## GATE 2020

## Electronics \&

 Communication
## Engineering

## Solution

## GENERAL APTITUDE

## 1.

ANS. C
SOL. The untimely loss of life is a cause of serious global concern as thousands of people get killed in accidents every year while many other die of diseases like cardiovascular
2.

ANS. D
SOL. He was not only accused of theft but also of conspiracy.
3.

## Ans. D

SOL. Explicit: Implicit:: Express: Repress
4.

## ANS. C

SOL. The French-speaking couple were upset at the English announcements being longer than the French ones.

## 5.

Ans. A
Sol. Let $x_{2}>x_{1}$


Check
Let $\mathrm{x}_{2}=3$
$X_{1}=2$
$\mathrm{e}^{\mathrm{x} 1}+{ }^{\times 2}=\mathrm{e}^{5}$
$\mathrm{e}^{\mathrm{x} 1}=\mathrm{e}^{2}$
$\mathrm{e}^{\mathrm{x}}=\mathrm{e}^{3}$.
Then $\mathrm{e}^{5}>\mathrm{e}^{2}+\mathrm{e}^{3}$. Which is true
6.

## ANS. B

SOL. East Asian crisis $\rightarrow$ subprime lending crisis $\rightarrow$ banking crisis $\rightarrow$ global financial crisis.
7.

ANS. D
Sol. 60 units of min hand $=5$ units of hour hand.
$\therefore 15$ units of min hand $=\frac{5 \times 15}{50}$ units of hour hand
$=1.25$ units of hour hand
60 units $=360^{\circ}$
1.25 units $=6 \times 1.25^{\circ}$
$=7.5^{\circ}$.
8.

ANS. B

## Sol.


$r^{2}=\frac{a^{2}}{4}+\frac{b^{2}}{4}$
$\because \frac{\mathrm{b}^{2}}{4}=\mathrm{r}^{2}-\frac{\mathrm{a}^{2}}{4}$
$b= \pm \sqrt{4 r^{2}-a^{2}}$
$b^{2}=4 r^{2}-a^{2}$
Area $A=a b$
$= \pm a \sqrt{4 r^{2}-a^{2}}$
$A^{2}=a^{2}\left(4 r^{2}-a^{2}\right)$
$\frac{d A^{2}}{d a} 4 r^{2} \times 2 a-4 a^{3}=0$
$4 a\left(2 r^{2}-a^{2}\right)=0$
$\Rightarrow a^{2}=2 r^{2}$
$\therefore \mathrm{b}^{2}=4 \mathrm{r}^{2}-2 \mathrm{r}^{2}$

A Course for ESE \& GATE Electronics Aspirants

$$
\begin{aligned}
& =2 r^{2} . \\
& \therefore \text { area of rectangle }=(r \sqrt{2})^{2} \\
& =2 r^{2} . \\
& \text { area of circle }=\pi r^{2} . \\
\therefore & \text { Required area }=(\pi-2) r^{2}
\end{aligned}
$$

9. 

Ans. B
Sol. $A x^{2}-b x+c=0$
$2 \beta=\frac{b}{a} \Rightarrow \beta=\frac{b}{2 a}-\cdots--(1)$
$\beta^{2}=\frac{c}{a}-----$ (ii)
(i) $\times$ (ii)given $\beta^{3}=\frac{\mathrm{bc}}{2 \mathrm{a}^{2}}$
10.

Sol. No of students enrolled in P = 3 + 5 + 5 + 6 + 4 = 23
No of students enrolled in $\mathrm{Q}=4+7+8+7+5=31$
$\therefore$ ratio $=\frac{23 / 5}{(31-23) 15}=\frac{23}{8}=2.875$

## TECHNICAL

11. 

## ANS. (6.25-6.25)

## Sol.

Given, characteristic impedance $Z_{0}=50 \Omega$
Load impedance $Z_{L}=400$
And input impedance $Z_{\text {in }}=\left(Z_{0}\right)^{2} / Z_{L}$

$$
=50^{2} / 400
$$

$$
=6.25 \Omega
$$

12. 

## ANS. (48-48)

Sol. Old Parameters -

$$
\begin{align*}
& \mathrm{V}_{1}=40 \mathrm{i}_{1}+60 \mathrm{i}_{2}  \tag{i}\\
& \mathrm{~V}_{2}=60 \mathrm{i}_{1}+120 \mathrm{i}_{2} \tag{ii}
\end{align*}
$$

$Z_{\text {th }}$ by testing method


KVL in mesh (i)
$10 i_{1}+V_{1}=0$
$\mathrm{V}_{1}=-10 \mathrm{i}_{1}$
And $\mathrm{i}_{2}=1 \mathrm{~A}$


From eq. (i)
$V_{1}=40 i_{1}+60 \times 1$

A Course for ESE \& CATE Electronics Aspirants

$$
\begin{aligned}
& -10 i_{1}=40 i_{1}+60 \\
& i_{1}=-6 / 5 \\
& \mathrm{~V}_{2}=60 \times\left(-\frac{6}{5}\right)+120 \times 1 \\
& =-72+120 \\
& =48 \mathrm{~V} \\
& \therefore \text { to deliver max. power to load } \mathrm{ZL} \\
& \mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}} \\
& \therefore \mathrm{z}_{\mathrm{L}}=\frac{\mathrm{V}_{2}}{\mathrm{i}_{2}}=\frac{48}{1} \\
& =48 \Omega
\end{aligned}
$$

13. 

Ans. B
Sol. Umax occurs at the edges of the depletion region in the device..
14.

ANS.-B
Sol.


KVL in Loop (i)
$(i \times 1)-2(3-i)-2(1-i)+2=0$
$i-6+2 i-2+2 i+2=0$
$5 i=6$
$\mathrm{i}=1.2 \mathrm{~A}$
$\therefore \mathrm{V}_{\mathrm{th}}=2 \times(3-\mathrm{i})$
$=2 \times(3-1.2)$
$=3.6$ volts
15.

ANS. A
Sol. $\quad E_{f_{i}}=\frac{E_{C}+E_{V}}{2}-\frac{k T}{2} \ln \frac{N_{C}}{N_{V}}$
$=\frac{\mathrm{E}_{\mathrm{g}}}{2}-\frac{\mathrm{kT}}{2} \ln \frac{\mathrm{~N}_{\mathrm{C}}}{2 \mathrm{~N}_{\mathrm{C}}}\left(\because \mathrm{N}_{\mathrm{v}}=2 \mathrm{~N}_{\mathrm{c}}\right)$
$E_{F_{1}}=\frac{E_{g}}{2}-\frac{k T}{2} \ln \left(\frac{1}{2}\right)$
$\mathrm{E}_{\mathrm{F}_{\mathrm{i}}}=\frac{\mathrm{E}_{\mathrm{g}}}{2}+9.01 \mathrm{meV}$
16.

Ans. ( 6 - 6)
Sol. Given $Y=\int_{-\infty}^{\infty} w(t) s(t) d t$, where $\phi(t)=\left\{\begin{array}{cc}1 & 5 \leq t \leq 7 \\ 0 & \text { otherwise }\end{array}\right.$
$S_{w}(f)=3 W / H z$
$E(Y)=\int_{-\infty}^{\infty} E(w(t)) \phi(t) d t=0$
$E\left[Y^{2}\right]=S_{w}(f) \quad$ energy $\varphi(t)$

$$
=6
$$

$\operatorname{Var}[\mathrm{Y}]=6-0=6$
17.

## ANS. (0.25-0.25)

Sol. There can be 4 out comes.
$\{\mathrm{HH}\},\{\mathrm{HT}\},\{\mathrm{TH}\},\{\mathrm{TH}\}$.
$\therefore$ Let 1 is denoted by head
$\therefore$ Let 0 is denoted by Tail.
$\therefore M=\left\{\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right\}$
$N=\left\{\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right\}$
$X=\min (M, N)=1000$.
$P(X)=\frac{1}{4} \frac{1}{4} \frac{1}{4} 1 / 4$
Now, $X=1$
When $\{\mathrm{HH}\}$ comes up
$\therefore \mathrm{P}(\mathrm{X}=1)=\mathrm{P}[\{\mathrm{H} H\}]$
$=\frac{1}{4}$
Now $X=0$ when $\{H T\},\{T H\}$ or $\{T T\}$ come up
When
$\therefore P(X=0)=\frac{1}{4}$,
$\therefore \mathrm{E}(\mathrm{x})=\frac{1}{4} \times 1=0.25$
18.

## ANS.C

## Sol.

$$
\begin{aligned}
& F=\bar{P} \bar{Q} R+P \bar{Q} R+P Q \\
& =\bar{P} \bar{Q} R+P \bar{Q} R+P Q \bar{R}+P Q R \\
& =\Sigma m(1,5,6,7)
\end{aligned}
$$


19.

## ANS-D

## Sol.

error probability $=a$
correct probability $=1-a$
' N ' Bits So
Correct probability $=(1-a)(1-a) \ldots$.. ${ }^{\prime}$ 'times $=(1-a)^{N}$
Erroneous probability $=1-$ correct probability $=\left[1-(1-a)^{N}\right]$.
20.

ANS. (160-160)
Sol. Closed loop characteristic equations

$$
\begin{aligned}
& 1+G(s) H(s)=0 \\
& 1+\frac{\mathrm{K}(\mathrm{~s}+11)}{\mathrm{s}(\mathrm{~s}+2)(\mathrm{s}+8)}=0 \\
& s^{3}+10 s^{2}+16 s+K s+11 K=0 \\
& s^{3}+10 s^{2}+(16+k) s+11 K=0
\end{aligned}
$$

A Course for ESE \& GATE Electronics Aspirants

For marginal stable system
$\frac{10(16+K)-11 K}{10}=0$
$160+10 \mathrm{~K}-11 \mathrm{~K}=0$
$K=160$
21.

ANS. (644-657)
Sol. The circuit shown is a voltage doubler. So $\mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{m}}$


So the peak value at ' $P$ ' $m 2 \mathrm{Vm}$, Then the voltage across $\mathrm{C}_{2}$ which is $2 \mathrm{~V}_{\mathrm{m}}$.
$\therefore \mathrm{Vo}=2 \mathrm{Vm}$ where $\mathrm{V}_{\mathrm{m}}=230 \sqrt{2}=325.27 \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}}=650.5 \mathrm{~V}$
22.

Ans. C
Sol. $Y(n)=\max _{-\infty \leq K \leq n}[X(K)]$
$Y(n)=\max [\delta(K)]=1 \quad-\infty \leq K \leq n$
$Y(n)$ is 1 for all $n$.
23.

Ans. D
Sol. $Y(n)=\sum_{K=0}^{3}(-1)^{K} X(n-K)$
$Y(n)=X(n)-X(n-1)+X(n-2)-X(n-3)$
$Y(z)=1-z^{-1}+z^{-2}-z^{-3}$
$y(z)=\frac{z^{3}-z^{2}+z^{1}-1}{z^{3}}$
3 poles at $z=0$ and number of zeros is 4
So the option (D) is correct

A Course for ESE \& GATE Electronics Aspirants
24.

Ans. C
Sol.
25.

Ans. D
Sol. $D^{2}-6 D+9=0$
$\Rightarrow(D-3)^{2}=0$
$D=3,3 \rightarrow$ equal roots
$\therefore \mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) \mathrm{e}^{3 \mathrm{x}}$.
26.

ANS. 2.80-2.85
Sol. Given
$V_{s}=200 \cos 5 t$
$\mathrm{i}(\mathrm{t})=10 \cos \left(5 \mathrm{t}-\frac{\pi}{4}\right)$
By KVL
$V_{s}(\mathrm{t})=\mathrm{i}(\mathrm{t}) \mathrm{Z}$
And $z=R+j \omega L=R+j X_{L}$
$|Z|=\sqrt{R^{2}+X_{L}^{2}}=\frac{V_{m}}{i_{m}}=\frac{200}{10}$
$\therefore|Z|=20$
Or simply $\sqrt{R^{2}+X_{L}^{2}}=20$
Given,

$$
\theta=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}\right)
$$

$=45^{\circ}$
$\therefore \frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=\tan \left(45^{\circ}\right)=1$
$\therefore \mathrm{X}_{\mathrm{L}}=\mathrm{R}$
From equation (i) and (ii)
$\sqrt{R^{2}+X_{L}^{2}}=20$
$\sqrt{X_{L}^{2}+X_{L}^{2}}=20$
$X_{L} \sqrt{2}=20$
$X_{L}=14.14 \Omega$
Or $\omega \mathrm{L}=14.14$
Given $\omega=5 \mathrm{rad} / \mathrm{sec}$
$\therefore \mathrm{L}=2.828 \mathrm{H}$
27.

ANS. (6-6)
Sol. Applying virtual ground

$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{f}}$
$\frac{2-0}{1 K}=\frac{V_{0}-2 V}{1 K}$
$2 m A=\frac{V_{0}-2 V}{1 K}$
$\mathrm{V}_{\mathrm{o}}=4 \mathrm{~V}$
$\therefore \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{O}}-0}{1 \mathrm{~K}}=\frac{4-0}{1 \mathrm{~K}}=4 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{f}}=4 \mathrm{~mA}+2 \mathrm{~mA}\left(\because \mathrm{I}_{\mathrm{f}}=\mathrm{I}_{1}=2 \mathrm{~mA}\right)$
$=6 \mathrm{~mA}$
28.

Sol. 3.050-3.080
$(13 \mathrm{~A})_{16}=(?)_{10}$
$=1 \times(16)^{2}+3 \times(16)^{1}+10 \times(16)^{0} \quad\{\mathrm{~A}=10\}$
$=256+48+10$
$=314$
$(13 A)_{16}=(314)_{10}$
Output voltage $=$ Resolution $\times$ Decimal equivalent

$$
=\frac{10}{2^{10}} \times 314=\frac{10}{2^{10}} \times 314=\frac{10}{1024} \times 314=3.065
$$

29. 

ANS. 14-14
Sol.


## Vision 2021 Batch-3

A Course for ESE \& GATE Electronics Aspirants

16K
$16 \times 2^{10} \times 8$ Bit
$2^{4} \times 2^{10} \times 8$ bits
[8 data line for 8085 microprocessor]
$2^{14} \times 8$ Bits
$\mathrm{n}=14$
So, required address line $=14$
30.

Ans. C
Sol. Given number of closed loop poles 2 in contour and number of closed loop 3 zero in contour. $P=2$ and $Z=3$. So effective number of encirclements to the origin is once in clockwise direction.
31.

## ANS. (0.5-0.5)

Sol. There are only two symbols
$X=-2$
$X=2$
Maximum entropy occurs for equal probability
$H(X)_{\max }=\log _{2}^{2}=1$
$P(X=2)=\frac{1}{2}$
$P(X=-2)=\frac{1}{2}$
32.

ANS. B
Sol. $Z=j X$
$R=0$ (constant)
Hence, its mapping to the smith chart will represent a circle which has centre $\left(\frac{R}{R+1}, 0\right) \equiv(0,0)$
33.

ANS. C
Sol. $\frac{\partial f}{\partial x}=e^{(1-x \cos y)}(-\cos y)+z e^{\left(-\frac{1}{1+y 2}\right)}$

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial x}\right)_{(1,0, e)}=e^{0}(-1)+e e^{-1} \\
& =-1+1=0
\end{aligned}
$$

A Course for ESE \& GATE Electronics Aspirants
34.

ANS. A
Sol. $\quad V_{N}=V_{i} \frac{1 k}{2 k}+V_{o} \frac{1 k}{2 k}$
$V_{N}=\frac{V_{i}+V_{0}}{2}$
$\mathrm{V}_{\mathrm{N}}>0 \Rightarrow \mathrm{~V}_{\mathrm{o}}=+\mathrm{V}_{\text {sat }}$
Where $V_{N}=\frac{V_{i}+V_{0}}{2}$
If $\mathrm{V}_{0}=+\mathrm{V}_{\text {sat }} \Rightarrow \mathrm{V}_{\mathrm{N}}=\frac{1+5}{2}=3 \mathrm{~V}$ if $\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$ peak
$\mathrm{V}_{\mathrm{N}}=\frac{-1+5}{2}=2 \mathrm{~V}$ if $\mathrm{V}_{\mathrm{i}}=-1 \mathrm{~V}$ peak
If $\mathrm{V}_{\mathrm{o}}=-\mathrm{V}_{\text {sat }} \Rightarrow \mathrm{V}_{\mathrm{N}}=\frac{1-5}{2}=-2$ if $\mathrm{Vi}=+1 \mathrm{~V}$ peak
$\Rightarrow V_{N}=\frac{-1-5}{2}=-3$ if $V_{i}=-1 \mathrm{~V}$ peak
So the output is either $+\mathrm{V}_{\text {sat }}$ or $-\mathrm{V}_{\text {satas }} \mathrm{V}_{\mathrm{N}}$ is not crossing ${ }^{\prime} \mathrm{O}^{\prime}$.
35.

Ans. C

## Option c is correct

36. 

Ans. (3-3)
Sol. as ML detector is used, the decision boundary between two adjacent signal points will be their arithmetic mean. $\therefore$
for $s_{1}=-3$, the probability of error $\left(p_{1}\right)$ :

$P_{1}=1$ - (shaded area)
for $s_{2}$ : The probability of error ( $\mathrm{P}_{2}$ )


A Course for ESE \& GATE Electronics Aspirants
$P_{2}=1$ - (shaded area)
for $s_{3}$ : the probability of error $P_{3}$.

$P_{3}=1$ - (shaded area)
for $\mathrm{s}_{4}$ : The probability of error ( $\mathrm{P}_{4}$ )

$P_{4}=1$ - (shaded area) By concluding above graph
$P_{3}$ i.e. probability of error when s3 is transmitted is larger among the four.
$\therefore \mathrm{I}=3$
37.

ANS. D
Sol. $s^{3}+3 s^{2}+2 s+K(s+3)=0$
$1+\frac{K(s+3)}{s+\left(s^{2}+3 s+2\right)}=0$
$1+\frac{\mathrm{K}(\mathrm{s}+3)}{\mathrm{s}(\mathrm{s}+1)(\mathrm{s}+2)}=0$
Compare it with $1+G(s) H(s)=0$
$G(s) H(s)=\frac{K(s+3)}{s(s+1)(s+2)}$


Breakaway point is in between $(0,-1)$

## A Course for ESE \& GATE Electronics Aspirants

38. 

ANS. C
Sol. $x(t)=m(t) \cos (2 \pi f c t)$
$m^{\prime}(\mathrm{t})=4 \cos (1000 \mathrm{nt})$
$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$
$Z(t)=m(t) \cos \left(2 \pi f_{c} t\right) \cos \left[2 \pi\left(f_{c}+40\right) t\right]$
$=\frac{\mathrm{m}(\mathrm{t})}{2} \cos \left[2 \pi 2 \mathrm{f}_{\mathrm{c}}+40\right]++\cos (\pi \times 40) \mathrm{t}$
$=\cos (1080 \pi \mathrm{t})+\cos (920 \pi \mathrm{t})$
$=f_{m 1}=540 \mathrm{~Hz}, \quad f_{m 2}=460 \mathrm{~Hz}$
So $y(t)=\cos 920 n t$
39.

Ans. B
Sol. From the figure, $\mathrm{Ec}-\mathrm{Ev}=1 \mathrm{eV}=0.5 \mathrm{Ev}+\mathrm{q} \varphi \mathrm{B}+0.2 \mathrm{eV}$
$\Rightarrow \mathrm{q} \varphi \mathrm{B}=0.3 \mathrm{eV}$
$\Rightarrow \varphi_{\mathrm{B}}=0.3 \mathrm{~V}$, where $\mathrm{q}_{\mathrm{B}}=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{FS}}$
The magnitude of depletion charge density
$\rho_{S}=\sqrt{2 \epsilon_{S} N_{A} \psi_{S}}$
where, $\psi_{\mathrm{s}}=2 \varphi \mathrm{~B}=2 \times 0.3 \mathrm{~V}=0.6 \mathrm{~V}$
Voltage across capacitor,
$V_{T H}=V_{F B}+\frac{\sqrt{2 \epsilon_{\mathrm{S}} \mathrm{N}_{\mathrm{A}} \psi_{\mathrm{S}}}}{\mathrm{C}_{\mathrm{oX}}^{\prime}}+\psi_{\mathrm{S}}$
where, $\mathrm{V}_{\mathrm{FB}}=\varphi_{\mathrm{ms}}=\varphi_{\mathrm{m}}-\varphi \mathrm{S}$

$$
\begin{equation*}
=3.87-4.8 \tag{4}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{FB}}=\varphi_{\mathrm{ms}}=-0.93 \mathrm{~V}$
From (1), (2), (3) \& (4),
$\rho_{\mathrm{s}}=1.7 \times 10^{-8} \mathrm{C} / \mathrm{cm}^{2}$
40.

## ANS. (-2-2)

Sol. Magnitude will become constant for all pass system
$H(z)=\frac{Z-a}{Z+b}$
$\mathrm{b}=\frac{1}{\alpha^{*}}$
$\alpha=\frac{1}{0.5}$
$\mathrm{a}=2$

A Course for ESE \& GATE Electronics Aspirants
41.

Ans. D
Sol. $X(t)=\cos (200 \varphi t)$

$$
\begin{aligned}
& t=\frac{n}{400} n=0,1, \ldots 7 \\
& x(n)=\cos \left(200 \pi \times \frac{n}{400}\right)=\cos \left(\frac{\pi}{2} \cdot n\right) \\
& x[0]=1 \\
& x[1]=0 \\
& x[2]=-1 \\
& x[3]=0 \\
& x[4]=1 \\
& x[5]=0 \\
& x[6]=-1 \\
& x[7]=0 \\
& x[0]=\{1,0,-1,0,1,0,-1,0\} \\
& x(K)=\sum_{n=0}^{7} x[n] e^{-j \frac{\pi}{4} K \cdot n} \\
& x(3)=\sum_{n=0}^{7} x[n] e^{-j \frac{\pi}{4} 7 . n} \\
& \left(\frac{1}{\sqrt{2}}-j \frac{1}{2}\right)^{n} \neq 0 \\
& e^{-j \frac{7 \pi}{4}}=\cos \frac{7 \times 180}{4}-\frac{j \sin 7 \times 180}{4}=\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}
\end{aligned}
$$

42. 

Ans. A
Sol. If output of sequence is 1 , then it is transversed. So,

| $\mathrm{S}_{0}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 0 |

43. 

Ans. A
Sol.


KVL in Loop
$-0.5 \frac{\mathrm{di}}{\mathrm{dt}}-\mathrm{V}+\left(\mathrm{i}_{1}-\mathrm{i}\right) 2=0$
$\frac{d i}{d t}=-2 V+(-4 i)+4 i_{1} \ldots$ (i)
KCL at node V
$-i+C \frac{d V}{d t}+\frac{V}{1}-i_{2}=0$
$-i+0.25 \frac{d V}{d t}+V-i_{2}=0$
$0.25 \frac{\mathrm{dV}}{\mathrm{dt}}=-\mathrm{V}+\mathrm{i}+\mathrm{i}_{2}$
$\frac{d V}{d t}=-4 V+4 i+4 i_{2}$
write eqn. (i) and (ii) in matrix from
$\frac{d}{d t}\left[\begin{array}{l}V \\ i\end{array}\right]=\left[\begin{array}{cc}-4 & 4 \\ -2 & -4\end{array}\right]\left[\begin{array}{l}V \\ i\end{array}\right]+\left[\begin{array}{ll}0 & 4 \\ 4 & 0\end{array}\right]\left[\begin{array}{l}i_{1} \\ i_{2}\end{array}\right]$
option (A) is correct.
44.

Ans. C

## Sol.

$\left.\begin{array}{rl}x_{1}+2 X_{2} & =b_{1} \\ 2 X_{1}+4 X_{2} & =b_{2}\end{array}\right\} 2 b_{1}=b_{2}$
$3 x_{1}+7 X_{2}=b_{3} \ldots$ (i)
$3 x_{1}+9 x_{2}=b_{4} \ldots$ (ii)
In eqn. (i) we can write as
$3 X_{1}+6 X_{2}+X_{2}=b_{3}$
$3 b_{1}+X_{2}=b_{3}$
$X_{2}=b_{3}-3 b_{1}$
and in eqn. (ii)
$3 X_{1}+6 X_{2}+3 X_{2}=b_{4}$
$3 b_{1}+3\left[b_{3}-3 b_{1}\right)=b_{4}$
$-6 b_{1}+3 b_{3}-b_{4}=0$
$6 b_{1}-3 b_{3}+b_{4}=0$
option (B) is correct

A Course for ESE \& GATE Electronics Aspirants
45.

Ans. C
Sol. During sampling, MOSFET must be as ON switch.
$\Rightarrow \mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{TH}}$
$\Rightarrow\left(V_{G}-V_{S}\right)>V_{T H}$
$\Rightarrow \mathrm{V}_{\mathrm{G}}>\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{TH}}$
$\Rightarrow \mathrm{V}_{\mathrm{G}}>10+3 \mathrm{~V}$

$$
\begin{equation*}
\because \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{I}, \max }=10 \mathrm{~V} \tag{1}
\end{equation*}
$$

$\Rightarrow \mathrm{V}_{\mathrm{G}}>13 \mathrm{~V}$
During hold, MOSFET must be as OFF switch.
$\Rightarrow \mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{TH}}$
$\Rightarrow\left(\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{s}}\right)<\mathrm{V}_{\mathrm{TH}}$
$\Rightarrow \mathrm{V}_{\mathrm{G}}<\left(\mathrm{V}_{\mathrm{S}}+\mathrm{V}_{\mathrm{TH}}\right)$
$\Rightarrow \mathrm{V}_{\mathrm{G}}<-7 \mathrm{~V}$
$\therefore \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{I}, \text { min }}=-10 \mathrm{~V}$
46.

Ans. D
Sol. $\frac{d y}{y-1}=x d x$
$\int \frac{d y}{y-1}=\int x d x$

Such that $y \neq 1$.
47.

Ans- (58.50-58.80)
Sol.

$E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega=\int_{-\infty}^{\infty} X^{2}(t) d t$
$\int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega=2 \pi \int_{-\infty}^{\infty} X^{2}(t) d t$

A Course for ESE \& GATE Electronics Aspirants

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x^{2}(t) d t=\int_{-1}^{0}(t+1)^{2} d t+\int_{0}^{1}(2 t+1)^{2} d t+\int_{1}^{2}(-2 t+5)^{2} d t+\int_{2}^{3}(-t+3)^{2} d t \\
& =9.33 \\
& \int_{-\infty}^{\infty}|X(\omega)|^{2}=2 \pi \times 9.33=2 \times 3.14 \times 9.33=58.5924
\end{aligned}
$$

48. 

Ans. D

## Sol.


$\mathrm{i}_{2}=\frac{120 \angle-90^{\circ}}{\mathrm{Z}}=\frac{120 \angle-90^{\circ}}{(80-35 \mathrm{j})}$
$=1.3742 \angle-66.37^{\circ}$
And
$+120 \angle-30^{\circ}+Z \mathrm{i}_{4}=0$
$\mathrm{i}_{4}=\frac{-\left(120 \angle-30^{\circ}\right)}{Z}$
$=\frac{120 \angle 150}{Z}$
$=\frac{120 \angle 150}{(80-35 \mathrm{j})}$
$=1.3742 \angle 173.62^{\circ}$
$\mathrm{i}_{4}=\mathrm{i}+\mathrm{i}_{2}$
$\therefore \mathrm{i}=\mathrm{i}_{4}-\mathrm{i}_{2}$
$=(1.3742 \angle 173.62)-1.3742 \angle-66.37^{\circ}$
$=2.38 \angle 143.625^{\circ}$

A Course for ESE \& GATE Electronics Aspirants
49.

Ans. (1-1)
Sol. Given,
$\vec{H}(x, y, z, t)=\left(a x+2 a y+b+a_{z}\right) \cdot \cos (\omega t+3 x-y-z) A / m$
For a uniform wave,
$\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{H}}_{\mathrm{o}}=0, \overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{E}}_{0}=0, \overrightarrow{\mathrm{E}}_{0} \cdot \overrightarrow{\mathrm{H}}_{\mathrm{o}}=0$
i.e., $\overrightarrow{\mathrm{E}}, \overrightarrow{\mathrm{H}}$ and $\overrightarrow{\mathrm{k}}$ are mutually perpendicular to each other.
( $\vec{k}$ is the vector along the direction of wave propagation)
Comparing the given expression of $\overrightarrow{\mathrm{H}}$ with the standard expression.
$\vec{k}=3 a_{x}-a_{y}-a_{z}$
And, $\overrightarrow{\mathrm{H}}_{\mathrm{o}}=\left(\mathrm{a}_{\mathrm{x}}+2 \mathrm{a} \mathrm{y}+\mathrm{baz}\right)$
Then, $\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{H}}_{\mathrm{o}}=3-2-\mathrm{b}=0$
$\Rightarrow b=1$
50.

Ans. - (2-2)
Sol. $S_{p m}(t)=\cos \left[1000 n t+K_{p m}(t)\right]$
$S_{F m}(t)=\cos \left[1000 \pi t+K_{P} \int_{\infty}^{t} m(\tau) d \tau\right]$
Maximum instantaneous frequency in FM.
$f_{i}=\frac{1}{2 \pi}\left[\frac{d}{d t} \theta_{i}(t)\right]$
$f_{i}=\frac{1}{2 \pi}\left[1000 \pi t+K_{f} m(t)\right]$
And maximum instantaneous frequency in PM
$f_{i}=\frac{1}{2 \pi}\left[1000 \pi+\frac{d}{d t} k_{p} m(t)\right]$
$\frac{d}{d t} m(t)$


A Course for ESE \& GATE Electronics Aspirants

$$
\begin{equation*}
f_{i}=\frac{1}{2 \pi}\left[1000 \pi+K_{p} \times 5\right] \tag{ii}
\end{equation*}
$$

Given maximum instantaneous frequency is same

$$
\begin{aligned}
& \frac{1}{2 \pi}\left[1000 \pi+K_{f} m(t)\right]=\frac{1000 \pi}{2 \pi}+\frac{5 K_{P}}{2 \pi} \\
& \mathrm{~K}_{\mathrm{f}} \times 10=5 \mathrm{Kp}_{\mathrm{p}} \\
& \frac{\mathrm{~K}_{\mathrm{p}}}{\mathrm{~K}_{\mathrm{f}}}=2
\end{aligned}
$$

51. 

Ans. (0.8 to 0.8)
Sol. $\mathrm{S}_{12}=\dot{\mathrm{S}}_{21}=\frac{2 \mathrm{n}}{\mathrm{n}^{2}+1}=\frac{4}{4+1}=0.8$
52.

Ans. B
Sol.


$$
P+Q+R=-11
$$

53. 

Ans. B
Sol. Fill factor, $F F=\frac{P_{0}}{V_{O C} I_{S C}} \ldots$ (1)
Efficiency, $\eta=\frac{P_{0}}{P_{\text {in }}}$
where $P_{\text {in }}=100 \frac{\mathrm{~mW}}{\mathrm{~cm}^{2}} \times$ Area
$=100 \frac{\mathrm{~mW}}{\mathrm{~cm}^{2}} \times 1 \mathrm{~cm}^{2}$
$=100 \mathrm{~mW}$.
$0.15=\frac{P_{0}}{100 \mathrm{~mW}}$
$\therefore \mathrm{P}_{0}=15 \mathrm{~mW}$

A Course for ESE \& GATE Electronics Aspirants
(1) $\Rightarrow 0.8=\frac{15 \mathrm{~mW}}{0.7 \times \mathrm{I}_{\mathrm{SC}}}$

Isc $=0.027 \mathrm{~A}$
Optical generation rate,
$\mathrm{G}_{\text {avg }}=\frac{\mathrm{I}_{\mathrm{SC}}}{\mathrm{q} \times \text { Area } \times \text { thickness }}$
$=\frac{0.027}{1.6 \times 10^{-19} \times 1 \times 200 \times 10^{-4}}$
$=0.837 \times 10^{19} / \mathrm{cm}^{3} / \mathrm{S}$
54.

Ans. D
Sol. B


$$
\begin{aligned}
& V_{\text {test }}=-V_{g s} \\
& =r_{\text {ds }}\left(I_{\text {test }}-g_{m} V_{\text {test }}\right)+I_{\text {test }} R \\
& V_{\text {test }}\left(1+g_{m} r_{d s}\right)=I_{\text {test }}\left(r_{\text {ds }}+R\right) \\
& \frac{V_{\text {test }}}{I_{\text {test }}}=R e q=\frac{r_{\text {ds }}+R}{1+g_{m} r_{d s}}
\end{aligned}
$$

55. 

ANS. A
Sol. $A_{V}=\frac{-\left[R_{C} \| R_{L}\right]}{r_{e}}$

$$
\mathrm{r}_{\mathrm{e}}=\frac{26 \mathrm{mV}}{\mathrm{I}_{\mathrm{E}}}
$$

DC analysis of the circuit gives,

$$
\begin{aligned}
& I_{E}=\frac{10-0.7}{20 \mathrm{k}}=0.465 \mathrm{~mA} \\
& \therefore \mathrm{r}_{e}=55.9 \Omega \\
& \therefore \mathrm{~A}_{V}=\frac{-(10 \mathrm{k}| | 10 \mathrm{k})}{55.9}=-89.4
\end{aligned}
$$

56. 

## ANS. $B$

57. 

Ans. 2.25 (2.25-2.25)
Sol. From the figure

$X=0$ to 3 .
$Y=0$ to 1
$Z=0$ to $1-Y$
$=\int_{0}^{3} \int_{0}^{1} \int_{0}^{Y-1} X d Z d Y d X$
$=\int_{0}^{3} \int_{0}^{1} X(Z) d Y d X$
$=\int_{0}^{3} \int_{0}^{1} X(1-Y) d Y d X$
$=\left.\int_{0}^{3} X\left(Y-\frac{Y^{2}}{2}\right)\right|_{0} ^{1} d X$
$=\int_{0}^{3} x \frac{1}{2} d x$
$=\left.\frac{x^{2}}{4}\right|_{0} ^{3}=\frac{9}{4}=2.25$
58.

ANS. (4-4)
Sol.


Where $M=|G(j \omega)|_{\omega=\omega 0}$

$$
\begin{aligned}
& G(j \omega)=\frac{1}{(1+j \omega)+(a+j \omega)} \\
& |G(j \omega)|=\frac{1}{\sqrt{\left(\omega^{2}+1\right)\left(\omega^{2}+a^{2}\right)}} \\
& M=|G(j \omega)|_{\omega=3}=\frac{1}{\sqrt{(10)\left(a^{2}+9\right)}} \\
& A M=\frac{1}{\sqrt{10}}=\frac{5}{\sqrt{10} \sqrt{a^{2}+9}} \\
& a^{2}+9=25 \\
& a^{2}=16 \\
& a=4 \\
& \because a>0
\end{aligned}
$$

59. 

Ans. A
insufficient data
60.

Ans. 76.92 (76-78)
Sol. Total maximum propagation delay $=\left(T_{p d}+T_{\text {setup }}\right)_{\max }=8 n s+5 n s=13 n s$ frequency of operation $=\left(\frac{1000}{13}\right) \mathrm{MHz}=76.92 \mathrm{MHz}$
61.

Ans. 800 (800-800)
Sol.


Voltage $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{z}}+\mathrm{V}_{\mathrm{BE}}$

$$
=3.3+0.7
$$

A Course for ESE \& GATE Electronics Aspirants

$$
\begin{aligned}
& V_{B}=4 V \ldots(\mathrm{i}) \\
& \therefore \quad I=\frac{9-4}{1 K}
\end{aligned}
$$

$$
\mathrm{I}=5 \mathrm{~mA}
$$

Since base cement is negligible,

$$
\begin{aligned}
& V_{B}=9 \times \frac{R_{2}}{R_{1}+R_{2}} \\
& 4=\frac{9 R_{2}}{1 K+R_{2}} \Rightarrow R_{2}=800 \Omega
\end{aligned}
$$

62. 

## ANS. B

Sol. The circuit show is LPF
Applying virtual ground,


$$
\begin{aligned}
& I=I_{1}+I_{2} \\
& \frac{V_{i}-0}{R}=\frac{0-V_{0}}{R}+\frac{0-V_{0}}{1 / C S} \\
& =-V_{0}\left[\frac{1}{R}+C S\right] \\
& \frac{V_{0}}{V_{i}}=\left[\frac{1}{1+R C S}\right] \\
& \therefore \omega=\frac{1}{R C} \\
& \Rightarrow f=\frac{1}{2 \pi R C}=\frac{1}{2 \pi\left(2 \times 10^{3}\right)\left(1 \times 10^{-6}\right)}=79.58 \mathrm{~Hz}
\end{aligned}
$$

63. 

Ans. B*
Sol. insufficient data
Ans.
Sol. We know that

A Course for ESE \& GATE Electronics Aspirants

$$
\begin{aligned}
& C_{d} \propto \frac{1}{\sqrt{V_{0}+V_{R}}} \\
& \frac{1}{\left(C_{d}\right)^{2}}=K\left(V_{0}+V_{R}\right) \\
& \frac{1}{\left(50 \times 10^{-12}\right)^{2}}=K\left[V_{0}+V_{R}\right]
\end{aligned}
$$

Reverse bias voltage given $\mathrm{V}_{\mathrm{R}}=0.2 \mathrm{~V}$
$\mathrm{V}_{0}=$ applied voltage.

$$
K=\frac{1}{2500\left(V_{0}+V_{R}\right)} \times 10^{24}
$$


value of $V_{0}$ is not given so
slope will not to be calculated
64.

## ANS. (0.3-0.3)

Sol. Given ( 0.3 to 0.3 )
$f_{x}(x)=\left\{\begin{array}{cc}1 / 12 & -2 \leq x \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$
As $\mathrm{y}=2 \mathrm{x}-6$
So, $f_{y}(y)=\left\{\begin{array}{cc}1 / 24 & -10 \leq x \leq 14 \\ 0 & \text { otherwise }\end{array}\right.$
If $x \geq 5$ then $y \geq 4$
So, $P(y \leq 7 / x \geq 5)=P(Y \leq 7 / y \geq 4)$

$$
=\frac{P(4 \leq y \leq 7)}{P(4 \leq y \leq 14)}=\frac{3}{10}=0.3
$$



A Course for ESE \& GATE Electronics Aspirants

## 65.

ANS. (30-30)
Sol. OLTF $=\frac{K(s+1)}{(s+3)} \times \frac{1}{s(s+1)}$
OLTF $=\frac{\mathrm{K}}{\mathrm{s}(\mathrm{s}+3)}$
It is type ' 1 ' system
Steady state error for unit ramp input

$$
e_{s s}=\frac{1}{K_{v}}
$$

Where
$K_{p}=\lim _{s \rightarrow \infty} s \times \frac{K}{s(s+3)}=\frac{K}{3}$
$e_{s s}=\frac{1}{K / 3}=\frac{3}{K}$
According to question, $\mathrm{e}_{\text {ss }}=0.1$
$0.1=\frac{3}{\mathrm{~K}} \Rightarrow \mathrm{~K}=30$

## OUR TOP GRADIANS IN GATE 2020

Ghanendra Singh
AIR-6
ECE



Nikhil Kumar
AIR-9
EE
(का
Raja Majhi
AIR-30
ECE


## Classroom

## Vision 2021-Course for ESE \& GATE (Batch-3)

Electronics \& Communication Engineering


## Classroom

## Vision 2021

A Course for ESE \& GATE Electronics Aspirants Batch-3

## Why take this course?

> 650+ Hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ Hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 750+ Quizzes \& Conventional Assignments for Practice
> Subject \& Full-Length Mock Tests for GATE \& ESE

MN Ramesh | Rakesh talreja | Chandan Jha | Vijay Bansal

