

Organic Chemistry Specific Name Reactions

Prep Smart. Score Better.

HOW TO WASH YOUR HANDS

PROTECT YOURSELF AND OTHERS AGAINST INFECTIONS

RUB THE BACKS OF FINGERS ON THE **OPPOSING PALMS**

YOUR FINGERS

USE THE TOWEL TO TURN OFF THE FAUCET

DRY WITH A

SINGLE USE TOWEL

AND FINGERTIPS

OVEL CORONAVIRUS HELP US TO HELP YOU

A Control Room at National level has been setup to address queries related to #nCoV.

May reach this number for any guidance, support and technical queries.

#PrepSmartStaySafe

#PrepSmartStaySafe

may reach this humber for any guidance, support and technical queries.

EDUCATION gradeup **IS THE PASSPORT** TO THE FUTURE, FOR TOMORROW BELONGS **TO THOSE WHO PREPARE FOR IT** TODAY.

ArCN + N₂

Sandmeyer Reaction $ArCl + N_2$ $ArBr + N_2$ $ArBr + N_2$ $CuCl/HCl + N_2$ $CuBr/HBr + N_2$ CuCN/KCN

Specific Name Reactions

Note: The yield in Sandmeyer reaction is found to be better than Gattermann reaction

Balz-Schiemann Reaction

Finkelstein Reaction

 $R - X + NaI \longrightarrow R - I + NaX$ (X = CI, Br)

Note: This reaction in forward direction can be favoured by precipitating NaX formed in dry acetone (according to Le Chatelier's principle).

Swarts Reaction

$$H_{3}C - X + AgF \longrightarrow H_{3}C - F + AgX$$
$$(X = CI, Br)$$

Note: Finkelstein Reaction and Swarts Reaction are known as halogen exchange reaction.

Wurtz Reaction

 $CH_3Br + 2Na + BrCH_3 \xrightarrow{dry ether} CH_3 - CH_3 + 2NaBr$ Bromomethane Ethane

$$C_2H_5Br + 2Na + BrC_2H_5 \xrightarrow{dry ether} C_2H_5 - C_2H_5$$

Bromoethane n-Butane

Specific Name Reactions

gradeup

Wurtz-Fittig Reaction

$$2 \longrightarrow X + Na \xrightarrow{\text{Ether}} 1 + 2NaX$$

Friedel-Crafts alkylation Reaction

Friedel-Crafts alkylation Reaction

Friedel-Crafts alkylation Reaction

Note: Aromatic carboxylic acids do not undergo Friedel-Crafts reaction because the carboxyl group is deactivating and the catalyst aluminium chloride (Lewis acid) gets bonded to the carboxyl group.

Friedel-Crafts acylation reaction

Friedel-Crafts acylation reaction

Friedel-Crafts acylation reaction

Reimer-Tiemann Reaction

Kolbe's Reaction

Specific Name Reactions

Rosenmund Reduction

Stephen reaction

 $RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3 O} RCHO$

Etard reaction

Gatterman – Koch reaction

Clemmensen Reduction

(Clemmensen reduction)

Wolff Kishner Reduction

$$C = O \xrightarrow{\text{NH}_2\text{NH}_2} C = \text{NNH}_2 \xrightarrow{\text{KOH/ethylene glycol}} CH_2 + N_2$$
(Wolff-Kishner reduction)

Tollens' test

$$\mathsf{RCHO} + 2 \left[\mathsf{Ag}(\mathsf{NH}_3)_2\right]^+ 3\overline{\mathsf{O}}\mathsf{H} \longrightarrow \mathsf{RCO}\overline{\mathsf{O}} + 2\mathsf{Ag} + 2\mathsf{H}_2\mathsf{O} + 4\mathsf{NH}_3\mathsf{H}_3\mathsf{O} + 2\mathsf{H}_2\mathsf{O} + 4\mathsf{H}_3\mathsf{O} + 4\mathsf$$

$$R - CHO + 2Cu^{2+} + 5\overline{O}H \longrightarrow RCO\overline{O} + Cu_2O + 3H_2O$$

Red-brown ppt

Aldol reaction

Aldehydes and ketones having at least one α -hydrogen undergo a reaction in the presence of dilute alkali as catalyst to form β -hydroxy aldehydes (aldol) or β -hydroxy ketones (ketol), respectively. This is known as **Aldol reaction**.

Aldol condensation.

Cross aldol condensation:

Specific Name Reactions

Kolbe electrolysis

 $2CH_3COO^-Na^+ + 2H_2O$

Sodium acetate

↓Electrolysis

 $CH_3 - CH_3 + 2CO_2 + H_2 + 2NaOH$

Hell-Volhard-Zelinsky (HVZ)reaction

Gabriel phthalimide synthesis

Note: Aromatic primary amines cannot be prepared by this method because aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.

Hoffmann bromamide degradation reaction

$$\begin{array}{c} O \\ || \\ R - C - NH_2 + Br_2 + 4NaOH \longrightarrow R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O \end{array}$$

Carbylamine reaction

 $R-NH_2 + CHCl_3 + 3KOH \xrightarrow{Heat} R-NC + 3KCl + 3H_2O$

Note: Secondary and tertiary amines do not show this reaction and is used as a test for primary amines.

Hinsberg's Test

(a) The reaction of benzenesulphonyl chloride with primary amine yields N-ethylbenzenesulphonyl amide.

Hinsberg's Test

(b) In the reaction with secondary amine, N,N-diethyl- benzenesulphonamide is formed. Since N, Ndiethylbenzene sulphonamide does not contain any hydrogen atom attached to nitrogen atom, it is not acidic and hence insoluble in alkali.

Hinsberg's Test

(c) Tertiary amines do not react with benzenesulphonyl chloride.

Note: This test is used for the distinction of primary, secondary and tertiary amines and also for the separation of a mixture of amines. However, these days benzenesulphonyl chloride is replaced by p-toluenesulphonyl chloride.

Coupling Reactions

p-Hydroxyazobenzene (orange dye)

Similarly the reaction of diazonium salt with aniline yields p-aminoazobenzene.

$$\longrightarrow \stackrel{+}{N \equiv N \stackrel{-}{Cl} + H - \bigwedge - NH_2 \stackrel{-}{\longrightarrow} \bigwedge - N = N - \bigwedge - NH_2 + CI + H_2O$$

p-Aminoazobenzene (yellow dye)

Register Now on Gradeup App or Web

Rankup NEET 2020

A Fast Revision Crash Course

NEET Telegram Group

Join NOW!

< Link In Description

Prep Smart. Score Better.

Practise topic-wise quizzes Keep attending live classes
