A \frac{h}{2}=\frac{\rho g h^{2}}{2}$
$F_{1}=\frac{\rho g h_{1}^{2}}{2}$
$F_{2}=\frac{\rho g h_{2}^{2}}{2}$

Moment around $A=F_{1} \times h^{*}-F_{2} h^{*}$
Centre of pressure $\left(h^{*}\right)=\frac{I_{G}}{A \bar{X}}+\bar{X}$
$I_{G}=\frac{b h^{3}}{12}=\frac{h^{3}}{12}$

$h^{*}=\frac{\frac{h^{3}}{12}}{h \times 1 \times \frac{h}{2}}+\frac{h}{2}=\frac{2 h}{3}$

Now this centre of pressure is from top
from bottom distance of centre of pressure $=\frac{h}{3}$
So, Net moment around A
$=\frac{1}{2} \rho g h_{1}^{2} \times \frac{h_{1}}{3}-\frac{1}{2} \rho g h_{2}^{2} \times \frac{h_{2}}{3}$
$=\frac{1}{2} \rho g\left[\frac{h_{1}^{3}}{3}-\frac{h_{2}^{3}}{3}\right]$
$=\frac{1000 \times 10}{2 \times 3}\left[4^{3}-1^{3}\right]$
$=105 \mathrm{KNm}$
65.

Ans. (5.3\%)
Sol. Case 1
$D=1000$ year
$\mathrm{T}=2 \mathrm{hrs}$.
$\mathrm{CP}=$ Rs. 10
$\mathrm{Ch}=\frac{10}{100} \times 10$
=Rs. 1
T.C. $1=10 \times 1000+480$
$=10 \times 1000+400+\frac{1000}{2} \times 1$
$=10000+400+500$
$=10900$
Case II
$\mathrm{T}=6 \mathrm{mins}$
Cp =Rs. 5
Ch = Rs. 5
T.C. $2=800 \times 10+2 \times 200+\frac{800}{2} \times 1+200 \times 5+\frac{6}{60} \times 200+\frac{200}{2} \times 5$
= Rs. 10320
\% reduction
$=1-\frac{10320}{10900}$
$=0.053$
= 5.3%

A Course for ESE \& GATE Mechanical Aspirants

OUR TOP GRADIANS IN GATE 2020

Avinash Verma
AIR-9
ME

Ajay Gupta
AIR-35
ME

Monarch Joshi
AIR-25 ME

Kartikay Kaushik
AIR-26
CE

Classroom

Vision 2021-Course for ESE \& GATE (Batch-3)

Mechanical Engineering

750+hrs Live Class

Classroom

Vision 2021

A Course for ESE \& GATE Mechanical Aspirants Batch-3

Why take this course?

> 650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
>150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
> Subject \& Full-Length Mock Tests for GATE \& ESE

Dheeraj Sardana | Chandra Shekhar | Rushi Joshi | Harshit Aggarwal

