\\ \title{
gradeup
}\\ \title{
gradeup
} gradeup

UPSC

Engineering Services Exam
सत्यमेब जयते

ESE (Main)
 Examination 2020

Electronics \& Telecommunication
Engineering Paper-II

Detailed Solutions

hn mn Pinions:ous

Prep Smart. Score Better. Go gradeup

GEARUP GATE 2021

A Concept Building Course

Course Includes

* 300+ Hrs of Live Class
* 3000+ Practice Questions in Tests
* 40+ Mock Tests
= 75+ Chapter wise Study Notes

Ideal for students, who want to revise the entire GATE Syllabus

RANKUP GATE 2021

A Score Improvement Course

Course Includes
= 300+ Hrs of Live Class
= 3000+ Practice Questions in Class

- 40+ Mock Tests
= 75+Chapter wise Study Notes

Ideal for repeater students, who want to improve their GATE Score

VISION 2022

A Course for ESE \& GATE 2022
Aspirants
Course Includes
$=850+$ Hrs of Live Class
= 8000+ Practice Questions in Tests

* 100+ Mock Tests
= $120+$ Chapter wise Study Notes

Ideal for the 2nd year \& 3rd year Engineering students

ESE Mains 2020 Electronics Engineering Detailed Weightage Analysis

Paper-2			
S.no.	Subjects	Difficulty Level	Marks in 2020
1	Analog and Digital Communication Systems	Moderate	90
2	Control Systems	Easy	80
3	Control Systems Computer Organization and Architecture	Moderate	40
4	Electro Magnetics	Moderate	110
5	Advanced Electronics Topics	Moderate	130
6	Advanced Communication Topics	Moderate	30
	Total		480

ELECTRONICS ENGINEERING
 Paper-II

SECTION-'A'

1.(a) A certain speech signal is sampled at 8 kHz and coded with DPCM, the output of which belongs to a set of 8 symbols $\mathrm{s}_{1}-\mathrm{S}_{8}$.
The probabilities of these symbols are $p\left(s_{1}\right)=0.4, p\left(s_{2}\right)=p\left(s_{3}\right)=0.2, p\left(s_{4}\right)=0.1, p\left(s_{5}\right)=$ $0.05, p\left(s_{6}\right)=p\left(s_{7}\right)=0.02$ and $p\left(s_{8}\right)=0.01$. Calculate the entropy in bits/sec. If all the symbol are equiprobable, what will be the entropy?
Sol. Sampled freq. $\mathrm{f}_{\mathrm{s}}=8 \mathrm{KHz}$
Coding scheme $=$ DPCM
$P\left(s_{1}\right)=0.4, P\left(s_{2}\right)=0.2, \quad P\left(s_{3}\right)=0.2$
$P\left(s_{4}\right)=0.1, P\left(s_{5}\right)=0.05, P\left(s_{6}\right)=P\left(s_{7}\right)=0.02, P\left(s_{8}\right)=0.01$
Entropy
$\mathrm{H}(\mathrm{s})=\sum_{\forall i}^{8} \mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right) \log _{2} \frac{1}{\mathrm{P}\left(\mathrm{s}_{\mathrm{i}}\right)}$
$=0.4 \log _{2} \frac{1}{0.4}+\left(0.2 \log _{2} \frac{1}{0.2}\right) \times 2+0.1 \log _{2} \frac{1}{0.1}+0.05 \log _{2} \frac{1}{0.05}+\left(0.02 \log _{2} \frac{1}{0.02}\right) \times 2+0.01 \log _{2} \frac{1}{0.01}$
$=0.4 \times 1.322+0.4 \times 2.322+0.1 \times 3.322+0.05 \times 4.322+0.04 \times 5.643+0.01 \times 6.643$
$=2.29809$ Bits/symbol
When all the symbols one equal probable
Then $P\left(s_{1}\right)=P\left(s_{2}\right)=\ldots \ldots P\left(s_{8}\right)=1 / 8$.
$M=8$
$H(s)=\log _{2} M=\log _{2} 8=3 \frac{\text { Bits }}{\text { symbol }}$
(b) In the figure shown below, $\mathrm{G}(\mathrm{s})=\frac{\mathrm{K}}{(\tau \mathrm{S}+1)}$ has a time constant of 0.5 seconds, and has unity DC gain. An integral controller is placed in forward path as $G_{c}(s)=\frac{K_{1}}{S}$ such that the open loop transfer function $G(s) G c(s)$ has a velocity error constant $K v=1$. Find the sensitivity of the closed loop system transfer function with respect to K_{1} at $\omega=1 \mathrm{rad} / \mathrm{sec}$.

Sol. $\quad G(s)=\frac{K}{S \tau+1}$
With time constant $\mathrm{T}=0.5$ sec\& DC gain, $\mathrm{K}=1$

Open loop Transfer function
$\Rightarrow \frac{\mathrm{K}_{1}}{\mathrm{~s}(\mathrm{~s}+1)}=0$
Given $K v=1$
$\lim _{s \rightarrow 0} \frac{s x K_{1}}{s(s+1)}=1 \Rightarrow K_{1}=1$
Closed loop Transfer function:
$T(s)=\frac{G_{c}(s) G(s)}{1+G_{c}(s) G(s)}=\frac{K_{1}}{\frac{s(s+1)}{1+\frac{K_{1}}{s(s+1)}}}$
$T(s)=\frac{K_{1}}{s(s+1)+K_{1}}$
Sensitivity of T(s) w.r.t K_{1}
$S_{K_{1}}^{\top}=\frac{K_{1}}{T} \frac{\partial T}{\partial K_{1}}=\frac{\mathrm{K}_{1}}{\frac{\mathrm{~K}_{1}}{\mathrm{~s}(\mathrm{~s}+1)+\mathrm{k} 1)}} \times \frac{\left(\mathrm{s}(\mathrm{s}+1)+\mathrm{K}_{1}\right) \times 1-\mathrm{K}_{1}(1)}{\left(\mathrm{s}(\mathrm{s}+1)+\mathrm{K}_{1}\right)^{2}}$
$S_{K_{1}}^{\top}=\frac{s^{2}+s}{\left(s(s+1)+K_{1}\right)}$
Put $s=j \times 1$
$S_{K_{1}}^{\top}=\frac{-1+j}{-1+j+K_{1}}$
Put $K_{1}=1$
$S_{K_{1}}^{\top}=\frac{-1+j}{j}=1+j$
$\left|S_{\mathrm{K}_{1}}^{\top}\right|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
(c) List and define various scheduling performance criteria used for comparing various CPUscheduling algorithms. Compute and compare the average process waiting time of First come First serve, Shortest task first and Priority scheduling algorithms for the processes with their details as listed in the table.

Process	Arrival Time	Burst Time	Priority
P_{0}	0	3	1
P_{1}	2	2	2
P_{2}	3	4	3
P_{3}	4	7	1

Sol. FCFS:

Process	Arrival	Burst time	Completion time	TAT	WT
P_{0}	0	3	3	3	0
P_{1}	2	2	5	3	1
P_{2}	3	4	9	6	2
P_{3}	4	7	16	12	5

P_{0}	P_{1}	P_{2}	P_{3}	
0	3	5	9	16

Avg waiting time $=8 / 4=2$
SJF:

Process	Arrival	Burst time	Completion time	TAT	AT
P_{0}	0	3	3	3	0
P_{1}	2	2	5	3	1
P_{2}	3	4	9	6	2
P_{3}	4	7	16	12	5

P_{0}	P_{1}	P_{2}	P_{3}	
0	3	5	9	16

Avg waiting time $=8 / 4=2$

3. Priority:

Process	AT	Burst time	Priority	TAT	WT
P_{0}	0	3	1	3	0
P_{1}	2	2	2	3	1
P_{2}	3	4	3	13	9
P_{3}	4	7	1	8	1

Assuming less integer means Higher priority

P_{0}	P_{1}	P_{3}	P_{2}	
0	3	5	12	16

Avg writing time $=11 / 4=2.75$
(d) A uniform plane wave is propagating in z-direction with velocity $1.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in a perfect dielectric medium of intrinsic impedance 474Ω. If $E_{x}(z, t)=1750 \cos \left(10^{6} \pi t-\beta z\right) V / m$ represents instantaneous electric field, what will be the magnetic field? Determine the wavelength and average power of the wave.
Sol. $\quad v=1.4 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
$\eta=474 \Omega$
$E_{x}(z, t)=1750 \cos \left(10^{6} n t-\beta z\right) V / m$
$H_{y}(z, t)=1750 / 474 \cos \left(10^{6} \pi t-\beta z\right) A / m$
$H_{y}(z, t)=3.69 \cos \left(10^{6} \pi t-\beta z\right) A / m$
$\omega=10^{6} п$
$2 п \mathrm{ff}=10^{6}$ п
$\mathrm{f}=0.5 \times 10^{6} \mathrm{~Hz}$
$\lambda=\frac{v}{f}=\frac{1.4 \times 10^{8}}{0.5 \times 10^{6}}=280$
$\lambda=280 \mathrm{~m}$
$P_{\text {avg }}=\frac{1}{2} \frac{|E|^{2}}{\eta}=\frac{1}{2} \frac{|1750|^{2}}{474}$
$P_{\text {avg }}=3230.49 \mathrm{~W} / \mathrm{m}^{2}$
(e) Processor technology deals with computation architectures whereas IC technology deals with implementation style for a given functionality.

What are the different processor and IC technologies? Is processor technology orthogonal to IC technology or interdependent with IC technology? Justify your answer.
Sol. *
(f) Explain the following terms:
(i) Modal Birefringence
(ii) Coherence Length
(iii) Beat Length

The difference between the propagation constants for the two orthogonal modes in the single mode fiber is 250 . It is illuminated with light of peak wavelength $1.55 \mu \mathrm{~m}$ from an injection laser source with a spectral width of 0.8 nm . Calculate Modal Birefringence, Coherence Length and Beat Length.
Sol.
2. (a) Narrow band noise $n(t)$ having bandwidth $2 B$ centered at f_{0} is expressed as $n(t)=n_{I}(t) \cos$ ($2 \pi f_{0} t$) - $n_{Q}(t) \sin \left(2 \pi f_{0} t\right)$ where $n_{I}(t)$ and $n_{Q}(t)$ are in phase and quadrature components respectively.
(i) Draw the block diagram of the scheme and show the extraction of $n_{1}(t)$ and $n_{Q}(t)$ from $n(t)$.
(ii) If $G_{n}(f)$ is power spectral density (PSD) of $n(t)$, derive expressions in terms of $G_{n}(f)$ for PSD of $n_{I}(t)$ and $n_{Q}(t)$.
(iii) If $G_{n}(f)$ is as shown, sketch PSD of $n_{I}(t)$ assuming $f_{0}=f_{1}$.

$\underset{\text { super }}{\text { gradeup }}$
 Vision 2022
 A Course for ESE \& GATE Aspirants

Mechanical Engineering

> 950+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
> 100+ Mock Tests

Civil Engineering

> 950+ Hrs of Live Classes
> 120+ Chapter-wise Study Notes
>10,000+ Practice Questions
> 100+ Mock Tests

Electrical Engineering

>850+ Hrs of Live Classes
>120+Chapter-wise Study Notes
>8,000+ Practice Questions
> 100+ Mock Tests

Electronics Engineering
>850+ Hrs of Live Classes
> 120+ Chapter-wise Study Notes
> 8,000+ Practice Questions
$>100+$ Mock Tests

Computer Sc. \& Engg.
>600+ Hrs of Live Classes
> 100+ Chapter-wise Study Notes
>5,000+ Practice Questions
> 100+ Mock Tests

For More Information : \searrow help@gradeup.co 9650052904

ESE \& GATE Gradeup Achievers

60+ Gradeup Students in Top 100

Our Star
 Faculty

DheerajSardana
$10+$ Years of Experience Mentored $15000+$ Students Produced AIR 4 \& $30+$ Rankers under AIR 100 in GATE

17+ Years of Experience M.E, Osmania University. Hyderabad

8+ Years of Experience M.Tech, Ph.d (JNU Delhi)

B+ Years of Experience M.Tech, IIT Roorkee

7+ Years of Experience M.Tech. IIT Delhi

Produced $50+$ Students under AIR 100 in GATE

Aniruddha Roy
3+ Years of Experience ME, IIT Bombay

10+ Years of Experience M.Tech, IISc Bangalore (AIR-9)

7+ Years of Experience Mentored 30000+ Students

9+ Years of Experience M. Tech, NIT Hamirpur

Md. Ansari

8+ Years of Experience M.E, HSc Bangalore

7+ Years of Experience
M.Tech (MNNIT, Allahabad)

Our Teaching Methodology

STEP 1

STEP 2

Detailed Study Notes
on each chapter of
through Interactive
Classes \& Conventional
Assignments

Get Exam-Ready with Revision

Separate ESE \& GATE
Preparation Tests
on a daily, weekly \& monthly
basis for revision

STEP 5

Live Doubt Sessions for each subject

STEP 6

Mock Test and Subject test for ESE \& GATE

$\underset{\text { SUPER }}{\text { gradeup }}$

Vision 2022

A Course for ESE \& GATE Electronics Aspirants

Sol. (i) $n(t)=n_{I}(t) \cos 2 \pi f_{o} t-n_{Q}(t) \sin 2 \pi f_{o} t$

Let $x(t)=\cos \left(2 \pi f_{0} t+\phi\right)$
$\phi=90^{\circ} \Rightarrow x(t)=\sin 2 \pi f_{0} t$
$\phi=0^{\circ} \Rightarrow x(t)=\cos 2 \pi f_{0} t$
$h(t) \cdot x(t)=\left(n_{I}(t) \cos 2 \pi f_{0} t-n_{Q}(t) \sin 2 \pi f_{0} t\right) \cos \left(2 \pi f_{0} t+\phi\right)$
$\Rightarrow \frac{\mathrm{n}_{\mathrm{I}}(\mathrm{t})}{2} \cos \left(4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\phi\right)+\frac{\mathrm{n}_{\mathrm{I}}(\mathrm{t})}{2} \cos \phi-\frac{\mathrm{n}_{\mathrm{Q}}(\mathrm{t})}{2} \sin \left(4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\phi\right)+\frac{\mathrm{n}_{\mathrm{Q}}(\mathrm{t})}{2} \sin \phi$
Output of LPF
$\Rightarrow \frac{\mathrm{n}_{\mathrm{I}}(\mathrm{t})}{2} \cos \phi+\frac{\mathrm{n}_{\mathrm{Q}}(\mathrm{t})}{2} \sin \phi$
$\phi=0^{\circ}$

$$
\phi=90^{\circ}
$$

Output $=\frac{n_{1}(\mathrm{t})}{2}$

$$
\text { Output }=\frac{\mathrm{n}_{\mathrm{Q}}(\mathrm{t})}{2}
$$

So inphaseand quadrature both component we generated back of $n(t)$.
(iii) PSD of $n_{I}(t)=G_{n}\left(f-f_{1}\right)+n_{n}\left(f+f_{1}\right)$

(b) For a unity feedback system with $\mathrm{G}(\mathrm{s})=\frac{3 \mathrm{~s}+\alpha}{\mathrm{s}(\mathrm{s}+1)(\mathrm{s}+5)}$, draw the root locus plot as parameter a varies from 0 to ∞. Also find the value of parameter a for which the closed loop system becomes unstable. From the root locus plot, obtain approximate location of the system poles with $\xi=0.707$.
Sol. $\quad G(s)=\frac{3 s+\alpha}{s(s+1)(s+5)}$
Characteristic Equation $1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$
$1+\frac{3 s+\alpha}{s(s+1)(s+5)} \times 1=0$
$s(s+1)(s+5)+3 s+a=0$
divide by $s(s+1)(s+5)+3 s$
$1+\frac{\alpha}{s[(s+1)(s+5)+3]}=0$
$1+\frac{\alpha}{s\left(s^{2}+6 s+8\right)}=0$
$1+\frac{\alpha}{s(s+2)(s+4)}=0$
Let's sketch root locus for
$\mathrm{G}_{1}(\mathrm{~s})=\frac{\alpha}{\mathrm{s}(\mathrm{s}+2)(\mathrm{s}+4)}=0$
Open loop zeros: None; $Z=$ No. of OLZ $=0$
Open loop poles: $s=0,-2,-4$
$\mathrm{P}=$ No. of OLP $=3$

1. Number of Branches: $N=\max (P, z)=3$
2. Branches starts from $s=0,-2,-4$
3. Branches terminate at ∞, ∞, ∞
4. Number of Asymptotes:
$\mathrm{n}=\mathrm{P}-\mathrm{Z}=3-0=3$
5. Angle of Asymptotes with Real Axis:
$\theta=\frac{2 K+1}{n} \times 180^{\circ}, K=0,1,2, \ldots \ldots n-1$
$\theta=\frac{2 \mathrm{~K}+1}{3} \times 180^{\circ}, \mathrm{K}=0,1,2$
$\theta=60^{\circ}, 180^{\circ}, 300^{\circ}$
6. Centroid: Intersection of Asymptotes as Real Axis
$x=\frac{\sum \text { Poles- } \sum \text { Zeros }}{P-Z}=\frac{(0-2-4)-(0)}{3-0}=-2$

Structured Live Courses

India's Best GATE Faculty
(?) Complete Doubt Resolution

(ㄷ)Full Syllabus Coverage for your exam

Green Card

(1) Online Mock Tests

-

Based on Latest Exam Pattern

To get unlimited access to your preferred courses Subscribe to Gradeup Super

Reviews from Our Students

ROHITH

Vision EE (ESE \& GATE) is
The faculty is very good and all of them elaborate on the topics in a much better way. Quizzes help me a lot in my selfevaluation \& Exam Preparation. Mock test quality is very good and they are precise, as per the exam.

11

SAILESH SAH

Vision ME (ESE \& GATE)

All Faculty are good and the Interactive sessions are really helpful. The all mock tests are good and up to the mark.

Vision 2022

A Course for ESE \& GATE
7. Breakaway Points:

CE : $1+\frac{\alpha}{s(s+2)(s+4)}=0$
$\alpha=-\left[\mathrm{s}^{3}+6 \mathrm{~s}^{2}+8 \mathrm{~s}\right]$
$\frac{\mathrm{d} \alpha}{\mathrm{ds}}=0$
$-\left(3 s^{2}+12 s+s\right)=0$
$s=-0.85,-3.15$
$\mathrm{s}=-0.85$ is on root locus
$s=-3.15$ is not on Root locus, so not a breakaway point.
8. Existence of Root locus on Real Axis:

Root locus exists on real axis of total number of poles \& zeroes to the right is an odd number.

Between s=-2 \& 0
9.Intersection of Root Locus with Imaginary Axis

CE: $1+\frac{\alpha}{s(s+2)(s+4)}=0$
$\mathrm{s}^{3}+6 \mathrm{~s}^{2}+8 \mathrm{~s}+\alpha=0$
use Routh Hurwitz criteria

s^{3}	1	8
s^{2}	6	α
s^{1}	$48-\alpha$	0
s^{0}	α	0

For intersection with $j \omega$ axis,
$48-\alpha=0$
$\Rightarrow \alpha=48$
Roots, $6 \mathrm{~s}^{2}+\alpha=0$
$6 s^{2}+48=0$
$s= \pm j 2 \sqrt{2}$
For stability, $48-\alpha>0$ and $\alpha>0$
$\Rightarrow 0<\alpha<48$
So, If a >48, system is unstable.

(c) Memory sub-system for a product has been designed with 3-level memory hierarchy within a budget of Rs. 22,000. The known and unknown parameters for the design are tabulated below:

Memory Type	Access Time	Capacity	Cost per kilobyte in Rs.
Cache	5 ns	1 MB	1
Main Memory	-	128 MB	0.1
Solid State Drive (SSD)	$5 \mu \mathrm{~s}$	-	0.001

The design achieved an effective memory access timeof 20 ns with cache hit ratio 0.95 and main memory hit ratio 0.99 . The SSD can be only in integer powers of 2 in GB.

Find out the missing parameters in the above table.
Sol. Cache Access Time $=\mathrm{T}_{\mathrm{c}}=5 \mathrm{~ns}$
memory access time $=\mathrm{T}_{\mathrm{m}}$
SSD access time $=$ Ts $=5 \mu \mathrm{sec}=5000 \mathrm{~ns}$
Cache Hit ratio $=0.95=\mathrm{Hc}$
Memory hit ratio $=0.99=\mathrm{H}_{\mathrm{m}}$
Avg Access time $=T_{c}+\left(1-H_{c}\right)\left[T_{m}+\left(1-H_{m}\right) T_{s}\right]$
$20 n s=5 n s+(1-0.95)\left[T_{m}+(1-0.99) 5000\right]$
$15=(0.05)\left[T_{m}+(0.01) 5000\right]$
$\frac{1500}{5}=T_{m}+50$
$\mathrm{Tm}=250 \mathrm{nsec}$
Cache $=1 \mathrm{MB}=2^{20} \mathrm{~B}=2^{10} \mathrm{~KB}$
Cache cost $=2^{10}$ Rupees
Memory $=128 \mathrm{MB}==2^{17} \mathrm{kB}$
Memory cost $=\frac{2^{17}}{10}$ Rupees
SSD $=2^{\mathrm{x}} \mathrm{KB}$ (Assume)

SSD cost $=\frac{2^{x}}{1000}$
$22000=2^{10}+\frac{2^{17}}{10}+\frac{2^{x}}{1000}$
$2^{x}=7868800$
SSD size $=7868800 / 2^{\wedge} 20 \mathrm{~GB}=7.50 \mathrm{~GB}=2^{3} \mathrm{~GB}=8 \mathrm{~GB}$
3. (a) In a particular AM system, quadrature modulation is used where the inphse carrier modulates $\left(m_{1}(t)+V_{0}\right)$ and quadrature carrier modulates $m_{2}(t)$, where $m_{1}(t)$ and $m_{2}(t)$ are low pass bandlimited message signals and V_{0} is constant.
(i) Write the expression for quadrature AM signal.
(ii) Assuming V_{0} is large, show that $\mathrm{m}_{1}(\mathrm{t})$ can be recovered using envelope detector.
(iii) Propose a coherent demodulation scheme and show the recovery of $m_{2}(t)$.

Sol. Given that
($m_{1}(t)+V_{0}$) is inphase component.
\& $m_{2}(t)$ is Quadrature component.
AM with Quadrature modulation is written as-
$S(t)=\cos (2 \pi f c t) I(t)-\sin 2 \pi f_{c t} Q(t)$
$\mathrm{I}(\mathrm{t})=\mathrm{m}_{1}(\mathrm{t})+\mathrm{V}_{0}$
$Q(t)=m_{2}(t)$
(i) Quadrature AM signal $s(t)=$
$s(t)=\left(m_{1}(t)+V_{0}\right) \cos 2 \pi f_{c} t-m_{2}(t) \sin 2 \pi f_{c} t$
(ii) $S(t) \cos 2 \pi f_{c} t=\left\{\left\{m_{1}(t)+V_{0}\right\} \cos 2 \pi f_{c} t-m_{2}(t) \sin 2 \pi f_{c} t\right\} . \cos 2 \pi f_{c} t$
$=\left\{\left\{m_{1}(t)+V_{0}\right\} \cos ^{2} 2 \pi f_{c} t-m_{2}(t) \sin 2 \pi f_{c} t \cos 2 \pi f_{c} t\right.$
$=\left\{\mathrm{m}_{1}(\mathrm{t})+\mathrm{v}_{\mathrm{o}}\right\}\left[\frac{\cos 4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+1}{2}\right]-\frac{\mathrm{m}_{2}(\mathrm{t})}{2}\left[\sin 4 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\sin 0^{\circ}\right]$
$=\frac{\left(m_{1}(t)+V_{0}\right)}{2}+\frac{\left(m_{1}(t)+V_{0}\right)}{2} \cos 4 \pi f_{c} t-\frac{m_{2}(t)}{2} \sin 4 \pi f_{c} t$
When (2) is passed through LPF.
Then, $\left(\frac{m_{1}(t)+V_{0}}{2}\right)$ is obtained as V_{0} is large, hence $m_{1}(t)$ can be recovered.
(b) For the unity feedback system shown in the figure, the plant $\mathrm{G}(\mathrm{s})$ has a step response of (3$\left.6 e^{-2 t}+3 e^{-4 t}\right) u(t)$ and it is placed in cascade with a block of gain $1 / s$. Sketch the Nyquist plot of the system and find its gain and phase margins. Also comment whether the closed loop system is stable or not.

Sol. $G(s)=\frac{\operatorname{LT}\left\{\left(3-6 \mathrm{e}^{-2 \mathrm{t}}+3 \mathrm{e}^{-4 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})\right\}}{\mathrm{LT}\{\mathrm{u}(\mathrm{t})\}}$
$\frac{=\frac{3}{s}-\frac{6}{s+2}+\frac{3}{s+4}}{\frac{1}{s}}$
$=\frac{3\left(s^{2}+6 s+8\right)-6\left(s^{2}+4 s\right)+3\left(s^{2}+2 s\right)}{(s+2)(s+4)}$
$G(s)=\frac{24}{(s+2)(s+4)}$
Put $\mathrm{s}=\mathrm{j} \omega$
$\mathrm{G}(\mathrm{j} \omega)=\frac{24}{(2+\mathrm{j} \omega)(4+\mathrm{j} \omega)}$
$M=|G(j \omega)|=\sqrt{\frac{24}{\left(4+\omega^{2}\right)\left(16+\omega^{2}\right)}}$
$\phi=\angle \mathrm{G}(\mathrm{j} \omega)=-\tan ^{-1}\left(\frac{\omega}{2}\right)-\tan ^{-1}\left(\frac{\omega}{4}\right)$
$\omega=0^{+}$
$M=\frac{24}{\sqrt{4 \times 16}}=\frac{24}{2 \times 4}=3$
$\phi=-\tan ^{-1}(0)-\tan ^{-1}(0)=0^{\circ}$
$\omega=\infty^{+}$
$M=\frac{1}{\infty}=0 \Rightarrow$ origin
$\phi=-\tan ^{-1}(\infty)-\tan ^{-1}(\infty)=-180^{\circ} \quad \Rightarrow-$ ve x axis
Also, $\phi=-\tan ^{-1}\left(\frac{\omega}{2}\right)-\tan ^{-1}\left(\frac{\omega}{4}\right)=-\tan ^{-1}\left(\frac{\frac{\omega}{2}+\frac{\omega}{4}}{1-\frac{\omega^{2}}{8}}\right)$
$\phi=-\tan ^{-1}\left(\frac{6 \omega}{8-\omega^{2}}\right)$
Put $8-\omega^{2}=0$
$\omega=\sqrt{8}=2 \sqrt{2}$
$\phi=-\tan ^{-1}(\infty)=-90^{\circ}$
\Rightarrow-ve y-axis
So, Nyquist plot will be

G(s)H(s) plane

Gain Margin

$\omega_{p}=$ phase crossover frequency
at $\omega=\omega_{p}, \phi=\angle \mathrm{G}(\mathrm{j} \omega)=-180^{\circ}$
So, $\omega_{\mathrm{p}}=\infty$
Magnitude, M at $\omega_{P}=\infty,=\frac{1}{\infty}=0$
So, G.M. $=20 \log \left(\frac{1}{\left|G\left(j \omega_{p}\right) H\left(j \omega_{P}\right)\right|}\right)=20 \log \left(\frac{1}{0}\right)=\infty d B$

Phase Margin

$\omega_{g} \rightarrow$ gain crossover frequency
at $\omega=\omega_{g}, M=|G(j \omega)|=1$
$\frac{24}{\sqrt{\left(4+\omega^{2}\right)\left(16+\omega^{2}\right)}}=1$
or, $\left(4+\omega^{2}\right)\left(16+\omega^{2}\right)=24^{2}$
Put, $\omega^{2}=x$
$(x+4)(x+16)=576$
$x^{2}+20 x+64=576$
$x^{2}+20 x-512=0$
$x=\omega_{g}^{2}=14.74,-34.74$
ω_{g}^{2} can't be negative
So, $\omega_{g}^{2}=14.74$
$\omega_{g}=3.84 \mathrm{rad} / \mathrm{sec}$
So, $\mathrm{PM}=180^{\circ}+\angle \mathrm{G}(\mathrm{j} \omega \mathrm{g})$
$=180^{\circ}+\left[-\tan ^{-1}\left(\frac{3.84}{2}\right)-\tan ^{-1}\left(\frac{3.84}{4}\right)\right]=73.68^{\circ}$
Both Gain margin \& phase Margin are positive,
So, the system is stable.
(c) Design a 4-bit arithmetic circuit with one selection variable s and two four-bit data inputs A and B. The circuit generates the following four arithmetic operations in conjunction with the input carry C_{in}. Draw the logic diagram for the following:

S	$\mathrm{C}_{\text {in }}=0$	$\mathrm{C}_{\text {in }}=1$
0	$\mathrm{D}=\mathrm{A}+\mathrm{B}$	$\mathrm{D}=\mathrm{A}-\mathrm{B}$
1	$\mathrm{D}=\mathrm{A}+1$	$\mathrm{D}=\mathrm{A}-1$

Sol.

$\underset{\text { super }}{\text { gradeup }}$
 Vision 2022
 A Course for ESE \& GATE Aspirants

Mechanical Engineering

> 950+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
> 100+ Mock Tests

Civil Engineering

> 950+ Hrs of Live Classes
> 120+ Chapter-wise Study Notes
>10,000+ Practice Questions
> 100+ Mock Tests

Electrical Engineering

>850+ Hrs of Live Classes
>120+Chapter-wise Study Notes
>8,000+ Practice Questions
> 100+ Mock Tests

Electronics Engineering
>850+ Hrs of Live Classes
> 120+ Chapter-wise Study Notes
> 8,000+ Practice Questions
$>100+$ Mock Tests

Computer Sc. \& Engg.
>600+ Hrs of Live Classes
> 100+ Chapter-wise Study Notes
>5,000+ Practice Questions
> 100+ Mock Tests

For More Information : \searrow help@gradeup.co 9650052904

ESE \& GATE Gradeup Achievers

60+ Gradeup Students in Top 100

Our Star
 Faculty

B+Years of Experience M.Tech, IIT Roorkee

Abhinav Negi

7+ Years of Experience M.Tech. IIT Delhi

Produced $50+$ Students under AIR 100 in GATE

Aniruddha Roy

3+ Years of Experience ME, IIT Bombay

$10+$ Years of Experience M.Tech, NIT Trichy

Mentored $25000+$ Students
$10+$ Years of Experience Mentored $15000+$ Students
Produced AIR 4 \& 30+ Rankers under AIR 100 in GATE

Dr. G Ramana
$23+$ Years of Experience Produced AIR 1 in GATE 3times Mentored $1,00,000+$ Aspirants
Sr. Faculty for ESE \& GATE

17+ Years of Experience
M.E, Osmania University. Hyderabad

8+ Years of Experience M.Tech, Ph.d (JNU Delhi)

13+ Years of Experience Sr. Faculty for ESE \& GATE

\qquad

9+ Years of Experience M. Tech, NIT Hamirpur

7+ Years of Experience M.Tech (MNNIT, Allahabad)

-Tech (MN

10+ Years of Experience
M. Tech, IISc Bangalore (AIR-9)

7+ Years of Experience Mentored 30000+ Students

13+ Years of Experience B.Tech, IIT Delhi

Ankit Joshi
15+ Years of Experience Produced AIR 1 in GATE 2 times
Produced 50+ Students under AIR 100 in GATE

Md. Ansari

B+ Years of Experience M.E, IISc Bangalore

Balaji Tanguturi
8+ Years of Experience M.E, IIT Madras (AIR-98)

AshutoshSaxena
10+ Years of Experience M. Tech, IIT BHU

Sr. Faculty for ESE \& GATE

Sanjay Rathi

18+ Years of Experience ESE AIR 16 \& AIR 21

Produced many top rankers under AIR 100

20+Years of Experience Produced many Top rankers under AIR 100 in GATE
Mentored $35,000+$ Students

Our Teaching Methodology

STEP 1

STEP 2

Kax

Live Classes on Each Chapter by Expert Facuity

Practice Questions
through Interactive
Classes \& Conventional
Assignments

Get Exam-Ready with Revision

Separate ESE \& GATE Preparation Tests on a daily, weekly \& monthly basis for revision

STEP 5

Live Doubt Sessions
for each subject

Mock Test and Subject test for ESE \& GATE

Vision 2022

A Course for ESE \& GATE Electronics Aspirants

4.(a) Twelve different audio signals each band-limited to 10 kHz are to multiplexed and transmitted.
(i) TDM is used with flat top samples of $1 \mu \mathrm{sec}$ duration and with provision of one extra pulse of 1 $\mu s e c$ duration for synchronization. If sampling is at Nyquist rate, calculate the spacing between successive samples of TDM signal. What is the bandwidth of the TDM signal?
(ii) If the audio signals are multiplex using FDM and transmitted using AM-SSB what is the minimum bandwidth required?

Sol.
(b) Given a system with transfer function $G(s)=\frac{10}{(s+1)(s+4)}$, find its equivalent state space phase variable canonical representation in the form $\dot{x}=A x+B u, y=C x+D u$. Also design a state feedback controller $u=K x$ such that the system admits a peak response $M_{p w}=1.25$ in frequency domain and a peak time $t_{p}=3.53$ seconds in times step response.

Sol. *
(c) Following Register Transfer statements provide the operations to be performed with flip-flop F:
$\mathrm{X}_{1} \mathrm{~T}_{1}: \mathrm{F} \leftarrow 0$
$\mathrm{X}_{2} \mathrm{~T}_{2}: \mathrm{F} \leftarrow 1$
$X_{3} T_{3}: F \leftarrow G$
$\mathrm{X}_{4} \mathrm{~T}_{4}: \mathrm{F} \leftarrow \overline{\mathrm{F}}$
In all other conditions, the contents of F do not change. Using J-K flip-flops, draw the logic diagram showing connections of the gates that implement control function for F.
Sol.

SECTION-'B'

5.(a) Band-limited message signal $m(t)$ is encoded using PCM system which uses uniform quantizer and 8-bit binary encoding. If the bit rate is $56 \mathrm{Mb} / \mathrm{sec}$, what is the maximum bandwidth of $\mathrm{m}(\mathrm{t})$ for satisfactory operation?

Calculate signal to quantization noise ratio if $m(t)$ is full load single tone sinusoidal signal of frequency 1 MHz .

Sol. $n=8$ bits
$\mathrm{R}_{\mathrm{b}}=56 \mathrm{mbps}$ (bit rate)
$R_{b}=n f_{s}$
$56 \mathrm{Mbps}=8 . \mathrm{f}_{\mathrm{s}}$
$\mathrm{f}_{\mathrm{s}}=7 \times 10^{6} \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{s}}=7 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{s}}=\mathrm{NR}=2 \mathrm{fm}$
$2 \mathrm{f}_{\mathrm{m}}=7 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{m}}=3.5 \mathrm{MHz}$
Maximum B.W. of $\mathrm{m}(\mathrm{t})$ is 3.5 MHz .

$$
\begin{aligned}
\mathrm{SNR} & =1.76+6 \mathrm{ndB} \\
& =1.76+6 \times 8 \\
& =49.76 \mathrm{~dB}
\end{aligned}
$$

5.(b) For a unity feedback system shown in the figure, $G(s)=\frac{K}{s(s+\alpha)}$ has resonant frequency ' ω_{r} ' which is $\frac{1}{\sqrt{2}}$ times the damped frequency ' ω_{d} '. $G(s)$ also has a setting time $2 \sqrt{3}$ seconds, for a 2\% tolerance band in its time step response. Calculate the following:
(i) Undamped natural frequency
(ii) Decay rate
(iii) Peak overshoot
(iv) Steady state error for the input $r(t)=t . u(t)$

Sol. $G(s)=\frac{K}{s(s+\alpha)}$
CE: $1+\frac{K}{s(s+\alpha)}=0$
$s^{2}+\alpha s+K=0$
compare with $s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0$
$\omega_{\mathrm{n}}=\sqrt{\mathrm{K}} \ldots$ (1)
$2 \zeta \omega_{n}=\alpha \Rightarrow \zeta=\frac{\alpha}{2 \sqrt{K}}$
$\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}$
$\& \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$
given $\omega_{r}=\frac{1}{\sqrt{2}} \omega_{d}$
$\omega_{n} \sqrt{1-2 \zeta^{2}}=\frac{1}{\sqrt{2}} \omega_{n} \sqrt{1-\zeta^{2}}$
$\Rightarrow 1-2 \zeta^{2}=\frac{1}{2}\left(1-\zeta^{2}\right)$
$2-4 \zeta^{2}=1-\zeta^{2}$
$1=3 \zeta^{2}$
$\zeta=\frac{1}{\sqrt{3}}$
Also, setting time, $t_{s}=\frac{4}{\zeta \omega_{n}}=2 \sqrt{3}$
$\zeta \omega_{n}=\frac{4}{2 \sqrt{3}}$
$\frac{1}{\sqrt{3}} \omega_{\mathrm{n}}=\frac{4}{2 \sqrt{3}} \Rightarrow \omega_{\mathrm{n}}=2$

use

1) $\omega_{\mathrm{n}}=\sqrt{\mathrm{K}}=2$
$\Rightarrow \mathrm{k}=2^{2}=4$
2) $\zeta=\frac{\alpha}{2 \sqrt{K}}=\frac{1}{\sqrt{3}}$

$$
\alpha=\frac{2 \sqrt{K}}{\sqrt{3}}=\frac{2 \times 2}{\sqrt{3}}=\frac{4}{\sqrt{3}}
$$

So, CE is $\mathrm{s}^{2}+\alpha \mathrm{s}+\mathrm{K}=0$
$s^{2}+\frac{4}{\sqrt{3}} s+4=0$
(i) $\omega_{\mathrm{n}}=2 \mathrm{rad} / \mathrm{sec}$
(ii) Peak Overshoot:
$\% M_{p}=e^{-\pi \cot \theta} \times 100$
where $s=\cos \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=54.73$
$\Rightarrow \cot \theta=0.707$
$\% M_{p}=\mathrm{e}^{-\pi \times 0.707} \times 100=10.84 \%$
(iv) $G(s)=\frac{K}{s(s+\alpha)}=\frac{4}{s\left(s+\frac{4}{\sqrt{3}}\right)} \Rightarrow$ Type "1"
$K_{v}=$ velocity error coefficient
$K_{v}=\lim _{s \rightarrow 0} s G(s)$
$=\lim _{s \rightarrow 0} s \times \frac{4}{s\left(s+\frac{4}{\sqrt{3}}\right)}=\sqrt{3}$
so, $\mathrm{e}_{\mathrm{ss}}=\frac{1}{\mathrm{~K}_{\mathrm{v}}}=\frac{1}{\sqrt{3}}$
5.(c) The block diagram of a wireless receiver front end is shown below:

(i) Compute the overall Noise Figure of the sub-system

Sol. Overall noise figure (f) =
$F=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}$
$F_{1}=1.585 \quad F_{2}=1.259$
$\mathrm{F}_{3}=2.512, \mathrm{G}_{1}=10$
$\mathrm{G}_{2}=0.794$
$F=1.585+\frac{(1.259-1)}{10}+\frac{(2.512-1)}{10 \times 0.794}$
$F=1.801$
(ii) Compute equivalent noise temperature (overall) assuming system temperature $\mathrm{T}_{0}=290 \mathrm{~K}$.

Sol. $\quad T_{0}=290 \mathrm{~K}$
Equivalent noise Temp. $\left(T_{e}\right)=T_{e}=(F-1) T_{0}$
$\mathrm{T}_{\mathrm{e}}=(1.801-1) \times 290$
$\mathrm{T}_{\mathrm{e}}=232.29$
(iii) Compute overall gain.
(iv) Compute output noise power assuming input noise power from the feeding antenna at 150 K temperature and 1 F .
(v) Bandwidth of 10 MHz .
(vi) Compute input power if we require minimum signal to noise ratio of 20 dB .
(vii) Compute minimum signal voltage assuming characteristic impedance of 150Ω.
5.(d) Normalized radiation intensity of an antenna is given by

$$
\begin{aligned}
\mathrm{U}_{\mathrm{n}}(\theta) & =1 \quad ; 0 \leq \theta<30^{\circ} \\
& =\frac{\cos \theta}{0.866} ; 30^{\circ} \leq \theta<90^{\circ} \\
& =0 \quad ; 90^{\circ} \leq \theta \leq 180^{\circ}
\end{aligned}
$$

It is independent of Φ.
Determine exact directivity and maximum aperture area at operating frequency of 900 MHz .

Sol. $\quad U_{n}(\theta)=1, \quad 0 \leq \theta<30^{\circ}$

$$
\begin{aligned}
& =\frac{\cos \theta}{0.866} ; 30^{\circ} \leq \theta<90^{\circ} \\
& =0 ; \quad 90^{\circ} \leq \theta \leq 180^{\circ}
\end{aligned}
$$

$\mathrm{D}=\frac{\phi_{\text {max }}}{\phi_{\mathrm{av}}} ; \phi_{\max }=1$
$\phi_{\mathrm{av}}=\frac{\mathrm{W}_{\mathrm{r}}}{4 \pi}=\frac{0.768 \pi}{4 \pi}=0.192 \mathrm{w} / \mathrm{sr}$
$W_{r}=\iint \phi d r=\iint \phi \sin \theta d \theta d \phi$
$W_{r}=\int_{\theta=0}^{30} \int_{\phi=0}^{2 \pi} \sin \theta d \theta d \phi+\int_{\theta=30}^{90} \int_{\phi=0}^{2 \pi} \frac{\cos \theta}{0.866} \sin \theta d \theta d \phi$
$W_{r}=2 \pi\left[1-\frac{\sqrt{3}}{2}\right]+\frac{\sqrt{3} \pi}{3.464}$
$W_{r}=0.268 \pi+\frac{\sqrt{3} \pi}{3.464}$
$W_{r}=0.268 \pi+0.5 \pi$
$W_{r}=0.768 \pi$
$\mathrm{D}=\frac{\phi_{\max }}{\phi_{\mathrm{av}}}=\frac{1}{0.192}=5.208$
$D=5.208$
$(A C)_{\max }=\frac{D \lambda^{2}}{4 \pi}$
$\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{900 \times 10^{6}}=\frac{1}{3}$
$(A C)_{\max }=\frac{5.208 \times \frac{1}{9}}{4 \pi}$
$=\frac{5.208}{36 \pi}$
$(\mathrm{Ac})_{\max }=0.0460 \mathrm{~m}^{2}$
5. (e) The figure shown below indicates a two-stage pipeline with stage delays indicated below the stages. Latch delays are to be ignored.

(i) Calculate throughput and latency of the pipeline shown above.

gradeup sUPER
 Vision 2022
 A Course for ESE \& GATE Aspirants

Mechanical Engineering

>950+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
>10,000+ Practice Questions
> 100+ Mock Tests

Civil Engineering

> 950+ Hrs of Live Classes
> 120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
> 100+ Mock Tests

Electrical Engineering

>850+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
>8,000+ Practice Questions
$>100+$ Mock Tests

Electronics Engineering
> 850+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
>8,000+ Practice Questions
$>100+$ Mock Tests

Computer Sc. \& Engg.
>600+ Hrs of Live Classes
> 100+ Chapter-wise Study Notes
> 5,000+ Practice Questions
> 100+ Mock Tests

For More Information : $\boxed{\pi}$ help@gradeup.co 9650052904
ESE \& CATE Gradeup Achievers

60+ Gradeup Students in Top 100

Our Star Faculty

M.Tech, IISc Bangalore GATE 2020 AIR-96

DheerajSardana
10+ Years of Experience Mentored $15000+$ Students Produced AIR 4 \& 30+ Rankers under AIR 100 in GATE

Dr. G Ramana
$23+$ Years of Experience Produced AIR 1 in GATE 3times Mentored 1,00,000+ Aspirants
Sr. Faculty for ESE \& GATE

MN Ramesh

17+ Years of Experience
M.E, Osmania University. Hyderabad

8+ Years of Experience M.Tech, Ph.d (JNU Delhi) ,
\square
\square

7+ Years of Experience Mentored 30000+ Students

10+ Years of Experience M.Tech, IISc Bangalore (AIR-9)

Produced $50+$ Students under AIR 100 in GATE

Onkar Otari
$10+$ Years of Experience M.Tech, NIT Trichy Mentored 25000+ Students

$13+$ Years of Experience Sr. Faculty for ESE \& GATE

Our Teaching Methodology

STEP 1

STEP 2

Detailed Study Notes
on each chapter of
through Interactive
Classes \& Conventional
Assignments

Get Exam-Ready with Revision

Separate ESE \& GATE
Preparation Tests
on a daily, weekly \& monthly
basis for revision

STEP 5

Live Doubt Sessions for each subject

STEP 6

Mock Test and Subject test for ESE \& GATE

$\underset{\text { SUPER }}{\text { gradeup }}$

Vision 2022

A Course for ESE \& GATE Electronics Aspirants

Sol. Cycle time $=24 \mu \mathrm{sec}$
Latency $=2 \times 24 \mu \mathrm{sec}=48 \mu \mathrm{sec}$
Throughput $=\frac{1}{24} \frac{\text { inst }}{\mu \mathrm{sec}}=0.041$
(ii) The pipeline stage 2 is now split in three equal sub-stages. Find out the new throughput and latency for the complete pipeline.
Sol. Cycle time $=8 \mu \mathrm{sec}$
Latency $=4 \times 8=32 \mu \mathrm{sec}$
Throughput $=\frac{1 \text { inst }}{8 \mu \mathrm{sec}}=0.125$
5.(f) An isolator has an insertion loss of 0.5 dB and an isolation of 30 dB . Determine the scattering matrix of the isolator if the isolated ports are perfectly matched to the junction.
Sol. Isolator

Insertion loss $I_{L}=10 \log \frac{P_{1}}{P_{21}}$
$\mathrm{Pi} \rightarrow i / p$ to port-1
$P_{21} \rightarrow 0 / p$ from part-2
$0.5=10 \log P_{1} / P_{21}$
$\mathrm{P}_{1} / \mathrm{P}_{21}=1.122$
Isolation Loss $=10 \log \frac{P_{2}}{P_{12}} \ldots$ (3)
$P_{2} \rightarrow i / p$ power to port 2
$P_{12} \rightarrow 0 / p$ power from Port (1)
$30=10 \log \frac{P_{2}}{P_{12}}$
$\frac{P_{2}}{P_{12}}=1000$
Scattering matrix for isolator
$[\mathrm{S}]=\left[\begin{array}{ll}\mathrm{S}_{11} & \mathrm{~S}_{12} \\ \mathrm{~S}_{21} & \mathrm{~S}_{22}\end{array}\right]$
\because Two ports are perfectly matched
$\therefore \mathrm{S}_{11}=\mathrm{S}_{22}=0$
$S_{12}=\sqrt{\frac{P_{12}}{P_{2}}}=\sqrt{\frac{1}{1000}}$ from eq.(4)
$S_{12}=0.0316$
$S_{21}=\sqrt{\frac{P_{21}}{P_{1}}}=\sqrt{\frac{1}{1.122}}$ from eq.(2)
$S_{21}=0.944$
$[S]=\left[\begin{array}{cc}0 & 0.0316 \\ 0.944 & 0\end{array}\right]$

Structured Live Courses

India's Best GATE Faculty
(?) Complete Doubt Resolution

(ㄷ)Full Syllabus Coverage for your exam

Green Card

(1) Online Mock Tests

-

Based on Latest Exam Pattern

To get unlimited access to your preferred courses Subscribe to Gradeup Super

Reviews from Our Students

ROHITH

Vision EE (ESE \& GATE) is
The faculty is very good and all of them elaborate on the topics in a much better way. Quizzes help me a lot in my selfevaluation \& Exam Preparation. Mock test quality is very good and they are precise, as per the exam.

11

SAILESH SAH

Vision ME (ESE \& GATE)

All Faculty are good and the Interactive sessions are really helpful. The all mock tests are good and up to the mark.

Vision 2022

A Course for ESE \& GATE
6.(a) Lossless transmission line operating at 30 MHz has inductance $\mathrm{L}=1 \mu \mathrm{H} / \mathrm{m}$ and capacitance $\mathrm{C}=$ $100 \mathrm{pF} / \mathrm{m}$. Quarter wave transformer line is used to couple this transmission line to different loads for impedance matching.
(i) Calculate the characteristic resistance of the quarter wave line if load is an antenna offering pure resistance of 70Ω.
Sol. $f=30 \mathrm{MHz}$
$\mathrm{L}=1 \mu \mathrm{H} / \mathrm{m} \quad$ for lose-less line
$\mathrm{C}=100 \mathrm{PF} / \mathrm{m} \quad Z_{0}=\sqrt{\frac{L}{c}}=\sqrt{\frac{10^{-6}}{100 \times 10^{-12}}}=100 \Omega$
$Z_{L}=70 \Omega$
$Z_{0}{ }^{\prime}=\sqrt{Z_{0} Z_{L}}$
$=\sqrt{100 \times 70}$
$=\sqrt{7000}$
$=83.66 \Omega$
(ii) If load is $\mathrm{Z}_{\mathrm{L}}=150+\mathrm{j} 100 \Omega$, determine the characteristic resistance of the quarter wave line.

Sol. $Z_{L}=150+i 100 \Omega$
$Z_{0}{ }^{\prime}=\sqrt{100(150+\mathrm{j} 100)}$
$=10 \sqrt{150+\mathrm{j} 100}$
$=100 \sqrt{1.5+j}$
$=100[\sqrt{3.25}<33.69]^{1 / 2}$
$=100[1.80<33.69]^{1 / 2}$
$=100\left[1.80 \mathrm{e}^{\mathrm{j} 33.69}\right]^{1 / 2}$
$=100\left[1.34 \mathrm{e}^{\mathrm{j} 16.84}\right]$
$=134 \mathrm{e}^{\mathrm{j} 16.84}$
6. (b) Consider a CMOS schematic for 2-input NOR gate.

Design appropriate test scheme to check the following faults through control/observation of voltage/current levels at Input/Output/supply.
(i) One pMOS transistor stuck open
(ii) One nMOS transistor stuck short

Sol. *
6.(c) Write the expression for signal to noise ratio for PIN diode. A silicon PIN photodiode incorporated into the optical receiver has a quantum efficiency of 65% when operating at wavelength of 0.9 $\mu \mathrm{M}$. The dark current at this point is 3 nA and load resistance is $4 \mathrm{k} \Omega$. The post detection bandwidth of the receiver is 5 MHz and the thermal noise temperature is $20^{\circ} \mathrm{C}$. If the overall signal to noise ratio is 5 dB , calculate the incident power.

Sol. $\frac{S}{N}=\frac{\eta P_{0}}{2 h f B}$
$\eta=$ quantum Efficiency $\Rightarrow \eta=65 \%$
$\mathrm{h} \rightarrow$ planks constant $\Rightarrow \mathrm{h}=6.626 \times 10^{-34}$
$f=\frac{c}{\lambda}=\frac{2.998 \times 10^{8}}{0.9 \times 10^{-6}}=3.3311 \times 10^{14} \mathrm{~Hz}$
$B=$ Post detection $B . N \Rightarrow B=5 \mathrm{MHz}$
$\left(\frac{S}{N}\right)_{d n}=5 \mathrm{~dB}=10 \log _{10}\left(\frac{\eta P_{0}}{2 h f B}\right)$
$10^{1 / 2}=\frac{\eta P_{0}}{2 h f B}$
$P_{0}=\frac{2 \sqrt{10} h f B}{\eta}$

$$
P_{0}=\frac{2 \sqrt{10} .\left(6.6 \times 10^{-34}\right) \times\left(3.3311 \times 10^{14}\right)\left(5 \times 10^{6}\right)}{0.65}
$$

$P_{0}=1.0696 \times 10^{-11}$ watts
7.(a) A coaxial capacitor of length 1 m is formed using two concentric cylindrical conductors. The inner conductor has radius 4 mm and the outpour conductor radius is 16 mm . The space between them is filled with 3 layers of perfect dielectric materials with different dielectric constants such that $\varepsilon_{r_{1}}=5,4 \mathrm{~mm}<\rho<8 \mathrm{~mm} ; \varepsilon_{r_{2}}=3,8 \mathrm{~mm}<\rho<12 \mathrm{~mm}$ and $\varepsilon_{r_{3}}=1,12 \mathrm{~mm}<\rho<16 \mathrm{~mm}$. If the potential difference between the inner and outer conductor is 100 V , determine the capacitance and charge on the inner conductor. ($\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$)

Sol. Capacitor $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are in series

$\mathrm{C}_{1}=\frac{2 \pi \varepsilon_{0}(5)}{\ell \mathrm{n}[2]}=0.40 \mathrm{nc}$
$\mathrm{C}_{2}=\frac{2 \pi \varepsilon_{0}(3)}{\ell \mathrm{n}[1.5]}=0.411 \mathrm{nc}$
$\mathrm{C}_{3}=\frac{2 \pi \varepsilon_{0}}{\ell \mathrm{n}[4 / 3]}=0.193 \mathrm{nc}$
$\frac{1}{\mathrm{C}_{\text {eq }}}=\frac{\mathrm{C}_{2} \mathrm{C}_{3}+\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}}$
$\mathrm{C}_{\text {eq }}=\frac{\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}}{\mathrm{C}_{2} \mathrm{C}_{3}+\mathrm{C}_{1} \mathrm{C}_{3}+\mathrm{C}_{1} \mathrm{C}_{2}}=0.099 \mathrm{nF}$

$$
C_{e q}=0.099 n F
$$

$V=100$ volts given
$\theta=C_{e q} V$
$\theta=9.9 \mathrm{nC}$
7.(b) (i) The impulse response of an LTI system is given by
$h(n)=\left[\left(\frac{1}{4}\right)^{n} \cos \left(\frac{\pi}{4} n\right)\right] u(n)$
Realize this system using finite number of adders, multipliers and minimum possible unit delays.
Sol. 1. $Z\{\cos (a n) . U[n]\}=\frac{z\{z-\cos a\}}{z^{2}-2 z \cos a+1}$
$\therefore \cos \left(\frac{n \pi}{4}\right) . U[n] \stackrel{\text { z.T. }}{\longleftrightarrow} \frac{z\left(z-\cos \frac{\pi}{4}\right)}{z^{2}-2 z \cos \frac{\pi}{4}+1}$
2. If $x[n] \longleftrightarrow x(z)$
then $a^{n} \cdot x[n] \longleftrightarrow x\left(\frac{z}{a}\right)$
$\Rightarrow z\left\{a^{n} \cdot \cos \left(\frac{n \pi}{4}\right) \cdot u[n]\right\}=\frac{\frac{z}{a}\left(\frac{z}{a}-\frac{1}{\sqrt{2}}\right)}{\left(\frac{z}{a}\right)^{2}-2\left(\frac{z}{a}\right) \frac{1}{\sqrt{2}}+1}$
Here $\mathrm{a}=\frac{1}{4} \Rightarrow \frac{\mathrm{z}}{\mathrm{a}}=4 \mathrm{z}$
$\Rightarrow z\left\{\left(\frac{1}{4}\right)^{n} \cdot \cos \left(\frac{n \pi}{4}\right) \cdot U[n]\right\}$
$=\frac{4 z\left(4 z-\frac{1}{\sqrt{2}}\right)}{(4 z)^{2}-2(4 z) \frac{1}{\sqrt{2}}+1}=H(z)$
$H(z)=\frac{16 z^{2}-2 \sqrt{2} z}{1-4 \sqrt{2} z+16 z^{2}}$
divide by ' $16 z^{2}$ ' in Numerator \& Denominator
$H(z)=\frac{1-\left(\frac{2 \sqrt{z}}{16}\right) z^{-1}}{1-\left(\frac{4 \sqrt{2}}{16}\right) z^{-1}+\left(\frac{1}{16}\right) \cdot z^{-2}}$
$H(z)=\frac{1-(0.177) z^{-1}}{1-(0.354) z^{-1}+(0.0625) z^{-2}}$

$$
H(z)=\frac{1-(0.177) z^{-1}}{1-(0.354) z^{-1}+(0.0625) z^{-2}}
$$

Direct Form-II Realization structure of $\mathbf{H (z)}$

Direct Form-II Realization structure uses minimum no. of delay elements
Hence DF-II structure realizes the T.F.
$H(z)$ using finite no. of address, multipliers and minimum no. of delays.
(ii) Consider an initially relaxed system whose output $y(n)$ for $n \geq 0$ is the Fibonacci series. Describe this system in the form of difference equation relating input and output. Obtain impulse response of this system.
7.(c) A hexagonal cell within a four-cell system has a radius of 1.387 km . A total of 60 channels are used in the entire system. If the load per user is 0.029 Erlangs and $\lambda=1$ call/hour, compute the following for an Erlang C system that has 5% probability of a delayed call :
(i) How many users per square km will this system support ?
(ii) What is the probability that a delayed call will have to wait for more than 10 s ?
(iii) What is the probability that a call will be delayed for more than 10 s ?

Erlang C Traffic Table					
Maximum offered load versus B and N					
B	1	2	5	10	15
14	6.70	7.31	8.27	9.15	9.76
15	7.39	8.03	9.04	9.97	10.60
16	8.09	8.76	9.82	10.79	11.44

Sol. *
8.(a) Consider an air-filled rectangular waveguide with inner dimension of width and height a and b respectively $(\mathrm{a}>\mathrm{b})$.
(i) With clear reasoning describe why propagation is not possible if both electric and magnetic field in the direction of propagation are zero.
Sol. Propagation of waves in R.W.G.
(or)
Non-Existence of TEM Wave in a R.W.G.
As waveguide is always placed along z-axis, if we consider a TEM wave propagating along R.W.G, It will propagate along z-axis.

$\underset{\substack{\text { sUPER }}}{\text { gradeup }}$
 Vision 2022 A Course for ESE \& GATE Aspirants

Mechanical Engineering

> 950+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
> 100+ Mock Tests

Civil Engineering

, 950+ Hrs of Live Classes
120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
$>100+$ Mock Tests

Electrical Engineering

>850+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
> 8,000+ Practice Questions
$>100+$ Mock Tests

Electronics Engineering
> 850+ Hrs of Live Classes
120+ Chapter-wise Study Notes
>8,000+ Practice Questions
$>100+$ Mock Tests

Computer Sc. \& Engg.
>600+ Hrs of Live Classes
> 100+ Chapter-wise Study Notes
>5,000+ Practice Questions
$>100+$ Mock Tests

For More Information : \searrow help@gradeup.co 9650052904

ESE \& GATE Gradeup Achievers

60+ Gradeup Students in Top 100

Our Star
 Faculty

DheerajSardana
$10+$ Years of Experience Mentored $15000+$ Students Produced AIR 4 \& $30+$ Rankers under AIR 100 in GATE

17+ Years of Experience M.E, Osmania University. Hyderabad

8+ Years of Experience M.Tech, Ph.d (JNU Delhi)

B+ Years of Experience M.Tech, IIT Roorkee

7+ Years of Experience M.Tech. IIT Delhi

Produced $50+$ Students under AIR 100 in GATE

Aniruddha Roy
3+ Years of Experience ME, IIT Bombay

10+ Years of Experience M.Tech, IISc Bangalore (AIR-9)

7+ Years of Experience Mentored 30000+ Students

9+ Years of Experience M. Tech, NIT Hamirpur

Md. Ansari

8+ Years of Experience M.E, HSc Bangalore

7+ Years of Experience
M.Tech (MNNIT, Allahabad)

Our Teaching Methodology

STEP 1

STEP 2

Detailed Study Notes
on each chapter of
through Interactive
Classes \& Conventional
Assignments

Get Exam-Ready with Revision

Separate ESE \& GATE
Preparation Tests
on a daily, weekly \& monthly
basis for revision

STEP 5

Live Doubt Sessions for each subject

STEP 6

Mock Test and Subject test for ESE \& GATE

$\underset{\text { SUPER }}{\text { gradeup }}$

Vision 2022

A Course for ESE \& GATE Electronics Aspirants

\therefore Considering a TEM wave propagating along z-axis

When wave propagates along z axis, two combinations are possible

In either the combination always Ez_{z} \& Hz are zero
For a TEM wave propagating along Z axis, the components of $E \& H$ field along z axis [Ez \& Hz] are always zero.
A TEM wave or a plane wave the propagates in free space and dielectrics cannot exists in R.W.G. Let us consider maxwell Equations for free space [between walls of wave guide]
$\nabla \times H=\frac{\partial D}{\partial t} \quad \mathrm{~J}=0$ as $\sigma=0$
$\nabla \times H=j \omega \varepsilon_{0} E \quad \ldots$ (i) $\quad \frac{\partial}{\partial t}=j \omega \quad D=\varepsilon_{0} E$
$\left|\begin{array}{ccc}a x & a y & a z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H x & H y & H z\end{array}\right|=j \omega \varepsilon_{0}[$ Ex ax + Ey ay + Ez az $]$
Replacing $\frac{\partial}{\partial z}=-\gamma$ [an operator]
$\left|\begin{array}{ccc}a x & a y & a z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & -\gamma \\ H x & H y & H z\end{array}\right|=j \omega \varepsilon_{0}[$ Ex ay + Ey ay + Ez az $]$
Equating the coefficients of ax, ay \& az after expansion
$\frac{\partial \mathrm{Hz}}{\partial \mathrm{y}}+\gamma \mathrm{Hy}=j \omega \varepsilon_{0} \mathrm{Ex}$
$\frac{\partial H z}{\partial \mathrm{x}}+\gamma \mathrm{Hx}=j \omega \varepsilon_{0} \mathrm{Ey}$
$\frac{\partial H z}{\partial x}-\frac{\partial H x}{\partial y}=j \omega \varepsilon_{0} E z$.

Considering one more maxwell Equation
$\nabla \times E=\frac{-\partial B}{\partial t} \ldots$ (5) $\quad B=\mu_{0} H$

$$
\begin{gather*}
\left|\begin{array}{ccc}
a x & a y & a z \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & -\gamma \\
E x & E y & E z
\end{array}\right|=-j \omega \mu_{0}\left[\begin{array}{l}
H x a x
\end{array}+H y a y+H z a z\right] \\
\frac{\partial E z}{\partial y}+\gamma E y=-j \omega \mu_{0} H x \quad \ldots(6) \tag{6}\\
\frac{\partial E z}{\partial x}+\gamma E x=-j \omega \mu_{0} H y \quad \ldots(7) \tag{7}\\
\frac{\partial E y}{\partial x}-\frac{\partial E z}{\partial y}=-j \omega \mu_{0} H z \quad \ldots \text { (8) } \tag{8}\\
\text { (7) } \Rightarrow H y=\frac{1}{j \omega \mu_{0}} \frac{\partial E z}{\partial x}+\frac{\gamma}{j \omega \mu_{0}} E_{x} \quad \ldots \text { (9) } \tag{9}
\end{gather*}
$$

Subs. (9) in (2)

$$
\begin{aligned}
& \frac{\partial H z}{\partial y}+\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial x}+\frac{\gamma^{2}}{j \omega \mu_{0}} E x=j \omega \varepsilon_{0} E x \\
& \frac{\partial H z}{\partial y}+\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial x}=\left[j \omega \varepsilon_{0}-\frac{\gamma^{2}}{j \omega \mu_{0}}\right] E x \\
& \quad=E x\left[\frac{-\omega^{2} \mu_{0} \varepsilon_{0}-\gamma^{2}}{j \omega \mu_{0}}\right]
\end{aligned}
$$

$\frac{\partial H z}{\partial y}+\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial x}=E x\left[\frac{-h^{2}}{j \omega \mu_{0}}\right] h^{2}=\gamma^{2}+\omega^{2} \mu_{0} \varepsilon_{0}$

$$
\begin{equation*}
\Rightarrow E x=\frac{-\gamma}{h^{2}} \frac{\partial E z}{\partial x}-\frac{j \omega \mu_{0}}{h^{2}} \frac{\partial H z}{\partial y} \tag{10}
\end{equation*}
$$

Subs (10) in (7)

$$
\begin{align*}
& \frac{\partial E_{z}}{\partial x}-\frac{\gamma^{2}}{h^{2}} \frac{\partial E_{z}}{\partial x}-\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial y}=j \omega \mu_{0} H y \\
& {\left[1-\frac{\gamma^{2}}{h^{2}}\right] \frac{\partial E z}{\partial x}-\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial y}=j \omega \mu_{0} H y} \\
& {\left[\frac{h^{2}-\gamma^{2}}{h^{2}}\right] \frac{\partial E z}{\partial x}-\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial y}=j \omega \mu_{0} H y} \\
& {\left[\frac{\omega^{2} \mu_{0} \varepsilon_{0}}{h^{2}}\right] \frac{\partial E z}{\partial x}-\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial y}=j \omega \mu_{0} H y} \tag{11}
\end{align*}
$$

$H y=\frac{-\gamma}{h^{2}} \frac{\partial H z}{\partial y}-\frac{j \omega \varepsilon_{0}}{h^{2}} \frac{\partial E z}{\partial x}$.
From (6)

$$
\begin{equation*}
H x=\frac{-1}{j \omega \mu_{0}} \frac{\partial E z}{\partial y}-\frac{\gamma}{j \omega \mu_{0}} E y \tag{12}
\end{equation*}
$$

sub (12) in (3)

$$
\begin{gathered}
\frac{\partial H z}{\partial x}-\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial y}-\frac{\gamma^{2}}{j \omega \mu_{0}} E y=-j \omega \varepsilon_{0} E y \\
\frac{\partial H z}{\partial x}-\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial y}=\left[\frac{\gamma^{2}}{j \omega \mu_{0}}-j \omega \varepsilon_{0}\right] E_{y}
\end{gathered}
$$

$$
\begin{gather*}
\frac{\partial H z}{\partial x}-\frac{\gamma}{j \omega \mu_{0}} \frac{\partial E z}{\partial y}=\left[\frac{\gamma^{2}+\omega^{2} \mu_{0} \varepsilon_{0}}{j \omega \mu_{0}}\right] E y \\
E y=\frac{-\gamma}{h^{2}} \frac{\partial E z}{\partial y}+\frac{j \omega \mu_{0}}{h^{2}} \frac{\partial H z}{\partial x} \ldots \text { (13) } \tag{13}
\end{gather*}
$$

Subs (13) in (6)

$$
\begin{aligned}
& \frac{\partial E z}{\partial y}+\gamma\left[\frac{-\gamma}{h^{2}} \frac{\partial E z}{\partial y}+\frac{j \omega \mu_{0}}{h^{2}} \frac{\partial H z}{\partial x}\right]=-j \omega \mu_{0} H x \\
& \frac{\partial E z}{\partial y}-\frac{\gamma^{2}}{h^{2}} \frac{\partial E z}{\partial y}+\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial x}=-j \omega \mu_{0} H x \\
& {\left[1-\frac{\gamma^{2}}{h^{2}}\right] \frac{\partial E z}{\partial y}+\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial x}=-j \omega \mu_{0} H x} \\
& {\left[\frac{\omega^{2} \mu_{0} \varepsilon_{0}}{h^{2}}\right] \frac{\partial E z}{\partial y}+\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial x}=-j \omega \mu_{0} H x}
\end{aligned}
$$

$\frac{-\left(j \omega \mu_{0}\right)\left(j \omega \varepsilon_{0}\right)}{h^{2}} \frac{\partial E z}{\partial y}+\frac{\gamma\left(j \omega \mu_{0}\right)}{h^{2}} \frac{\partial H z}{\partial x}=-j \omega \mu_{0} H x$
$H x=\frac{-\gamma}{h^{2}} \frac{\partial H z}{\partial x}+\frac{j \omega \varepsilon_{0}}{h^{2}} \frac{\partial \mathrm{Ez}}{\partial y}$..

$$
\begin{aligned}
& E x=\frac{-\gamma}{h^{2}} \frac{\partial E z}{\partial x}-\frac{j \omega \mu_{0}}{h^{2}} \frac{\partial H z}{\partial y} \\
& E y=\frac{-\gamma}{h^{2}} \frac{\partial E z}{\partial y}+\frac{j w \mu_{0}}{h^{2}} \frac{\partial H z}{\partial x}
\end{aligned}
$$

$H x=\frac{-\gamma}{h^{2}} \frac{\partial H z}{\partial \mathrm{x}}+\frac{\mathrm{j} \omega \varepsilon_{0}}{\mathrm{~h}^{2}} \frac{\partial \mathrm{Ez}}{\partial \mathrm{y}}$
$H y=\frac{-r}{h^{2}} \frac{\partial H z}{\partial y}-\frac{j \omega \varepsilon_{0}}{h^{2}} \frac{\partial \mathrm{Ez}}{\partial \mathrm{x}}$
For a TEM wave propagating in z direction, Ez \& Hz are zero.
\therefore Ex, Ey, Hx and Hy will become zero. As all the components became zero, we can say that TEM wave cannot exists in R.W.G.
(ii) The propagation constant γ for TE and TM mode is given by

$$
\gamma^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \varepsilon
$$

where m and n are integers.
Obtain an expression for minimum frequency below which propagation is not possible.
Sol. Cut off frequency \& cut off wavelength we know

$$
\begin{aligned}
& \mathrm{h}^{2}=A^{2}+\mathrm{B}^{2}=\gamma^{2}+\omega^{2} \mu_{0} \varepsilon_{0}=\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2} \\
& \Rightarrow \gamma^{2}+\omega^{2} \mu_{0} \varepsilon_{0}=\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2} \\
& \gamma^{2}=\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2}-\omega^{2} \mu_{0} \varepsilon_{0} \\
& \gamma=\alpha+j \beta=\sqrt{\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{~b}}\right)^{2}-\omega^{2} \mu_{0} \varepsilon_{0}} \ldots(1)
\end{aligned}
$$

Structured Live Courses

India's Best GATE Faculty
(?) Complete Doubt Resolution

(ㄷ)Full Syllabus Coverage for your exam

Green Card

(1) Online Mock Tests

-

Based on Latest Exam Pattern

To get unlimited access to your preferred courses Subscribe to Gradeup Super

Reviews from Our Students

ROHITH

Vision EE (ESE \& GATE) is
The faculty is very good and all of them elaborate on the topics in a much better way. Quizzes help me a lot in my selfevaluation \& Exam Preparation. Mock test quality is very good and they are precise, as per the exam.

11

SAILESH SAH

Vision ME (ESE \& GATE)

All Faculty are good and the Interactive sessions are really helpful. The all mock tests are good and up to the mark.

Vision 2022

A Course for ESE \& GATE

Case (i) $\omega^{2} \mu_{0} \varepsilon_{0}<\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$
$\gamma=\alpha$ only attenuation, no propagation \rightarrow attenuator
$\rightarrow \gamma$ is real
\rightarrow Evanescent mode
Case (ii)
$L \omega^{2} \mu_{0} \varepsilon_{0}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$

$\mathrm{r}=0$	$\omega=\omega_{c}$

$\omega_{\mathrm{c}}^{2} \mu_{0} \varepsilon_{0}=\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{b}}\right)^{2}$
$\omega_{c}^{2}=(2 \pi \mathrm{fc})^{2}=\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right] \frac{1}{\mu_{0} \varepsilon_{0}}$
$\Rightarrow 2 \pi \mathrm{f}_{\mathrm{c}}=\left[\left(\frac{\mathrm{m} \pi}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n} \pi}{\mathrm{b}}\right)^{2}\right] \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
$\Rightarrow f_{c}=\frac{c}{2 \pi} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}$
$\Rightarrow \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}} \quad f_{c}=\frac{\mathrm{c}}{\lambda c}$
$\lambda_{c}=\frac{c}{f_{c}}=\frac{c}{\frac{c}{2} \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}}}=\frac{1}{\frac{\sqrt{m^{2} b^{2}+n^{2} a^{2}}}{2 a b}}$
$\lambda_{\mathrm{c}}=\frac{2 \mathrm{ab}}{\sqrt{\mathrm{m}^{2} \mathrm{~b}^{2}+\mathrm{n}^{2} \mathrm{a}^{2}}} \Rightarrow \lambda_{\mathrm{c}}$ does not depend on $\varepsilon \& \mu$
Case (iii): $\omega^{2} \mu_{0} \varepsilon_{0}>\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$
$\gamma=j \beta$
\rightarrow no attenuation
\rightarrow only propagation
\rightarrow H.P.F.

Summary:

At	$f<f_{c}$	$\gamma=\alpha$	Attenuator
	$f_{f}=f_{c}$	$\gamma=0$	
	$f>f_{c}$	$\gamma=j \beta$	H.P.F.

(iii) If $\mathrm{a}=2 \mathrm{~cm}$ and $\mathrm{b}=1 \mathrm{~cm}$, determine the range of frequency at which only one mode propagates. $\left(\varepsilon=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)$
Sol.
$\mathrm{a}=2 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}$
$a \geq b$
dominant node
$T E_{10}$
$\mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{2 \mathrm{a}}=\frac{3 \times 10^{8}}{2 \times 2 \times 10^{-2}}=\frac{3}{4} \times 10^{10}=7.5 \mathrm{GHz}$
Next node
$\mathrm{TE}_{20} \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{c}}{\mathrm{a}}=15 \mathrm{GHz}$
7.5 GHz $\leq \mathrm{f} \leq 15 \mathrm{GHz}$ - only TE_{10} mode will propagate.
8.(b) A display is connected to port P1 of 8051 microcontroller. A sequence of 7 -bit-patterns are to be displayed in cyclic manner continuously. Write a program in 8051 assembly to display the bitpatterns (8-bit each) with a delay of 1 second between each pair of bit-patterns. The bit-patterns are stored in program memory space at the start at location 400 H . Assume that sub-routine for delay is available directly. Comment on your program appropriately and mention any necessary assumptions explicitly.
Sol. *
8.(c) The dominant mode TE_{10} is propagated in a rectangular waveguide of dimensions $\mathrm{a}=6 \mathrm{~cm}$ and $b=4 \mathrm{~cm}$. The distance between maximum and minimum is found to be equal to 4.47 cm with the help of travelling wave detector. Determine the signal frequency.
Sol. $a=6 \mathrm{~cm}, \mathrm{~b}=4 \mathrm{~cm}$
distance between maximum and minimum $\frac{\lambda_{g}}{4}=4.47 \mathrm{~cm}$
$\mathrm{f}_{0}=$?

$$
\lambda_{\mathrm{g}}=17.88 \mathrm{~cm}
$$

$\lambda_{g}=\frac{\lambda_{0}}{\sqrt{1+\left(\frac{\lambda_{0}}{\lambda_{c}}\right)^{2}}}$
$\lambda_{c}=2 a$
$17.88=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{\lambda_{0}}{12}\right)^{2}}}$
$\frac{17.88}{12}=\frac{\lambda_{0}}{\sqrt{144-\lambda_{0}{ }^{2}}} \quad \lambda_{\mathrm{c}}=12 \mathrm{~cm}$
$1.49=\frac{\lambda_{0}}{\sqrt{144-\lambda_{0}{ }^{2}}} \quad$ (squaring both sides)
$(1.49)^{2}=\frac{\lambda_{0}{ }^{2}}{\left(144-\lambda_{0}{ }^{2}\right)}$
$2.2201=\frac{\lambda_{0}{ }^{2}}{144-\lambda_{0}{ }^{2}}$

$$
\begin{gathered}
319.6944-2.2201 \lambda_{0}{ }^{2}=\lambda_{0}{ }^{2} \\
319.6944=3.2201 \lambda_{0}{ }^{2}
\end{gathered}
$$

$\lambda_{0}{ }^{2}=\frac{319.6944}{3.2201}=99.28$
$\lambda_{0}=9.96 \mathrm{~cm}$
$\mathrm{f}=\frac{\mathrm{c}}{\lambda_{0}}=\frac{3 \times 10^{10}}{9.96} \approx 3.01 \mathrm{GHz}$

$\underset{\text { SUPER }}{\text { gradeup }}$
 Vision 2022 A Course for ESE \& GATE Aspirants

Mechanical Engineering

> 950+ Hrs of Live Classes
>120+ Chapter-wise Study Notes > 10,000+ Practice Questions > 100+ Mock Tests

Civil Engineering

, 950+ Hrs of Live Classes
120+ Chapter-wise Study Notes
> 10,000+ Practice Questions
$>100+$ Mock Tests

Electrical Engineering

> 850+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
> 8,000+ Practice Questions
> 100+ Mock Tests

Electronics Engineering

> 850+ Hrs of Live Classes
>120+ Chapter-wise Study Notes
>8,000+ Practice Questions
> 100+ Mock Tests

Computer Sc. \& Engg.
>600+ Hrs of Live Classes
> 100+ Chapter-wise Study Notes
>5,000+ Practice Questions
$>100+$ Mock Tests

For More Information : \triangle help@gradeup.co 9650052904
ESE \& GATE Gradeup Achievers

60+ Gradeup Students in Top 100

Our Star Faculty

M.Tech, IISc Bangalore GATE 2020 AIR-96

DheerajSardana
10+ Years of Experience Mentored $15000+$ Students Produced AIR 4 \& 30+ Rankers under AIR 100 in GATE

Dr. G Ramana
$23+$ Years of Experience Produced AIR 1 in GATE 3times Mentored 1,00,000+ Aspirants
Sr. Faculty for ESE \& GATE

17+ Years of Experience
M.E, Osmania University. Hyderabad

8+ Years of Experience M.Tech, Ph.d (JNU Delhi)

7+ Years of Experience Mentored 30000+ Students

Rakesh Talreja

10+ Years of Experience M. Tech, IISc Bangalore (AIR-9)

Produced $50+$ Students under AIR 100 in GATE

Onkar Otari
$10+$ Years of Experience M.Tech, NIT Trichy Mentored $25000+$ Students

13+ Years of Experience Sr. Faculty for ESE \& GATE Mentored 10,000+ students

Ankit Joshi
15+ Years of Experience Produced AIR 1 in GATE 2 times Produced $50+$ Students under AIR 100 in GATE

Md. Ansari

B+Years of Experience M.E, IISc Bangalore

Balaji Tanguturi
B+ Years of Experience M.E, IIT Madras (AIR-98)

AshutoshSaxena

10+ Years of Experience
M. Tech, IIT BHU

Sr. Faculty for ESE \& GATE
Th

7+ Years of Experience M.Tech (MNNIT, Allahabad)

Our Teaching Methodology

STEP 1

․ㅐNN

Live Classes on Each Chapter by Expert Faculty

Practice Questions through Interactive Classes \& Conventional Assignments

Get Exam-Ready with Revision

STEP 4

Separate ESE \& GATE
Preparation Tests
on a daily, weekly \& monthly basis for revision

Live Doubt Sessions for each subject

STEP 6

Mock Test and Subject test for ESE \& GATE

gradeup
 SUPER

Vision 2022

A Course for ESE \& GATE Electronics Aspirants

Vision 2022
A Course for ESE \& GATE

Vision 2022 A Course for ESE \& GATE Electronics Aspirants

Why take this course?

Complete Coverage of ESE 2022 Prelims \& Mains Syllabus
, Complete Coverage of GATE 2022 Syllabus
, Both Objective \& Conventional Approach
> Live Classes, Study Notes, Quizzes \& Mock Tests

* gradeup
 SUPER

Structured Live Courses

Green Card

India's Best GATE Faculty

。Complete Doubt Resolution Full Syllabus Coverage for your exam

(2) Online Mock Tests

(8) Designed by Experts

0
Based on Latest Exam Pattern

To get unlimited access to your preferred courses Subscribe to Gradeup Super

Reviews from Our Students

Vision 2022

A Course for ESE \& GATE

