SSC CHSL Exam Quantitative Aptitude Question \& Answers PDF

1. The simplified value of $2 \frac{1}{3}$ of $\left(\frac{3}{5} \div \frac{2}{9}\right)-\left(4 \frac{2}{5}+\frac{19}{20} \div \frac{1}{2}\right)$.
A. 0
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1
2. The given Bar Graph presents the sale (in 1000 kg) of a particular brand of tea by three outlets, A, B and C during the months Jan, Feb, Mar and Apr, 2018.

What is the average sale per month by A during Jan-Mar, 2018?
A. 7333.33 kg
B. 7505 kg
C. 7334.67 kg
D. 5500 kg
3. The given Bar Graph presents the sale (in 1000 kg) of a particular brand of tea by three outlets, A, B and C during the months Jan, Feb, Mar and Apr, 2018.

By how much quantity is the average sale per month from B more or less than that from C?
A. More by 500 kg
B. Less by 1000 kg
C. Less by 500 kg
D. More by 1000 kg
4. In a triangle $A B C, P Q$ is a straight line parallel to AC, such that Area ABC : Area $P B Q=3: 1$ Then $C B: C Q$ is equal to:
A. $\frac{\sqrt{3}}{2}(\sqrt{3}+1)$
B. $\frac{\sqrt{3}}{2}(\sqrt{3}-1)$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}-2}{2}$
5. The given Bar Graph presents the sale (in 1000 kg) of a particular brand of tea by three outlets, A, B and C during the months Jan, Feb, Mar and Apr, 2018.

Arrange the ratio of sales from B to that from A and C, taken together, month wise in ascending order.
A. Jan, Mar, Feb. Apr
B. Jan. Mar, Apr, Feb
C. Jan, Feb, Mar, Apr
D. Jan, Apr, Mar, Feb
6. A earns Rs. 100 per hour and works for 8 hours per day. B earns Rs. 120 per hour and works for 6 hours per day. The ratio of per day wages of B to that of A is:

Gradeup Green Card
Unlimited Access to All 350+ SSC \& Railways Mock Tests
A. $10: 9$
B. $4: 5$
C. $5: 4$
D. $9: 10$
7. The distance between the centres of two circles of radius 6 cm each is 13 cm . The length (in cm) of a transverse common tangent is:
A. 10
B. 12
C. 5
D. 6
8. The simplified value of $\frac{46+\frac{3}{4} \text { of } 32-6}{11+\frac{3}{4} \text { of }(34-6)}$ is:
A. 1
B. $\frac{1}{4}$
C. 2
D. $\frac{1}{2}$
9. If $\cos x=\frac{-\sqrt{3}}{2}$ and $\pi<x<\frac{3 \pi}{2}$ then the value of $4 \cot ^{2} x-3 \operatorname{cosec}^{2} x$ is:
A. 8
B. 0
C. 2
D. 1
10. If $7\left(\operatorname{cosec}^{2} 57^{\circ}-\tan ^{2} 33^{\circ}\right)+2 \sin 90^{\circ}-$ $4 \tan ^{2} 52^{\circ} y \tan ^{2} 38^{\circ}=\frac{y}{2}$, then the value of y is:
A. 2
B. 4
C. 1
D. 3

Direction (11-13): The given Bar Graph presents the sales of the number of books (in thousands) by six branches of a publishing company during two consecutive years 2000 and 2001.

Sales of Books (in thousand numbers) from Six Branches - B1, B2, 83, B4, B5 and 86 of a pubtishing Company in 2000 and 2001 .

11. The ratio of total sales by all branches for the year 2001 to total sales by all branches for the year 2000 is:
A. $48: 55$
B. $25: 23$
C. $55: 48$
D. $23: 25$
12. The average of total sales (in thousands and Correct to two decimal places) by all branches for both the years is:
A. 171.37
B. 2171.57
C. 171.27
D. 171.67
13. The ratio of total sales by branches BI, B3 and B5 for both the years to total sales by branches B2, B4, B6 for both the years is:
A. $21: 23$
B. $56: 47$
C. $23: 21$
D. $47: 56$
14. $A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and angle $A D C=146^{\circ} . \angle B A C$ is equal to:
A. 56
B. 24°
C. 72°
D. 18°
15. A dealer buys an article marked at 5000 with two successive discounts of 20% and 5%. He spends Rs. 200 on repairs and sells
it for Rs. 5000, what is his profit/loss percent?
A. 25% profit
B. 25% loss
C. 20% profit
D. 20% loss
16. If the length of a rectangle is decreased by 11% and the breadth is increased by 11%, its area will undergo:
A. 13.13% increase
B. 1.21% increase
C. 1.21% decrease
D. 13.13% decrease
17. If $\mathrm{x}-\frac{1}{x}=7$ then $x^{3}-\frac{1}{x^{3}}$ equal to
A. 480
B. 364
C. 376
D. 500
18. In $\triangle A B C, \angle A=72^{\circ}$. Its sides $A B$ and $A C$ are produced to the points D and E respectively. If the bisectors of the $\angle C B D$ and $\angle B C E$ meet at point 0 , then $\angle B O C$ is equal to:
A. 16°
B. 54°
C. 32°
D. 106°
19. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{QPR}$ and $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{4}{25}$
. If $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10$ cm , then QP is equal to:
A. 20
B. 18
C. 15
D. 30
20. If $\sec \theta=8 \mathrm{x}$ and $\tan \theta=\frac{8}{x}(X \neq 0)$ then the value of $16\left(x^{2}-\frac{1}{x^{2}}\right)$ is:
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$
21. The given Bar Graph presents the sales of the number of books (in thousands) by six branches of a publishing company during two consecutive years 2000 and 2001
Sales of Books (in thousand numbers) from Six Branches - 81, 82, 83, 84, B5 and 86 of a publishing Company in 2000 and 2001.

The total sales (in thousands) by all branches for both the years is:
A. 470
B. 560
C. 1100
D. 1030
22. The compound interest on a certain sum of money at 21% for 2 years is Rs.11,602.5. Its simple interest (in Rs.) at the same rate and for the same period is:
A. 10,750
B. 16,000
C. 12,500
D. 10,500
23. The ratio between the speeds of two trains is $2: 5$. If the first train runs 250 km in 5 h , then the sum of the speeds (in km / h) of both the trains is:
A. 175
B. 150
C. 180
D. 165
24. If $x^{4}+x^{-4}=1154,(x>0)$, then the value of $2(x-3)^{2}$ is:

A. 16
B. 12
C. 20
D. 15
25. If the seven digit number $64 \times 29 y 6$ (x $>y$) is divisible by 72 , what is the value of $(2 x-y)$?
A. 3
B. 13
C. 7
D. 9

1. Ans. A.
$2 \frac{1}{3}$ of $\left(\frac{3}{5} \div \frac{2}{9}\right)-\left(4 \frac{2}{5}+\frac{19}{20} \div \frac{1}{2}\right)$
$=2 \frac{1}{3}$ of $\left(\frac{3}{5} \div \frac{2}{9}\right)-\left(\frac{22}{5}+\frac{19}{20} \div \frac{1}{2}\right)$
$=2 \frac{1}{3}$ of $\left(\frac{3}{5} \times \frac{9}{2}\right)-\left(\frac{22}{5}+\frac{19}{20} \times \frac{2}{1}\right)$
$=2 \frac{1}{3}$ of $\left(\frac{27}{10}\right)-\left(\frac{22}{5}+\frac{19}{10}\right)$
$=2 \frac{1}{3}$ of $\left(\frac{27}{10}\right)-\left(\frac{63}{10}\right)$
$=\frac{7}{3} \times \frac{27}{10}-\frac{63}{10}$
$=\frac{63}{10}-\frac{63}{10}=0$.
2. Ans. A.

Total sale $=8+6+8=22$ thousand
Average sale $=\frac{22}{3}=7.33=7333.33 \mathrm{~kg}$.
3. Ans. D.
B average sale $=\frac{9+7+9+11}{4}=\frac{36}{4}=9$
C average sale $=\frac{\frac{10+5+8+9}{4}}{4}=\frac{32}{4}=8$
B is 1000 kg more than C.
4. Ans. A.

$P Q \| A C$
$\angle \mathrm{P}=\angle \mathrm{A}$ (corresponding Angle
$\angle \mathrm{Q}=\angle \mathrm{C}$ (corresponding Angle
$\angle \mathrm{B}=\angle \mathrm{B}$ (common angle
$\Delta \mathrm{BPQ} \sim \Delta \mathrm{BAC}$
$\frac{\text { Area } \triangle B P Q}{\text { Area } \triangle B A C}=\frac{1}{3}=\frac{B Q^{2}}{B C^{2}}$
$\frac{B C}{B Q}=\frac{\sqrt{3}}{1}$
$\frac{B C}{B C-B Q}=\frac{\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$\frac{B C}{C Q}=\frac{\sqrt{3}}{2}(\sqrt{3}+1)$
5. Ans. B.

Required ratio in-
Jan $=\frac{B}{A+C}=\frac{9}{18}$
Feb $=\frac{7}{11}$
Mar $=\frac{9}{16}$
Arp $=\frac{11}{18}$
When we put these in ascending order then Jan, Mar, Apr, Feb.
6. Ans. D.

A earns Rs. 100 per hour and works for 8 hours per day.
Total earnings for the day $=8 \times 100=$ Rs 800
B earns Rs. 120 per hour and works for 6 hours per day
Earnings for the day $=6 \times 120=$ Rs 720
$\frac{\text { Wage of } B}{W \text { age of } A}=\frac{720}{800}=\frac{9}{10}$
Required Ratio $=9: 10$
7. Ans. C.

Length of transverse tangent:
$\sqrt{(\text { dis } \operatorname{tance} \text { between the centres })^{2}-\left(r_{1}+r_{2}\right)^{2}}$
$=\sqrt{(13)^{2}-(6+6)^{2}}$
$=\sqrt{(13)^{2}-(12)^{2}}$
$=5 \mathrm{~cm}$
8. Ans. C.
$\frac{46+\frac{3}{4} \text { of } 32-6}{11+\frac{3}{4} \text { of }(34-6)}$
$=\frac{46+24-6}{11+21}$
$=\frac{64}{32}=2$
9. Ans. B.

Here the angle lies In III quadrant :
$\cos \left(180^{\circ}+30^{\circ}\right)=-\cos 30^{\circ}=\frac{-\sqrt{3}}{2}$
$\cot \left(180^{\circ}+30^{\circ}\right)=\cot 30^{\circ}=\sqrt{ } 3$
$\operatorname{cosec}\left(180^{\circ}+30^{\circ}\right)=-\operatorname{cosec} 30^{\circ}=-2$
$4 \cot ^{2} x-3 \operatorname{cosec}^{2} x=$
$4(\sqrt{3})^{2}-3(-2)^{2}=12-12=0$
10. Ans. A.
$7\left(\operatorname{cosec}^{2} 57^{\circ}-\tan ^{2} 33^{\circ}\right)+2 \sin 90^{\circ}-$
$4 \tan ^{2} 52^{\circ} y \tan ^{2} 38^{\circ}=\frac{y}{2}$
$\Rightarrow 7\left(\operatorname{cosec}^{2} 57^{\circ}-\cot ^{2} 57^{\circ}\right)+2(1)-4$
$\Rightarrow 7(1)+2(1)-4 \tan ^{2} 52^{\circ} y \frac{1}{\tan ^{2} 52^{\circ}}=$
$\Rightarrow 7+2-4 y=\frac{y}{2}$
$\Rightarrow 9=\frac{9}{2} y$
$y=2$
11. Ans. C.

Total sales by all branches for the year $2000=$
$80+75+95+85+75+70$
$=480$
Total sales by all branches for the year 2001
$=105+65+110+95+95+80$
$=550$
Ratio of $\frac{2001}{2000}=\frac{550}{480}=\frac{55}{48}$
Required Ratio $=55: 48$
12. Ans. D.

Total sales by all branches for the year $2000=$
$80+75+95+85+75+70$
$=480$
total sales by all branches for the year 2001
$=105+65+110+95+95+80$
$=550$
Total sale of both the years $=480+550=$ 1030
Average of total sale $=\frac{1030}{6}=171.67$
13. Ans. B.

Total sales by branches BI, B3 and B5 for both the years :
$\mathrm{B} 1=80+105=185$
$\mathrm{B} 3=95+110=205$
$B 5=75+95=170$
Total $=560$
Total sales by branches B2, B4 and B6 for both the years
$B 2=75+65=140$
B4 $=85+95=180$
$B 6=70+80=150$
Total sales $=470$
Required Ratio $=\frac{560}{470}=\frac{56}{47}$
= 56 : 47
14. Ans. A.

Here given that $\angle \mathrm{D}=146^{\circ}$
Since $A B C D$ is a cyclic quadrilateral.
So $\angle \mathrm{D}+\angle \mathrm{B}=180^{\circ}$
$146^{\circ}+\angle B=180^{\circ}$
$\angle B=34^{\circ}$
And since $A B$ is a diameter so angle made on the circumference is 90°
Here $\angle B C A=90^{\circ}$
By angle sum property of triangle :
$\angle B C A+\angle C A B+\angle A B C=180^{\circ}$
$34^{\circ}+\angle \mathrm{BAC}+90^{\circ}=180^{\circ}$
$\angle B A C=56^{\circ}$
15. Ans. A.

Marked price of the article $=$ Rs 5000
Discounts given = 20% and 5%

Net discount $=$
$20+5-\frac{20 \times 5}{100}$
$=24 \%$
Amount after 24\% discount : 5000 $\frac{24}{100} \times 5000=R s 3800$
Now he spends Rs 200 on repairs .
So new amount becomes $=3800+200=$ Rs 4000
Selling price of article $=$ Rs 5000

$$
\frac{5000-4000}{4000} \times 100
$$

Profit $\%==25 \%$
Hence he earned a profit of 25%
16. Ans. C.

Let the length and breadth of the rectangle be 100 and 100 resp.
Area of rectangle $=100 \times 100=10000$
If the length of rectangle is decreased by 11\%
Then :
Length $=100-\frac{11}{100} \times 100=89$
If the breadth of rectangle is increased by 11\%
breadth $=100+\frac{11}{100} \times 100=111$
New area $=89 \times 111=9879$
Decrease in area $=10000-9879=121$
Percentage decrease in area $=$
$\frac{121}{10000} \times 100$
$=1.21 \%$
17. Ans. B.

Here
$x-\frac{1}{x}=7$
$\left(x-\frac{1}{x}\right)^{3}=x^{3}-\frac{1}{x^{3}}-3\left(x-\frac{1}{x}\right)$
$(7)^{3}=x^{3}-\frac{1}{x^{3}}-3(7)$
$343=x^{3}-\frac{1}{x^{3}}-21$
$364=x^{3}-\frac{1}{x^{3}}$
18. Ans. B.

We know :
$\angle \mathrm{BOC}=90^{\circ}-\angle \frac{A}{2}$
$\angle A=72^{\circ}$
$\Rightarrow \angle B O C=90^{\circ}$ -
$\angle \frac{72^{5}}{2}$
$\angle \mathrm{BOC}=90^{\circ}-36^{\circ}$
$=54^{\circ}$
19. Ans. D.

Since $\triangle A B C \sim \triangle Q P R$
When two triangles are similar then the ratio of their areas is equal to the ratio of square of corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(Q P R)}=\frac{4}{25} \\
& \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(Q P R)}=\frac{(A B)^{2}}{(Q P)^{2}} \\
& \frac{4}{25}=\frac{(12)^{2}}{(Q P)^{2}} \\
& Q P=\frac{12 \times 5}{2}=30 \mathrm{~cm}
\end{aligned}
$$

20. Ans. A.
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$(8 x)^{2}-\left(\frac{8}{(x)^{2}}\right)=1$
$64\left(x^{2}-\frac{1}{x^{2}}\right)=1$
$\left(x^{2}-\frac{1}{x^{2}}\right)=\frac{1}{64}$
$16\left(x^{2}-\frac{1}{x^{2}}\right)=16\left(\frac{1}{64}\right)=\frac{1}{4}$
21. Ans. D.

Total sales by all branches for the year $2000=$
$80+75+95+85+75+70$
$=480$
total sales by all branches for the year 2001
$=105+65+110+95+95+80$
$=550$
Total sale for both the branches $=480+$ $550=1030$
22. Ans. D.

Let the Principal amount be Rs x
Then amount $=$ Rs $11602.5+x$
$A=P\left(1+\frac{r}{100}\right)^{n}$
$11602.5+x=x\left(1+\frac{21}{100}\right)^{2}$
$11602.5+x=x\left(\frac{121}{100}\right)^{2}$
$11602.5=(0.4641) x$
$x=25000$
$S I=\frac{P \times R \times T}{100}$
$=\frac{25000 \times 21 \times 2}{100}$
$=10500$ Rs
Simple interest $=$ Rs 10500
23. Ans. A.

The ratio between the speeds of two trains is $2: 5$.
Let the speeds of the trains be $2 x$ and $5 x$ respectively.
Here, the speed of the first train $=$ $\frac{250}{5}=50 \mathrm{~km} / \mathrm{hr}$
Then, $2 x=50$
$\Rightarrow x=25$
The sum of the speeds of the train $=2 x+$ 5x
$=7 x$
$=7 \times 25$
$=175 \mathrm{~km} / \mathrm{hr}$
24. Ans. A.

Here $x^{4}+x^{-4}=1154$

$$
\begin{aligned}
& x^{4}+\frac{1}{x^{4}}=1154 \\
& x^{4}+\frac{1}{x^{4}}+2=1154+2 \\
& \left(x^{2}+\frac{1}{x^{2}}\right)^{2}=(34)^{2} \\
& \left(x^{2}+\frac{1}{x^{2}}\right)=34
\end{aligned}
$$

hence
$\left(x+\frac{1}{x}\right)=6$
$x^{2}+1-6 x=0$
$x^{2}+1-6 x+9-9=0$
$(x-3)^{2}-8=0$
$(x-3)^{2}=8$
$2(x-3)^{2}=16$
25. Ans. D.

Given the seven digits number $64 \times 29 y 6$ (x $>y$) is divisible by 72
Since it is divisible by $72(=8 \times 9)$
It must be divisible by 8 and 9 :
According to divisibility of 8 : last three digits of number are divisible by 8
Hence $9 y 6$ must be divisible by 8 $\Rightarrow y=3$ as 936 is divisible by 8
Again divisibility of 9 : sum of the digits of the number is divisible by 9
Then $6+4+x+2+9+3+6=30+x$ must be divisible by 9
Then $x=6$
Hence $(2 x-y)=2(6)-(3)=9$

gradeup

Gradeup Green Card

Features:

350+ Full-Length Mocks
> 30+SSC \& Railways Exams Covered
> Tests Available in English \& Hindi
> Performance Analysis \& All India Rank
> Previous Year Question Papers in Mock Format
> Available on Mobile \& Desktop

