RRB NTPC Previous Years' Questions Advanced Maths

Part

Geometry \& Mensuration

1. The difference between the length and breadth of a rectangle is 6 metre. If its perimeter is 64 metre, then its area is :
(A) 256 sq. metre
(B) 247 sq. metre
(C) 264 sq. metre
(D) 238 sq. metre
A. (C)
B. (A)
C. (D)
D. (B)

Ans. D
Sol.
Let length and breadth of a rectangle are l and b respectively
According to question, l-b $=6$ meter. .(1)
Given is , perimeter $=64$ meter
$2 l+b=64$
$1+b=32 \ldots \ldots \ldots(.2)$
From equation (1) \& (2), we have
$\mathrm{I}=19$ \& $\mathrm{b}=13$
Area of rectangle $=\mathrm{lb}$
Area $=19 \times 13=247$ sq. meter
2. If the length (L cm) of rectangle and breadth (B cm) be increased by 25% each, find the difference between the new and original areas of the rectangle.
(A) $\frac{3-B}{2}$ sq. cm
(B) $\frac{24 \text { LB }}{9}$ sq. cm
(C) $\frac{9 L B}{16}$ sq. cm
(D) $\frac{16 \mathrm{LB}}{9}$ sq. cm
A. (B)
B. (A)
C. (C)
D. (D)

Ans. C
Sol.
Original area $=L \times B=L B \mathrm{~cm}^{2}$
New length $=L+L / 4=5 L / 4 \mathrm{~cm}$
New breadth $=B+B / 4=5 B / 4 \mathrm{~cm}$
New area $=(5 \mathrm{~L} / 4) \times(5 B / 4)=(25 / 16)$ LB cm ${ }^{2}$
Difference between new area and original area $=(25 / 16) L B-L B=(9 / 16) L B m^{2}$
3. Perimeter of a triangle is 200 cm. If its two sides are equal and the third side is 20 cm greater than the equal sides, then what is the length of third side?
(A) 60 cm
(B) 50 cm
(C) 80 cm
(D) 70 cm
A. (D)
B. (A)
C. (C)
D. (B)

Ans. C
Sol.
Let the equal side of isosceles triangle be a and other side be b.
Given that $b=a+20$
Perimeter $=a+a+b$
$=2 a+b=200$
$3 a+20=200$
$a=60$
and $b=a+20=60+20=80$
4. A closed rectangular wooden box of 1 cm in thickness is filled up with cement. Its outer dimensions are length 22 cm , Breadth 17 cm and height 12 cm . How much cement can be filled in the box.
(A) $1488 \mathrm{~cm}^{2}$
(B) $3000 \mathrm{~cm}^{2}$
(C) $4488 \mathrm{~cm}^{2}$
(D) $2880 \mathrm{~cm}^{2}$
A. (A)
B. (C)
C. (D)
D. (B)

Ans. D
Sol.
Inner length $=22-(1+1)=20 \mathrm{~cm}$
Inner breadth $=17-2=15 \mathrm{~cm}$
Net height $=12-2=10 \mathrm{~cm}$
Volume of box $=$ length x breadth x height
$=20 \times 15 \times 10=3000 \mathrm{~cm}^{3}$
5. Four square of 5 cm length were cut from corners of a rectangular plate of dimention $45 \mathrm{~cm} \times 35 \mathrm{~cm}$. From the remaining plate an open box is made. Find the volume of the box.
(A) $1200 \mathrm{~cm}^{3}$
(B) $872 \mathrm{~cm}^{3}$

(C) $1325 \mathrm{~cm}^{3}$
(D) $4375 \mathrm{~cm}^{3}$
A. (C)
B. (B)
C. (D)
D. (A)

Ans. C
Sol.

Length of the remaining box $=45-5 \times 2=$ 35
Breadth of the remaining box $=35-5 \times 2$ $=25$
Volume of the box $=35 \times 25 \times 5=4375$ cm ${ }^{3}$
6. The length of one of the diagonals of a rhombus is 8 cm and its area is $64 \mathrm{~cm}^{2}$. What will be the side length of rhombus?
A. 4 cm
B. $4 \sqrt{3} \mathrm{~cm}$
C. $4 \sqrt{2} \mathrm{~cm}$
D. $4 \sqrt{5} \mathrm{~cm}$

Ans. D
Sol.

$$
\begin{aligned}
& \mathrm{A}=1 / 2 \times \mathrm{d}_{1} \times \mathrm{d}_{2} \\
& 64=1 / 2 \times 8 \times \mathrm{d}_{2} \\
& \mathrm{~d}_{2}=16 \\
& \mathrm{AC}=8 \mathrm{~cm} \\
& \mathrm{BD}=16 \mathrm{~cm} \\
& \mathrm{OC}=4 \mathrm{~cm} \\
& \mathrm{OD}=8 \mathrm{~cm}
\end{aligned}
$$

$C D=\sqrt{ }(16+64)=4 \sqrt{ } 5$ Since diagonals intersect at right angles
7. A square ground is to be covered by planting 100 saplings on each side. How many saplings are needed in all?
A. 400
B. 404
C. 396
D. 408

Ans. C
Sol. 100 saplings are needed to cover each side of square but 4 vertexes of square ground are common so, required plants $=4 \times 100-4=396$
8. What is the length of diagonal, if area of a rectangle is $168 \mathrm{~cm}^{2}$ and breath is 7 cm ?
(A) 24 cm
(B) 15 cm
(C) 17 cm
(D) 25 cm
A. (B)
B. (C)
C. (D)
D. (A)

Ans. C
Sol.
Area $=\mathrm{L} \times \mathrm{B}$
$168=L \times 7$
$L=24$
diagonal $=\sqrt{ }\left[24^{2}+7^{2}\right]$
9. If length of diagonal of a square is $13 \sqrt{ } 2$ unit. Find area of the square.
(A) 104 square unit
(B) 169 square unit
(C) 338 square unit
(D) 676 square unit
A. (B)
B. (D)
C. (A)
D. (C)

Ans. A
Sol. length of diagonal of a square $=$ $13 \sqrt{ } 2$ unit
Side $=$ diagonal $/ \sqrt{ } 2=13$ unit
Area $=13^{2}=169$ unit 2
10. A rectangular playground ground of length 125 m and width 75 m , has a walking strip of width 3 m in the middle

of the ground, along the longer side. What is the area of the ground without the walking strip?
A. 9375 sq.m
B. 9000 sq.m
C. 9750 sq.m
D. $8625 \mathrm{sq} . \mathrm{m}$

Ans. B

Required

$=75 \times 125-(125 \times 3)$
= 9375-375
$=9000$ sq.m
11. What is the length of diagonal, if area of a rectangle is $168 \mathrm{~cm}^{2}$ and breadth is 7 cm ?
A. 24 cm
B. 15 cm
C. 17 cm
D. 25 cm

Ans. D
Sol. area of a rectangle $=168 \mathrm{~cm}^{2}$
$=L \times b=168 \mathrm{~cm}^{2}$
$=\mathrm{L} \times 7=168 \mathrm{~cm}^{2}$
$L=24 \mathrm{~cm}$.

In right-angle $\triangle A C D$,
$A D^{2}=C D^{2}+A C^{2}$
$A D^{2}=7^{2}+24^{2}$
$A D=25 \mathrm{~cm}$
12. Study the following statements and choose right option.
I. There are at least three lines drawn from two points.
II. If sides of a triangle are parallel to sides of another angle respectively then both angles are neither equal nor complementary.
(A) I and II both are not true.
(B) I and II both are true.
(C) I is wrong and II is true
(D) I is true and II is wrong.
A. A
B. B
C. D
D. C

Ans. A
Sol. .
We can draw only one straight line from two points.
Therefore, the correct answer is option A.
13. If the ratio of angles of a triangle is 2
: 5 : 8 . Then find the larger angle.
(A) 30°
(B) 96°
(C) 84°
(D) 60°
A. A
B. D
C. B
D. C

Ans. C
Sol. .
Let the angle be $2 x, 5 x$ and 8x respectively.
A.T.Q.
$2 x+5 x+8 x=180^{\circ}$
$15 x=180^{\circ}$
$x=12^{\circ}$
Required $5 x=60^{\circ}$
14. If the ratio of two complementary angle is $11: 7$. Then find smaller angle.
(A) 35°
(B) 55°
(C) 45°
(D) 25°
A. D
B. C
C. B
D. A

Ans. D
Sol.
Let the angle be $11 x$ and $7 x$ respectively
A.T.Q
$11 x+7 x=90^{\circ}$

$18 x=90^{\circ}$
$x=5^{\circ}$
Required $7 x=7 \times 5=35^{\circ}$.
15. If the ratio of angles of a triangle is 1 : 4 : 7, then find the ratio of sum of largest angle and smallest angle to smallest angles.
(A) $8: 1$
(B) $2: 3$
(C) $7: 1$
(D) $3: 5$
A. (B)
B. (C)
C. (A)
D. (D)

Ans. C
Sol.
Let the angles of triangle are $x, 4 x$ and 7x.
Sum of angles $=180^{\circ}$
$x+4 x+7 x=180$
$12 x=180$
$x=180 / 12$
$x=15$
$4 x=4 \times 15=60$
$7 x=7 \times 15=105$
Ratio $=15+105: 15=120: 15=8: 1$
Option C is correct.
16. If $(4 y+55 \hat{A})$ and $(3 y+69) \hat{A}$ are supplementary then find the value of y.
(A) 10
(B) 6
(C) 12
(D) 8
A. (C)
B. (D)
C. (A)
D. (B)

Ans. B
Sol.
Sum of supplementary $=180 \hat{A}$
$4 y+55 \hat{A}+3 y+69 \hat{A}=180 \hat{A}$
$7 y+124 \hat{A}=180 \hat{A}$
$7 y=180 \hat{A}-124 \hat{A}$
$7 y=56$
$y=56 / 7$
$y=8$
Option B is correct.
17. If the ratio of angles of a triangle is 1
: 4: 7 then find the ratio of greatest angle
to smallest angle.
(A) $7: 2$
(B) $2: 3$
(C) $7: 1$
(D) $3: 5$
A. (A)
B. (C)
C. (D)
D. (B)

Ans. B
Sol.
18. If $(7 x+5)^{\circ}$ and $(x+5)^{\circ}$ are complementary angles, then find the value of x.
(A) 10°
(B) 20°
(C) 30°
(D) 40°
A. (D)
B. (C)
C. (A)
D. (B)

Ans. C
Sol. The sum of two complementary angles is 90°.
Thus, $(7 x+5)^{\circ}+(x+5)^{\circ}=90^{\circ}$
$\Rightarrow 8 x+10^{\circ}=90^{\circ}$
$\Rightarrow 8 \mathrm{x}=80^{\circ}$
$\Rightarrow x=10^{\circ}$
19. If S is the mid point of a straight line PQ. R is a different point is such a way that $P R=R Q$, then
(A) $/ \mathrm{PRS}=90^{\circ}$
(B) $\angle \mathrm{ORS}=90^{\circ}$
(C) $\angle \mathrm{PSR}=90^{\circ}$
(D) $\angle \mathrm{POR}=90^{\circ}$
A. (D)
B. (B)
C. (A)
D. (C)

Ans. D
Sol.
20. If the ratio of two complementary angle is $4: 5$, then find the largest angle?
(A) 40°
(B) 50°
(C) 60°
(D) 30°
A. (A)
B. (C)
C. (B)
D. (D)

Ans. C
Sol.
Let the angle be $4 x$ and $5 x$ respectively.
A.T.Q.
$4 x+5 x=90$
$9 x=90$
$x=10$
Required $5 x=50^{\circ}$
21. If the ratio of angle of a triangles is 2
: $5: 8$. Then find the lowest angle.
(A) $36 \hat{A}$
(B) $18 \hat{A}$
(C) $12 \hat{A}$
(D) $24 \hat{\mathrm{~A}}$
A. (C)
B. (B)
C. (D)
D. (A)

Ans. C
Sol.
Let the angle be $2 x, 5 x$, and $8 x$ respectively.
$2 x+5 x+8 x=180$
$x=12^{\circ}$
Required Angle $=2 x=24^{\circ}$
22. A complete angle is equal to -
(A) 90°
(B) 180°
(C) 270°
(D) 360°
A. (B)
B. (C)
C. (A)
D. (D)

Ans. D
Sol.
A angle whose measure is 360° is called a complete angle.
23.In a right angle triangle, longest side is 2 cm more long than middle side and middle side in 2 cm more than the smallest side of the triangle. So find the length of the longest side.
(A) 6 cm
(B) 9 cm
(C) 10 cm
(D) 8 cm
A. (A)
B. (D)
C. (C)
D. (B)

Ans. C
Sol.

Let the length of the smallest side $A B=x$ cm
Length of the middle side $B C=(x+2) \mathrm{cm}$
Length of the longest side $A C=(x+4) \mathrm{cm}$ By pythagoras theorem,
$A C^{2}=A B^{2}+B C^{2}$
$(x+4)^{2}=(x+2)^{2}+x^{2}$
$x^{2}-4 x-12=0$
$(x-6)(x+2)=0$
$x=-2$ and 6
Length can not be negative
So, $x=6$
Length of the longest side $A C=(x+4)=$ $6+4=10 \mathrm{~cm}$
24. If the circumference of a circle is rd, then what will be area of the circle?
(A) $\mathrm{rd}^{2} / 4$
(B) 2 rd
(C) ${r d^{2}}^{2} 2$
(D) $r d^{2}$
A. (B)
B. (A)
C. (C)
D. (D)

Ans. B
Sol.

Given, The circumference of a circle=rd, then radius of the circle $=\frac{d}{2}$
Area
of
the
circle
$=\pi \times(\text { radius })^{2}=\pi \times\left(\frac{d}{2}\right)^{2}=\frac{\pi d^{2}}{4}$
25. The order of rotational symmetry of a rectangle is:
(A) 1
(B) 4
(C) 2
(D) 0
A. (C)
B. (B)
C. (A)
D. (D)

Ans. A
Sol.

* Rotational symmetry is the characteristic that makes an object look the same even after you've rotated it.
* The order of symmetry is the number of times an object or shape can be rotated and still look like it did before rotation.
* The order of symmetry of the rectangle is 2 since it can be rotated to two positions where it appears the same as the rectangle before.

26. The length of the diagonal in cm . of a rectangle of length 5 cm and width 3 cm is:
(A) $\sqrt{34}$
(B) $\pm \sqrt{34}$
(C) 4
(D) ± 4
A. (B)
B. (A)
C. (C)
D. (D)

Ans. B
Sol.
Length of diagonal
$=\sqrt{l^{2}+b^{2}}=\sqrt{5^{2}+3^{2}}=\sqrt{34} \mathrm{~cm}$
Since length cannot be negative option B cannot be the answer.
27. The number of sides of a regular polygon whose exterior angles are each 72A is
(A) 7
(B) 6
(C) 5
(D) 8
A. (D)
B. (B)
C. (C)
D. (A)

Ans. C
Sol.
Exterior angle $=360 / \mathrm{N}=72$
$\mathrm{N}=5$
28. The number of sides of a regular polygon whose interior angles are 156° each is :
(A) 14
(B) 16
(C) 15
(D) 17
A. (D)
B. (A)
C. (B)
D. (C

Ans. D
Sol.
Sum of interior angles of a regular polygon with n sides $=(\mathrm{n}-2) \times 180^{\circ}$
Value of one interior angle $=\frac{(n-2)}{n} \times 180^{\circ}=156^{\circ}$
$180^{\circ} \times n-360^{\circ}=156^{\circ} \mathrm{n}$
$24 n=360^{\circ}$
Number of sides $n=\frac{360 \hat{6}}{24}=15^{\circ}$
29. A square has diagonals of length 22
cm . then the side of the square in cm is :
(A) $11 \sqrt{2}$
(B) $\pm 11 \sqrt{2}$
(C) 11
(D) $22 \sqrt{2}$
A. (D)
B. (A)
C. (C)
D. (B)

Ans. B

Sol.
Let the length of side of square $=\mathrm{acm}$
Length of diagonal $=\sqrt{2} a=22 \mathrm{~cm}$ Length of side of square $a=\frac{22}{\sqrt{2}}=11 \sqrt{2}$
30. The opposite angle in a cyclic quadrilateral adds up to \qquad degree
(A) 270
(B) 90
(C) 180
(D) 360
A. (A)
B. (D)
C. (C)
D. (B)

Ans. C
Sol.
We know that in cyclic quadrilateral opposite angles are supplementary angle.
So, sum of opposite angles $=180^{\circ}$
31. Find the odd statement out in relation to a triangle.
(A) The longest side is opposite to the greatest angle.
(B) The exterior angle of a triangle $=$ the sum of interior opposite angles.
(C) The sum of any two sides is greater than the $3^{\text {rd }}$ side
(D) The square of one side $=$ the sum of the squares of other two sides
A. (D)
B. (C)
C. (A)
D. (B)

Ans. A
Sol.
In a triangle,
The longest side is opposite to the greatest angle.
The exterior angle of a triangle $=$ the sum of interior opposite angles.
The sum of any two sides is greater than the 3rd side.
All of these are the basic properties of a triangle.
But in option D
The square of one side $=$ the sum of the squares of other two sides

The above statement is only true for right angled triangle.
Hence the answer is option D
32. What is the sum of interior angles in degrees of a polygon of 7 sides?
(A) 180°
(B) 360°
(C) 540°
(D) 900°
A. (A)
B. (C)
C. (B)
D. (D)

Ans. D
Sol.

We know that polygon of n sides can be divided into ($n-2$) triangles.
Sum of angles of a triangle $=180^{\circ}$
So, sum of the angles of ($n-2$) triangles, $=(n-2) \times 180^{\circ}$
$=(7-2) \times 180^{\circ}$
$=5 \times 180^{\circ}$
$=900^{\circ}$
33. The ratio of the angles of a triangle is
$2: 4: 3$, what kind of a triangle is it?
(A) A right angled triangle
(B) An acute angled triangle
(C) An obtuse angled triangle
(D) An equilateral triangle
A. (C)
B. (D)
C. (B)
D. (A)

Ans. C
Sol.
We are given that the ratio of angles of triangle is $2: 4: 3$
Let the angles are $2 \mathrm{x}, 4 \mathrm{x}, 3 \mathrm{x}$
Sum of interior angle of triangle is 180 degree
So $2 x+4 x+3 x=180$
$9 x=180$
$x=20$ degree
So angles are $40^{\circ}, 80^{\circ}, 60^{\circ}$
Because all angles are less than 90°, so it will be a acute angled triangle.

34. If $\Upsilon-75^{\circ}$, then what will be reflex angle y of it?
(A) 285°
(B) 115°
(C) 15°
(D) 205°
A. (B)
B. (A)
C. (D)
D. (C)

Ans. B
Sol.
The reflex angle is the larger angle. It is more than 180° but less than 360° If you choose the smaller angle you might have an Acute Angle, or an Obtuse Angle instead: The larger angle is a Reflex Angle, but the smaller angle is an Acute Angle.
So, the reflex angle of $y=360-75=285$ degree
35.

HI, GF and DE are parallel lines. If DG= $6, \mathrm{GH}=4$ and $\mathrm{FI}=8$ the $\mathrm{EF}=$?
(A) 8
(B) 9
(C) 12
(D) 16
A. (B)
B. (D)
C. (A)
D. (C)

Ans. D
Sol.
In DEIH, since the line GF DE and HI are parallel, GF will cut the line DH and EI in Proportion,
DG:GH = EF:FI
6/4 = EF/8
$E F=12$
36.

x, y and z are parallel lines and t is a transversal intersecting all of them. Which of the following lists has angles that are equal in measure?
(A) 2, 3, 5
(B) $2,6,8$
(C) $1,4,9$
(D) $4,5,7$
A. (B)
B. (C)
C. (D)
D. (A)

Ans. B
Sol.
$1=4=7$ (corresponding angles) $=9=2$ $=6$ (vertically opposite angles to 7,1,4 respectively)
Similary,
8 and 3 are corresponding angles and 5 is vertically opposite angle to 3 . Hence angle $8=3=5$
Hence in the given option we can see that option C is correct.
37.If perimeter of a rectangle is 34 cm , and its diagonal is 13 cms , what is its area?
(A) $987 \mathrm{sq} . \mathrm{cm}$.
(B) $240 \mathrm{sq} . \mathrm{cm}$.
(C) $120 \mathrm{sq} . \mathrm{cm}$.
(D) $60 \mathrm{sq} . \mathrm{cm}$.
A. (A)
B. (C)
C. (B
D. (D)

Ans. D
Sol.
Let the sides of a rectangle be I and b
$1^{2}+b^{2}=(12)^{2}=169$
$2(1+b)=34$
$1+b=17$
Squaring both the sides
$\mathrm{l}^{2}+\mathrm{b}^{2}+2 \mathrm{lb}=289$
$169+2 \mathrm{lb}=289$
$\mathrm{lb}=120 / 2=60$
therefore area of rectangle $=\mathrm{lb}=60 \mathrm{~cm}^{2}$
38. The radius of both circle A and circle B is 4 unit. If point P, lies in circle A and point Q lies on circle B, and both circles touch each other exactly at one point. Then what will be the maximum length of PQ?
(A) 0
(B) 4
(C) 8
(D) 16
A. (C)
B. (A)
C. (B)
D. (D)

Ans. D
Sol.

From the above figure we can clearly see that the maximum length of the PQ will be the sum of the diameter of the touching circles.
$8+8=16 \mathrm{~cm}$
39. What is the value of Z ?

(A) 35°
(B) 36°
(C) 63°
(D) 98°
A. (D)
B. (C)
C. (A)
D. (B)

Ans. B
Sol.
Since all $82^{\circ}, 35^{\circ}$, and z are vertically opposite angles of the triangle, their sum will be 180°
$Z=180-82-35=63^{\circ}$
40. If side of equilateral triangle is 4 unit, then find the area of equilateral triangle
(A) $16, \sqrt{3}$ square unit
(B) $4 \sqrt{3}$ square unit
(C) $2 \sqrt{3}$ square unit
(D) $\sqrt{3}$ square unit
A. (B)
B. (C)
C. (D)
D. (A)

Ans. A
Sol.
Area of equilateral triangle $=\frac{\sqrt{3} a^{2}}{4}$
$=\frac{\sqrt{3}(4)^{2}}{4}$
$=4 \sqrt{3}$
41. The area of a parallelogram $A B C D$ is $25 \mathrm{~cm}^{2}$. Then find the area of triangle BCD.
(A) 25 cm
(B) $25 \mathrm{~cm}^{2}$
(C) 12.5 cm
(D) $12.5 \mathrm{~cm}^{2}$
A. (D)
B. (A)
C. (C)
D. (B)

Ans. A
Sol. As BD is the diagonal of the parallelogram it divides it into 2 equal triagles
Hence, Area of ABD = Area of BCD = 1/2

* Area of the parallelogram.
$=12.5 \mathrm{~cm}^{2}$

42. The largest chord of circle is 10 cm and the smallest chord of the circle is 4 cm . Find the radius of the circle.
(A) 20 cm
(B) 5 cm
(C) 8 cm (D) 2 cm
A. B)
B. (C)
C. (D)
D. (A)

Ans. A
Sol. Largest chord of a circle is the diameter of the circle
Diametre $=10 \mathrm{~cm}$
therefore, radius $=5 \mathrm{~cm}$
43. Find the area of a circle whose circumference is 22 cm .
(A) $22 \mathrm{~cm}^{2}$
(B) $11 \mathrm{~cm}^{2}$
(C) $44 \mathrm{~cm}^{2}$
(D) $38.5 \mathrm{~cm}^{2}$
A. (B)
B. (C)
C. (A)
D. (D)

Ans. D
Sol. $2 \pi r=22$
$r=7 / 2$
Area $=n r^{2}$
$=38.5$
44. A polygon had 9 sides. What is its interior angle?
(A) 140°
(B) 100°
(C) 120°
(D) 40°
A. (B)
B. (A)
C. (C)
D. (D)

Ans. B
Sol.
.Interior angle of a polygon $=(n-$
2) $\times 180 / n$
$7 \times 180 / 9=140$
45. If LMN and UVW are similar triangles, the value of side S is

(A) 4
(B) 6
(C) 8
(D) 9
A. (A)
B. (D)
C. (B)
D. (C)

Ans. D
Sol. LMN ~ UVW
MN/VW = LM/ UV
7/28 = s/32
$s=8$.
46. A polygon having seven sides is called
(A) Nonagon
(B) Hexagon
(C) Heptagon
(D) Octagon
A. (A)
B. (C)
C. (D)
D. (B)

Ans. B
Sol.
Polygon having 9 sides called \rightarrow nonagon
Polygon having 6 sides called \rightarrow Hexagon
Polygon having 7 sides
called \rightarrow Heptagon
Polygon having 8 sides called \rightarrow Octagon
Hence option B is correct.
47. What is the measure of each of the two equal angles of the right isosceles triangle?
(A) 90°
(B) 30°
(C) 45°
(D) 60°
A. (D)
B. (C)
C. (A)
D. (B)

Ans. B
Sol.
In Right angle isoscelos triangle
The angles are $=90^{\circ}, x^{\circ}$ and x°
We know that $90^{\circ}+x^{\circ}+x^{\circ}=180^{\circ}$
x=45
So, option B is corect.
48. If the area of a circle is $9 п$ sq. cm then its circumference is
(A) 9 cm
(B) 6 m cm
(C) $3 \pi \mathrm{~cm}$
(D) 6 cm
A. (A)
B. (B)
C. (D)
D. (C)

Ans. B
Sol.
$\pi r^{2}=9 П$ sq. cm
$r=3$
Circumference $=2 \pi r=6 \pi$
49.

What is the area of this trapezoidal garden? (All measurements are in cm)
(A) $60 \mathrm{sq} . \mathrm{cm}$
(B) $180 \mathrm{sq} . \mathrm{cm}$
(C) $210 \mathrm{sq} . \mathrm{cm}$
(D) $240 \mathrm{sq} . \mathrm{cm}$
A. (B)
B. (D)
C. (C)
D. (A)

Ans. B
Sol.

As shown in the figure the dimensions would be as given
Area $=1 / 2 \times$ (Sum of parallel sides) \times height $=1 / 2(40) 12=240$
50. If the interior angle of a polygon is 108°, then it is a
(A) Octagon
(B) Hexagon
(C) Pentagon
(D) Tetragon
A. (C)
B. (D)
C. (B)
D. (A)

Ans. A
Sol.
Each exterior angle $=180-108=72$
$\mathrm{n}=360 / 72=5$ (Since sum of exterior angles $=360$ degrees)
51. If area of a equilateral triangle is $24 \sqrt{3}$ then find out the perimeter of triangle?
(A) $16 \sqrt{6}$
(B) 96
(C) $4 \sqrt{6}$
(D) $12 \sqrt{6}$
A. (A)
B. (D)
C. (B)
D. (C)

Ans. B
Sol. Area of equilateral triangle $=$ $(\sqrt{ } 3 / 4) a^{2}=24 \sqrt{3}$
$a=\sqrt{ } 96=4 \sqrt{ } 6$
Perimeter $=3 a=12 \sqrt{ } 6$
52. \qquad is the longest chord of a circle.
(A) Circumference
(B) Diameter
(C) Radius
(D) Sector
A. (D)
B. (B)
C. (A)
D. (C)

Ans. B
Sol.
Diameter is the largest chord of a circle.
53. If $\triangle A B C$ and $\triangle D E F$ are similar triangles and $B C=4 \mathrm{~cm}, \mathrm{EF}=7 \mathrm{~cm}$, area of $\triangle A B C$ is $144 \mathrm{~cm}^{2}$ then find the are of $\triangle D E F$
(A) $252 \mathrm{~cm}^{2}$
(B) $504 \mathrm{~cm}^{2}$
(C) $441 \mathrm{~cm}^{2}$
(D) $324 \mathrm{~cm}^{2}$
A. (B)
B. (D)
C. (C)
D. (A)

Ans. C
Sol.

In Similar triangle,

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{B C}{E F}\right)^{2}
$$

$\frac{144}{\operatorname{ar}(\triangle D E F)}=\left(\frac{4}{7}\right)^{2}$
$\operatorname{Ar}(\triangle D E F)=441 \mathrm{~cm}^{2}$
54. Area of a right angled triangle is 30 cm^{2}. If height 7 m more then base then find the length
(A) 5 m
(B) 12 m
(C) 7 m
(D) 9 m
A. (B)
B. (C)
C. (D)
D. (A)

Ans. D
Sol.
Let the length of the base be x
Height of the triangle $=x+7$
Area of triangle $=1 / 2 \times \times \times(x+7)=30$
$x^{2}+7 x-60=0$
$x^{2}+12 x-5 x-60=0$
$(x+12)(x-5)=0$
$X=5=$ length of base

gradeup

Gradeup Green Card

Features:

, 350+ Full-Length Mocks
> 30+SSC \& Railways Exams Covered
> Tests Available in English \& Hindi
> Performance Analysis \& All India Rank
> Previous Year Question Papers in Mock Format
> Available on Mobile \& Desktop

