GATE 2020

Mechanical Engineering

Mega Mock Challenge
(29 Jan -30 Jan)
Questions \& Solutions

1. The average marks of each student in a class A is 25% less than the average marks of each students of class B. If the total marks of class A is 30% more than that of class B. Find the number of students in the class B is what percent of the no. of the students of class A?
A. 64.24%
B. 57.69%
C. 56.24%
D. 73%

Ans. B
Sol. $\quad 25 \%=\frac{1}{4}$
Let the average marks of the
students of the class $B=4 x$
Then the average marks of the
students of the class $A=3 x$
Let the total no. of students in class
$B=m$
then the total no. of students in class
$\mathrm{A}=\mathrm{n}$
Total marks of class $\mathrm{A}=3 \times n$
And total marks of class $B=4 x m$
A.T.Q.
$\frac{\text { Total marks of } \mathrm{A}}{\text { Total marks of } \mathrm{B}}=\frac{130}{100}=\frac{3 \mathrm{xn}}{4 \times m}$
$\Rightarrow 520 \mathrm{~m}=300 \mathrm{n}$
$\Rightarrow \frac{m}{n}=\frac{30}{52}$
Required percentage $=\frac{30}{52} \times 100$
= 57.69\%.
2. A shopkeeper had certain number of gold coins in year 2015. In the year 2016, the number of gold coins increased by 35%. In the year 2017, the number of coins declined to 60%. In the year 2018, the number of coins increased by 25\%. In the year 2019, he sold 15% of the total coins, then he had only 54726 coins left. Find the percentage decrease of the no. of coins in this duration.
A. 13.7532%
B. 13.9375%
C. 14.28%
D. 15.74%

Ans. B
Sol. Let the initial no of coins $=1000$ Let the final no. of coins $=x$
A.T.Q.
$x=1000 \times \frac{135}{100} \times \frac{60}{100} \times \frac{125}{100} \times \frac{85}{100}$
$x=1000 \times \frac{27}{20} \times \frac{3}{5} \times \frac{5}{4} \times \frac{17}{20}$
$\Rightarrow x=860.625$
Total decrease in the no. of coins $=$ 1000-860.25
$=139.375$
$\%$ decrease $=\frac{139.375}{1000} \times 100$
$=13.9375 \%$.
3. There are three inlet pipes A, B and C fitted in a tank. If A can fill the tank in 30 hours, B can fill the tank in 35 hours and C can fill the tank in 42 hours. Starting with A, followed by B and C each pipe opens alternatively for one-hour period till the tank gets filled up completely. Find the total time, the tank will be filled completely.
A. $12 \frac{3}{2}$ hour
B. $11 \frac{2}{3}$ hour
C. $13 \frac{1}{3}$ hour
D. $14 \frac{7}{3}$ hour

Ans. B
Sol. Let the capacity of the tank $=$ LCM
$(30,35,42)=210$ unit
Efficiency of pipe $A=\frac{210}{30}=7$
Efficiency of pipe $B=\frac{210}{35}=6$
Efficiency of pipe $C=\frac{210}{42}=5$
Total work done in 3 hours $(7+6+$
5) $=18$ unit

Time taken
$=\frac{210}{18}=11 \frac{12}{18}=11 \frac{2}{3}$ hours.
4. Showing a man on the stage , Rita said, "He is the brother of the daughter of the wife of my hus-band . How is the man on stage related to Rita ?
A. Son
B. Husband
C. Cousin
D. Nephew

Ans. A
Sol. Hence, Correct option is A.
5. Direction: Choose the most appropriate option to change the narration (direct/indirect) of the given sentence.
Manali said, "Kindly come on time, dear Vikas."
A. Manali requested Vikas
affectionately to come on time.
B. Manali requested to Vikas
affectionately to come on time.
C. Manali affectionately requested

Vikas to come on time.
D. Manali requested Vikas
affectionately to kindly come on time.
Ans. C
Sol. This is an imperative sentence of direct narration. We will change it into the indirect narration accordingly. The inverted commas (" ") used in Direct Narration will be removed in Indirect Narration. 'Said' is changed to 'requested' if sentence starts with please, kindly etc. And adverb affectionately is used for 'dear'. Correct sequence will be 'affectionately requested'. Hence option C is the correct answer.
6. The formula of density of a gas is defined by $\rho=\frac{m}{V}$, where $\rho=$ density, $\mathrm{m}=$ mass, $\mathrm{V}=$ Volume. Find the percentage change in density if the mass is increased by 35% and volume is decreased by 20%.
A. 48%
B. 35%
C. 58.25%
D. 68.75%

Ans. D

Sol. $\quad \rho_{1}=\frac{m}{V}$
A.T.Q.
$\rho_{2}=\frac{135 \mathrm{~m}}{80 \mathrm{~V}}=\frac{27 \mathrm{~m}}{16 \mathrm{~V}}$
$\%$ increase $=\frac{\rho_{2}-\rho_{1}}{\rho_{1}} \times 100$
$=\frac{\frac{27 m}{16 V}-\frac{m}{V}}{\frac{m}{V}} \times 100$
$=\frac{1100}{16} \%$
$=68.75 \%$
7. A, B and C can complete a work in 20, 25 and 45 days respectively. They started the work together and A left 4 days before the completion of the work and B left 3 days before the completion of work. Find the total no. of days for the work to be completed.
A. $33 \frac{77}{101}$
B. $11 \frac{77}{101}$
C. $14 \frac{81}{101}$
D. $13 \frac{81}{101}$

Ans. B
Sol. Let the total work $=\operatorname{LCM}(20,25$, 45) $=900$ unit

A's efficiency $=\frac{900}{20}=45$
B's efficiency $=\frac{900}{25}=36$
C's efficiency $=\frac{900}{45}=20$
If A left 4 days before the completion and B left 3 days before the completion,
Now, Total work $=900+45 \times 4+$ $36 \times 3=1188$
Required time to complete the whole
work $=\frac{1188}{45+36+20}=\frac{1188}{101}$
$=11 \frac{77}{101}$
8. In a family, there are total consumption of 35 kg wheat and 12 kg of sugar every month. If the price of sugar is $33 \frac{1}{3} \%$ more than that of wheat. And if he spends total Rs. 765 on the wheat and sugar every month. If the price of sugar in increased by $66 \frac{2}{3} \%$. Find the percentage of reduction on the wheat consumption so the expenditure remains the same.
A. 30.47
B. 47.30
C. 30
D. 40

Ans. A
$33 \frac{1}{3} \%=\frac{1}{3}$
Let the price of wheat $=3 x$
Therefore, the price of sugar $=4 x$
A.T.Q.
$3 x \times 35+4 x \times 12=765$
$\Rightarrow 153 x=765$
$\Rightarrow x=5$
Then price of sugar $=4 x=$ Rs. 20
Price of wheat $=3 x=$ Rs. 15
When the price of sugar be increased
by $66 \frac{2}{3} \%$.
$66 \frac{2}{3} \%=\frac{2}{3}$
$3 \mathrm{k}=20$ (Given) or $k=\frac{20}{3}$
New price of sugar
$=3 k+2 k=5 k=\frac{100}{3}$
Since the consumption of sugar and price of wheat remain same in both the cases.
Now, $\frac{100}{3} \times 12+15 \times y$ (new quantity
of wheat) $=$ Rs. 765
$\Rightarrow 15 y=765-400=365$
$y=\frac{365}{15}$
\% change in consumption of
wheat $=\frac{35-\frac{365}{15}}{35} \times 100$
$=\frac{525-365}{35 \times 15} \times 100$
$=\frac{16000}{525}=30.47 \%$
9. The ratio of present ages of Vijay and Prashant is $8: 9$. The ratio of their ages before 6 years was $13: 15$. Find the ratio of their ages of 12 years from now.
A. $12: 13$
B. $11: 12$
C. $10: 11$
D. $13: 14$

Ans. B
Sol. Let the age of Vijay and Prashant be $8 x$ and $9 x$ respectively.
A.T.Q.

Ratio of their ages before 6 years,
$\frac{8 x-6}{9 x-6}=\frac{13}{15}$
$120 x-90=117 x-78$
$3 x=12$
$x=4$
Therefore, the present age of Vijay and Prashant is 32 years and 36 years respectively.
Required, Ratio of their ages after 12 years.
$=\frac{32+12}{36+12}$
$=\frac{44}{48}$
$=\frac{11}{12}$
= $11: 12$.
10. Direction: In the following questions, some of the sentences have errors and some have none. Find out which part of a sentence has an error. If there is no error, corresponding to (d) in the answer.
The Party will now seek to stand of its governance record, five years after nearly sweeping the Assembly results in 2015.
A. The Party will now seek to
B. stand with its governance record,
C. the Assembly results in 2015
D. five years after nearly sweeping

Ans. B
Sol. Option B has the grammatically incorrect part. Here preposition 'of' needs to be replaced with
'on'. Stand on means 'to
be based on; depend on'.
11. During Morse-key test on 4 cylinder engine, the following observation was made -
When;
all cylinder fired 4000kW
First cylinder not fired ------- 2800kW
Second cylinder not fired ------2805kW
Third cylinder not fired ------2798kW
Fourth cylinder not fired ------2795kW;
Then calculate the mechanical efficiency (in \%) of the engine,
Sol. Total BP=4000Kw
$\mathrm{I}_{1}=4000-2800=1200 \mathrm{Kw}$
$\mathrm{I}_{2}=4000-2805=1195 \mathrm{KW}$
$\mathrm{I}_{3}=4000-2798=1202 \mathrm{Kw}$
$\mathrm{I}_{4}=4000-2795=1205 \mathrm{Kw}$
$\mathrm{IP}_{\text {total }}=4802 \mathrm{Kw}$
$\eta_{m}=(B P / I P)=(4000 / 4802) * 100$
$\eta_{m}=83.29 \%$
12. Match list 1 with list 2 and select the correct answer using the codes given below

List 1	List 2
a) annealing	1) refined grain structure
b) nitriding	2) improve the hardness of the whole mass
c) martempering	3) increase surface harness
d) normalizing	4) improve ductility

A. A-4 B-3 C-2 D-1
B. A-1 B-3 C-4 D-2
C. A-4 B-2 C-1 D-3
D. A-2 B-3 C-4 D-1

Ans. A
Sol. • annealing improves ductility

- nitriding is used to increase surface hardness
- martempering increase the harness of the whole mass
- normalizing is used to refine the grain structure

13. A cantilever truss is loaded and supported as shown. Find the value of loads $P(i n k N)$ which would produce an axial force of magnitude 3 kN in the member AC

Sol. In this case we need not determine the support reactions.
The force in the member AC can be determined using the method of sections.
Pass a section mn cutting the members AC, DC and DE.
Consider the equilibrium of the right hand portion of the truss.

Fig. 9.24
Taking moment about D,
$\Sigma M_{D}=0: \quad F_{A C} \times 2-P(1.5)-P(4.5)=0$
$F_{A C}=\frac{6 \mathrm{P}}{2}$
$F_{A C}=3 P$
As the force in the member is 3 kN ,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{AC}} & =3 \mathrm{kN}=3 \mathrm{P} \\
\mathrm{P} & =1 \mathrm{kN} \quad \text { Ans. }
\end{aligned}
$$

14. Water is flowing at $0.25 \mathrm{~kg} / \mathrm{s}$ is heated from $15^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in a counter flow heat exchanger by a hot water steam flowing at $0.25 \mathrm{~kg} / \mathrm{s}$ and it enters the heat exchanger at $85{ }^{\circ} \mathrm{C}$. The density of water is 1000 $\mathrm{kg} / \mathrm{m}^{3}$ and specific heat is $4.2 \mathrm{~kJ} / \mathrm{kgK}$. If overall heat transfer coefficient for the heat exchanger is $1200 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, the heat exchanger area (in m^{2}) required is
Sol. $11.375 \mathrm{~m}^{2}$
By energy balance,
$m_{c} C_{c}\left(T_{c 1}-T_{c 2}\right)=m_{h} C_{h}\left(T_{h 1}-T_{h 2}\right)$
$m_{c} C_{c}=m_{h} C_{h}=1050 \mathrm{~J} / \mathrm{s}$

Counter flow heat exchanger
$(80-15)=\left(85-T_{h 2}\right)$
$T_{h 2}=20^{\circ} \mathrm{C}$
LMTD $=\theta_{1}=\theta_{2}=5^{\circ} \mathrm{C}$
$m_{c} C_{c}\left(T_{c 2}-T_{c 1}\right)=$ UA \times LMTD
$1050 \times 65=1200 \times \mathrm{A} \times 5$
$\mathrm{A}=11.375 \mathrm{~m}^{2}$
15. A single die is rolled six times, the probability that the six outcomes are all different is
A. $\frac{5}{6^{6}}$
B. $\frac{1}{6^{5}}$
C. $\frac{5}{324}$
D. $\frac{25}{216}$

Ans. C
Sol. Number of favourable cases $=6$!
Total number of outcomes possible $=$ 6^{6}
Required probability $=\frac{6!}{6^{6}}=\frac{5}{324}$
16. The velocity field of an incompressible flow is given by $V=\left(a_{1} x+b_{1} y+\right.$ $\left.c_{1} z\right) i+\left(a_{2} x+b_{2} y+c_{2} z\right) j$, where $a_{1}=2$
units, $b_{1}=1$ unit and $c_{2}=3$ units. The value of b_{2} is
Sol. For flow that is incompressible, we have equation for 3D flow given below
$v=u \hat{i}+v \hat{j}+w \hat{k}$
$\frac{d u}{d x}+\frac{d v}{d y}+\frac{d w}{d z}=0$
Where $u=a_{1} x+b_{1} y+c_{1} z, v=$
$a_{2} x+b_{2} y+c_{2} z$ and $w=0$
Thus, by solving for the above equation using this result, we get $a_{1}+b_{2}+0=0$
As $a_{1}=2$, therefore, $b_{2}=-2$
17. In a four-bar mechanism, two adjacent links are rotating at angular velocities of $5 \mathrm{rad} / \mathrm{s}$ (clockwise) and $10 \mathrm{rad} / \mathrm{s}$ (anti-clockwise). If the radius of the pin joining the links is 3 cm , then what is the value of rubbing velocity:
A. $15 \mathrm{~cm} / \mathrm{s}$
B. $30 \mathrm{~cm} / \mathrm{s}$
C. $40 \mathrm{~cm} / \mathrm{s}$
D. $45 \mathrm{~cm} / \mathrm{s}$

Ans.
Sol. We know rubbing velocity is given by,
$v=\left(\omega_{1} \pm \omega_{1}\right) \times r$
Plus (+) sign is used when the links move in opposite direction
Minus (-) sign is used when the links move in same direction
Here
$v=(5+10) \times 0.03=0.45 \mathrm{~m} / \mathrm{s}=45 \mathrm{~cm} / \mathrm{s}$
18. Consider a hole - shaft interchangeable assembly as $40 H_{0.000}^{+0.02} \quad j_{-0.01}^{+0.01}$.
The allowance (in microns) in the assembly is
A. 0.01
B. 0.1
C. 1
D. 10

Ans. D

Sol. As clearly seen in the figure,

Allowance = difference between MML of hole and shaft
$=(\text { upper limit })_{\text {shaft }}-(\text { lower limit })_{\text {hole }}$ $=0.01-0.00=0.01 \mathrm{~mm}=10 \mu \mathrm{~m}$
19. At a bank counter, customers arrive according to Poisson's distribution at a rate of 14 customers per hour. The staff at this counter takes 3 minutes per customer on an average with an exponential distribution. The mean waiting time of queue in minutes is.
A. 7
B. 14
C. 5
D. 10

Ans. A
Sol. Given $\lambda=14$ customer per hour and
1/ $\mu=3$ mins per customer
Therefore, $\mu=20$ customers per hour
And the waiting time in the queue is
$\mathrm{t}_{\mathrm{q}}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{14}{20(20-14)}=$
0.1167 hour
$\mathbf{t}_{\mathbf{q}}=\mathbf{7}$ minutes
20. A spherical shell has a diameter of 1.2 m and thickness 6 mm . It is filled with water under pressure until the volume is increased by $400 x$ $10^{3} \mathrm{~mm}^{3}$. The pressure exerted by water on the shell in MPa is \qquad
Take: $E=204$ GPa and $\mu=0.3$
Sol. The volumetric strain on a spherical shell is given by :

$$
\frac{d V}{V}=\frac{3 \sigma}{E}(1-\mu)
$$

Volume of the shell is $=\frac{\pi}{6} x 1.2^{3}=0.9048 \mathrm{~m}^{3}=904.8 \times 10^{6} \mathrm{~mm}^{3}$
Thus $\frac{d V}{V}=\frac{400 \times 10^{3}}{904.8 \times 10^{6}}=\frac{3 \sigma}{204 \times 1000}(1-0.3)$
Giving $\sigma=42.96 \mathrm{MPa}$

The hoop stress in the shell is given by $\sigma=\frac{p d}{4 t}$
Thus:
$42.96=\frac{p \times 1.2 \times 1000}{4 \times 6}$
giving $p=0.86 \mathrm{MPa}$
21. A link $A B$ is 1 m long and rotates about pivot point A. It has a slider at point B. The centripetal acceleration of B with respect to $9 \mathrm{~m} / \mathrm{s}^{2}$. The slider slides with a velocity of $1 \mathrm{~m} / \mathrm{s}$ relative to B. The magnitude of Coriolis acceleration (in $\mathrm{m}^{2} / \mathrm{s}$) is:
A. 2
B. 3
C. 6
D. 12

Ans. C
Sol. We know centripetal acc. $=W^{2} R$
$w=\sqrt{\frac{a}{R}}=\sqrt{\frac{9}{1}}=3 \frac{\mathrm{rad}}{\mathrm{s}}$
Coriolis acc.
$=2 w v=2 \times 3 \times 1=6 \mathrm{~m} / \mathrm{s}^{2}$
22. Air at $20^{\circ} \mathrm{C}$ flows over a flat plate maintained at $75^{\circ} \mathrm{C}$. Measurements show that temperature at a distance of 0.5 mm from the surface of plate is $50^{\circ} \mathrm{C}$. Presuming thermal conductivity of air as $0.0266 \mathrm{~W} / \mathrm{m}$ deg, estimate the value of local heat transfer coefficient.
A. $31.2 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{deg}$
B. $24.18 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{deg}$
C. $21.82 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{deg}$
D. $23.34 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{deg}$

Ans. B
Sol. The heat transfer coefficient is prescribed by the relation
$h=-\frac{k}{\left(t_{s}-t_{\infty}\right)}\left(\frac{d t}{d y}\right)_{y=0}$
Assuming linear variation of temperature,
$\frac{d t}{d y}=\frac{50-75}{0.0005}=-50 \times 10^{3}{ }^{\circ} \mathrm{C} / \mathrm{m}$
$\therefore \mathrm{h}=\frac{0.0266}{75-20} \times\left(-50 \times 10^{3}\right)$
$=24.18 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{deg}$
23. A closed coil helical spring is subjected to a load of 10 N made up of a ductile material of radius 10 mm \& diameter of spring having 10 number of turns is 200 mm . If the shear modulus of rigidity of the material is 180 GPa and poisson's ratio for the material is 0.22 then the deflection of the spring under the applied load will be
A. 0.22 mm
B. 0.1 mm
C. 0.05 mm
D. 1 mm

Ans. A
Sol. For a spring the deflection is given by,
Modulus of rigidity $\mathrm{G}=180 \mathrm{MPa}$
Radius off spring $R=100 \mathrm{~mm}$, coil wire diameter $\mathrm{d}=20 \mathrm{~mm}$
$\mathrm{n}=10$
Stiffness, $\mathrm{K}=\frac{P}{\Delta}=\frac{G d^{4}}{64 R^{3} n}$
Deflection, $\Delta=\frac{4 P R^{3} n}{G r^{4}}$
Where the symbols have their usual meaning,
$\Delta=\frac{4 \times 10 \times 0.1^{3} \times 10}{180 \times 10^{9} \times 0.01^{4}}=22 \times 10^{-4} \mathrm{~m}=0.222 \mathrm{~mm}$
24. Two parallel plates kept 0.1 m apart have laminar flow of oil between them with a maximum velocity of $1.5 \mathrm{~m} / \mathrm{s}$. The discharge per meter width (in $\mathrm{m}^{3} / \mathrm{s}$) is
Sol. For flow between two parallel plates, $u_{\text {avg }}=2 / 3$ times of $u_{\text {max }}$ given,
$u_{\max }=1.5 \mathrm{~m} / \mathrm{s}$
then,
Uavg $=2 / 3 \times 1.5=1 \mathrm{~m} / \mathrm{s}$
area of the flow $=1 \times b=0.1 \times 1=1 \mathrm{~m}^{2}$ $\mathrm{Q}=\mathrm{A} . \mathrm{u}_{\mathrm{avg}}=0.1 \times 1=0.1 \mathrm{~m}^{3} / \mathrm{s}$
25. A steel column section has a cross sectional area, $100 \mathrm{~cm}^{2}$ and second moment of inertia $\mathrm{I}_{\mathrm{x}}=12500$ cm^{4} and $\mathrm{I}_{\mathrm{y}}=3200 \mathrm{~cm}^{4}$. Yield stress of steel is 250 MPa and $\mathrm{E}=200 \mathrm{GPa}$.

Considering column to be hinged at both ends, the minimum length (cm) for which Euler's equation may be used for buckling is?
A. 224.7
B. 502.6
C. 485.9
D. 639.5

Ans. B
Sol. Minimum $I=3200 \mathrm{~cm}^{4}$
$\therefore P_{c r}=\frac{\pi^{2} E l}{L^{2}}$ for column hinged at both ends
$\sigma_{c r} \times A=\frac{\pi^{2} E I}{L^{2}}$
$L=\sqrt{\frac{\pi^{2} \times 200 \times 1000 \times 3200}{250 \times 100}}$
$=502.65 \mathrm{~cm}$
26. The system of equation $k x+2 y-z=$ 1 , $(K-1) y-2 z=2$ and $(k+2) z=$ 3 will have unique solution if $K=$
A. 0
B. 1
C. -2
D. -1

Ans. D
Sol. The given equations can be written as

A	X
$\left[\begin{array}{ccc}k & 2 & -1 \\ 0 & k-1 & -2 \\ 0 & 0 & k+2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$	

To get unique solution $\rho(A)=\rho(A B)$
$=3$
$\Rightarrow|A| \neq 0$
i.e. $k(k-1)(k+2) \neq 0$
$\therefore \mathrm{k} \neq 0,1,-2$
27. A U-tube has limbs of internal diameter 6 mm and 16 mm respectively and contains some water. Calculate the difference in water levels (in mm) in the two limbs. Surface tension of water $=0.073$ N / m. Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
A. 3.1
B. 1.55
C. 6.2
D. 2.9

Ans. A
Sol. Let $\mathrm{h}=$ difference in water levels in the two limbs. By assuming the angle of contact $\theta=0^{\circ}$.
$\Delta \mathrm{p}=\rho \mathrm{gh}=\left(\frac{2 \sigma}{\mathrm{R}_{1}}-\frac{2 \sigma}{\mathrm{R}_{2}}\right)$
$h \times 1000 \times 9.81=2 \times 0.073\left(\frac{1}{3 \times 10^{-3}}-\frac{1}{8 \times 10^{-3}}\right)$
$\mathrm{h}=3.1 \times 10^{-3} \mathrm{~m}=3.1 \mathrm{~mm}$
28. The solution of differential equation
$\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0$
Where $p=4$ and $q=3$ is
A. $e^{-3 x}$
B. $x e^{-x}$
C. $\mathrm{xe}^{-2 \mathrm{x}}$
D. $x^{2} e^{-2 x}$

Ans. C
Sol. Given $\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+(q+1) y=0$
Here $P=4 \& q=3$
$\Rightarrow\left[D^{2}+4 D+(3+1)\right] y=0$
$\Rightarrow\left[D^{2}+4 D+4\right] y=0$
$\Rightarrow(D+2)^{2}=0$
$\Rightarrow D=-2,-2$ [roots are real \& equal]
$\therefore \quad y=\left(c_{1}+c_{2} x\right) e^{-2 x}$

$$
=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Hence $e^{-2 x}$ and $x e^{-2 x}$ are independent solution.
29. The dynamic load carrying capacity of a ball bearing is increased to 3 times without any change in the equivalent load then life of the bearing will
A. increase 3 times
B. decrease 9 times
C. increase 27 times
D. decrease 81 times

Ans. C
Sol. Life of a ball bearing is given
by, $\mathrm{L}_{10}=\left(\frac{\mathrm{C}}{\mathrm{P}}\right)^{3}$
Where $\mathrm{c}=$ dynamic load carrying capacity
$p=$ equivalent load
When c is change to $3 c$. Then,
Life becomes 3^{3} of original
i.e. It increases to 27 times[Ans]
30. A bar of 75 mm diameter is machined to reduce its diameter by orthogonal cutting. If the length of the cut chip is
73.5 mm and rake angle is 15°, the shear plane angle is
A. 16°
B. 18°
C. 23°
D. 29°

Ans. B
Sol. $I_{c}=73.5 \mathrm{~mm}$
$a=15^{\circ}$
$r=\frac{\ell_{c}}{\ell}=\frac{73.5}{\pi d}=\frac{73.5}{\pi \times 75}=0.31$
$\phi=\tan ^{-1}\left(\frac{r \cos \alpha}{1-r \sin \alpha}\right)$
$=\tan ^{-1}\left(\frac{0.31 \cos 15}{1-0.31 \sin 15}\right)$
$\varphi=18.03^{\circ}$
31. A 75 mm diameter shaft is subjected to a pure torsion. The shear stress developed is 150 MPa . The yield strength of the shaft material is 350 MPa. Then the ratio of FOS acc. to von Mises Theory \& FOS acc. to Tresca's theory is
Sol. Stress developed $=150 \mathrm{MPa}$
$\sigma_{1}=150 \mathrm{MPa}, \sigma_{2}=-150 \mathrm{MPa}$, Syt $=350 \mathrm{MPa}$
Acc. to von Mises Theory
$\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2} \leq\left(\frac{\mathrm{Syt}}{\mathrm{N}}\right)^{2}$
$(150)^{2}+(-150)^{2}-(150)(-150) \leq\left(\frac{350}{N}\right)^{2}$
$22500+22500+22500 \leq\left(\frac{350}{\mathrm{~N}}\right)^{2}$
$\sqrt{67500}=\frac{350}{N} \Rightarrow N=\frac{350}{259.81}=1.347$
Acc. to Tresca's Theory
large of $\left[\left|\frac{\sigma_{1}-\sigma_{2}}{2}\right|,\left|\frac{\sigma_{1}}{2}\right|,\left|\frac{\sigma_{2}}{2}\right|\right] \leq \frac{\text { Syt }}{\mathrm{N}}$
large of $\left[\left|\frac{150-(-150)}{2}\right|,\left|\frac{150}{2}\right|,\left|\frac{-150}{2}\right|\right]$
$\leq \frac{350}{N}$
large of $\left[\frac{300}{2}, 75,75\right] \leq \frac{350}{\mathrm{~N}}$
$150 \leq \frac{350}{N} \Rightarrow N=\frac{350}{150}=2.33$
Hence, Ratio $=\frac{1.347}{2.333}=0.577$
Marks-2
32. A solar collector having an area of 80 m^{2} receives solar radiation and transforms it to the internal energy of fluid at an overall efficiency (η) of 50%. Now this high energy fluid is supplied to a heat engine having an efficiency of 40%. If the heat rejected to sink is 30 kW . Then power developed by the engine in kW and irradiation to solar collector in $\mathrm{kw} / \mathrm{m}^{2}$ respectively are
A. $50,1.25$
B. $20,1.25$
C. $50,0.8$
D. 20, 0.8

Ans. B
Sol. Given
$\eta_{\text {solar collector }}=50 \%$, Area of solar collector $=80 \mathrm{~m}^{2}$
$\eta_{\text {Heat engine }}=40 \%$ Heat rejected to $\operatorname{sink}\left(Q_{R}\right)=30 \mathrm{~kW}$
$\eta_{\text {Heat engine }}=\frac{W_{\text {Net }}}{Q_{S}} \Rightarrow \frac{Q_{S}-Q_{R}}{Q_{S}}=1-\frac{Q_{R}}{Q_{S}}$
$0.4=1-\frac{Q_{R}}{Q_{S}} \Rightarrow \frac{Q_{R}}{Q_{S}}=0.6 \Rightarrow \frac{30}{Q_{S}}=0.6 \Rightarrow Q_{S}=50$
$\mathrm{Qs}=50 \mathrm{~kW}$
$W_{\text {Net }}=Q_{s}-Q_{R}=50-30=20 \mathrm{~kW}$
$\eta_{\text {solar collector }}=\frac{\text { energy supplied to engine }}{\text { energy recived at solar collector }}=50 \%$
$\Rightarrow \frac{50}{\mathrm{Q}_{\mathrm{SC}}}=0.5 \Rightarrow \mathrm{Q}_{\mathrm{SC}}=\frac{50}{5}$
Qsc $=100 \mathrm{~kW}$
Irradiation $\Rightarrow \frac{Q_{S C}}{\text { Area of plate }}=\frac{100}{80}=\frac{1.25 \mathrm{~kW}}{\mathrm{~m}^{2}}$
33. A VCRS system uses Refrigerent R134 and operates b/w 0.15 MPa and 80 kPa , if the values of enthalpy at entry and exit of evaporator are 78 $\mathrm{kJ} / \mathrm{kg}$ and $178 \mathrm{~kJ} / \mathrm{Kg}$ and enthalpy at inlet of condenser is $220 \mathrm{~kJ} / \mathrm{kg}$. If the power supplied to the compressor is 4.2 kW . What is the refrigeration capacity of the refrigeration plant (kW)?
A. 100 kW
B. 10 kW
C. 42 kW
D. 4.2 kW

Ans. B
Sol. Given,
Power required by compressor=
4.2 kW
$\mathrm{h}_{1}=178 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2}=220 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=\mathrm{h}_{4}=78 \mathrm{~kJ} / \mathrm{kg}$

$W_{\mathrm{c} / \mathrm{kg}}=(220-178)=42 \mathrm{~kJ} / \mathrm{kg}$
Power required by compressor $=$ $\mathrm{m} \times \mathrm{W}_{\mathrm{c} / \mathrm{kg}}=\mathrm{m} \times 42$
$\mathrm{m}=0.1 \mathrm{~kg} / \mathrm{s}$
$R C=m \times\left(h_{1}-h_{4}\right)=0.1(178-78)$
$R C=10 \mathrm{~kW}$
34. An NC positioning system uses a leadscrew of 7.5 mm pitch which drives a worktable. The leadscrew is powered by means of a stepping motor having 200 step angles. The worktable is programmed in a manner to move 120 mm from its present position at a travel speed of $300 \mathrm{~mm} / \mathrm{min}$. The number of pulses needed to move the table at the specified distance is \qquad
Sol. The number of pulses required for
table movement of x is given by:
$n_{p}=\frac{360}{\alpha} X \frac{x}{p}$
Here $\alpha=\frac{360}{200}=1.8^{\circ}$
Putting the values:
$\frac{360}{1.8} \times 120$
$7.5=3200$ pulses
35. The flywheel of a steam engine has a radius of gyration of 1 m and mass 2500 kg . A constant starting torque of 1500 Nm is applied on the steam engine to start it from stationary position. The angular Velocity of the flywheel is after 15 sec will be
A. $0.6 \mathrm{rad} / \mathrm{s}$
B. $15 \mathrm{rad} / \mathrm{s}$
C. $10 \mathrm{rad} / \mathrm{s}$
D. $9 \mathrm{rad} / \mathrm{s}$

Ans. A

Sol. Given : $\mathrm{k}=1 \mathrm{~m}$
$\mathrm{m}=2500 \mathrm{~kg}$
$\mathrm{T}=1500 \mathrm{~N}-\mathrm{m}$
Let $\mathrm{a}=$ Angular acceleration of the
flywheel
We know $\mathrm{I}=\mathrm{m} . \mathrm{k}^{2}$
$=2500 \times 1^{2}=2500 \mathrm{~kg}-\mathrm{m}^{2}$
T= I.a
$1500=2500 * a$
$\mathrm{a}=0.6 \mathrm{rad} / \mathrm{s}^{2}$
$\omega=\omega_{0}+\alpha t$
given,
$\omega_{0}=0, \quad t=15 \mathrm{sec}$
$\omega=0+0.6 \times 15$
$\omega=9 \mathrm{rad} / \mathrm{s}$
36. In a thermal power plant operating on a ranking cycle
Seam having enthalpy 2995.1 kJ/kg and entropy $6.5422 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ is produced at 3 MPa and $300^{\circ} \mathrm{C}$ and is fed to a turbine where it expands to a condenser pressure of 5 kPa , where $\mathrm{h}_{\mathrm{f}}=137.77 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{\mathrm{g}}=2561.6 \mathrm{~kJ} / \mathrm{kg}$, $\mathrm{S}_{\mathrm{f}}=0.4763 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$ and $\mathrm{S}_{\mathrm{g}}=8.3960$ $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$. At the entrance to the condenser, the enthalpy of steam (in $\mathrm{kJ} / \mathrm{kg}$) approximately is \qquad ..
Sol.

$\mathrm{h}_{1}=2995.1 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{S}_{1}=6.5422 \mathrm{~kJ} / \mathrm{kgK}$
$S_{1}=S_{2}=6.5422<8.3960 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, hence entry to condenser will not be saturated vapour.
$\mathrm{S}_{1}=\mathrm{S}_{\mathrm{f} 2}+\mathrm{X}_{2}\left(\mathrm{~S}_{\mathrm{g} 2}-\mathrm{S}_{\mathrm{f} 2}\right)$
$6.5422=0.4763+x_{2}(8.3960-$ 0.4763)
$X_{2}=0.766$
$\mathrm{h}_{2}=\mathrm{h}_{\mathrm{f} 2}+\mathrm{x}_{2}\left(\mathrm{~h}_{\mathrm{g} 2}-\mathrm{h}_{\mathrm{f} 2}\right)$
$=137.77+0.766(2561.6-137.77)$
$=1994.4 \mathrm{~kJ} / \mathrm{kg}$
37. A closed cycle gas turbine plant, using air as the working medium at pressure 1 bar and temperature 300 K attains the maximum temperature of 1200 K . If final pressure of compressor is 6 bar, then the air-rate of the cycle is \qquad $\mathrm{kg} / \mathrm{kWh}$. [Given, $\eta_{\text {compressor }}=0.85, \eta_{\text {turbine }}=0.8$]
A. 21.10
B. 24.10
C. 28.10
D. 33.10

Ans. B

Sol.
$T_{2}=T_{1}\left(r_{p}\right)^{\frac{1-\gamma}{\gamma}}=300 \times(6)^{\frac{0.4}{1.4}}=500.55 \mathrm{~K}$

$\eta_{c}=\frac{T_{2}-T_{1}}{T_{2}^{\prime}-T_{1}}$
$\Rightarrow \quad 0.85=\frac{500.25-300}{T_{2}^{\prime}-300}$
$\Rightarrow T_{2}^{\prime}=536 \mathrm{~K}$
$T_{4}=\frac{T_{3}}{\left(r_{p}\right)^{\frac{1-\gamma}{7}}}=\frac{1200}{(6)^{\frac{0.4}{1.4}}}=719.2 \mathrm{~K}$
$\eta_{\mathrm{T}}=\frac{T_{3}-T_{4}^{\prime}}{T_{3}-T_{4}}$
$\Rightarrow \quad 0.8=\frac{1200-T_{4}^{\prime}}{1200-719.2}$
$\Rightarrow T_{4}^{\prime}=815.36 \mathrm{~K}$
$W_{\text {net }}=W_{T}-W_{C}=C_{p}\left[T_{3}-T_{4}^{\prime}-T_{2}^{\prime}+T_{1}\right]$
$=1.005[1200-815.36-536+300]$
$=149.4 \mathrm{~kJ} / \mathrm{kg}$
Air Rate $=\frac{3600}{149.4}$
$=24.1 \mathrm{~kg} / \mathrm{kWh}$
38. A hydraulic press has a ram of 150 mm and a plunger of 20 mm diameter. Find the force required on
the plunger to lift a weight of 40 kN . If the plunger has a stroke of 0.40 m and makes 30 strokes per minute, determine the power (in W) required by the plunger. Assume no losses whatsoever.
Sol. Let $F=$ force on the plunger. Since the pressure in the fluid is same at the plunger and at the weight.
$\frac{F}{\left(\frac{\pi}{4}(0.02)^{2}\right)}=\frac{40}{\left(\frac{\pi}{4}(0.15)^{2}\right)}$
$F=0.711 \mathrm{kN}$
Total length of stroke in one minute
$=0.40 \times 30=12.0 \mathrm{~m}$
Distance travelled by weight / minute
$A_{P} V_{P}=A_{R} V_{R}$ (By continuity equation)
$=12 \times \frac{(0.02)^{2}}{(0.15)^{2}}=0.2133 \mathrm{~m} /$ minute
Power required
$=\frac{0.2133}{60} \times 40$
$=0.142 \mathrm{~kW}=142 \mathrm{~W}$
39. An EDM process which uses a RC relaxation circuit, a hole of 10 mm diameter is made in a steel plate of 50 mm thickness using a graphite tool and the dielectric is kerosene. The discharge time is negligible. The following parameters are measured:
Resistance $=30 \Omega$
Capacitance $=25^{\mu F}$
Supply voltage= 220 V
Discharge Voltage= 110 V
Average power input is :
A. 300 W
B. 291 W
C. 450 W
D. 230 W

Ans. B
Sol. The cycle time in an EDM process is given by :
$t_{c}=R C \ln \frac{V_{s}}{V_{s}-V_{D}}$

Where
V_{s}, V_{D} are the supply and discharge voltage .
Given, $\mathrm{R}=30 \Omega, \mathrm{C}=25$
$\mu F, V_{s}=220 \mathrm{~V}, V_{D}=110 \mathrm{~V}$
So,
$t_{c}=30 \times 25 \times 10^{-6} \times \ln \left(\frac{220}{220-110)}\right)=5.198 \times 10^{-4} \mathrm{~s}$
Thus, power input

$$
\mathrm{P}=\frac{1}{2} \frac{C V_{D}^{2}}{t_{c}}=\frac{1}{2} \frac{25 \times 10^{-6} \times 110^{2}}{5.198 \times 10^{-4}}=290.977 \mathrm{~W}
$$

40. In a drilling machine 8 spindle speeds are available. The $2^{\text {nd }}$ and $3^{\text {rd }}$ speeds are 200 rpm and 400 rpm respectively. If the sum of all speeds be expressed as $\mathrm{N} \times 10^{2} \mathrm{rpm}$. Calculate the value of N .
Sol. In drilling machine the spindle speeds are in Geometric Progression (G.P).

Writing the speeds as a, ar, $a^{r^{2}}$
,......., $\mathrm{a}^{r^{7}}$.
$2^{\text {nd }}$ speed $=$ ar and $3^{\text {rd }}$ speed $=a^{r^{2}}$.
Where $a=1^{\text {st }}$ spindle speed and $r=$ common ratio of G.P.
$r=3^{\text {rd }}$ speed $/ 2^{\text {nd }}$ speed $=\frac{a r^{2}}{a r}$
$r=400 / 200=2$.
Hence, $a=100$ ($1^{\text {st }}$ spindle speed)
Therefore the speeds (in rpm) are: $100,200,400,800,1600,3200$, 6400, 12800.
Sum of spindle speeds $=25500 \mathrm{rpm}$. $\mathrm{N}=255$ [Ans]
41. The Laplace transform of $e^{4 t} \cos (3 t)$ is:
A. $\frac{S-3}{(S-3)^{2}+9}$
B. $\frac{S-3}{(S-3)^{2}+16}$
C. $\frac{S-4}{(S-4)^{2}+9}$
D. $\frac{S+4}{(S+4)^{2}+9}$

Ans. C

Sol.
$L\{\cos (3 \mathrm{t})\}=\frac{\mathrm{S}}{\mathrm{S}^{2}+9}$
By first shift property,
$\therefore L\left\{e^{4 t} \cos t(3 t)\right\}=\frac{S-4}{(S-4)^{2}+9}$
42. A shaft with circular cross sectional area is subjected to bending moment of 400 kNm and turning moment of 300 kNm . On the basis of "Maximum principle stress theory" the direct stress is $\boldsymbol{\sigma}$ and according to "Maximum shear stress theory" the shear stress is $\boldsymbol{\tau}$, then find the ratio of $\frac{\tau}{\sigma}$
A. $\frac{5}{9}$
В. $\frac{9}{5}$
C. $\frac{5}{18}$
18

Ans. A
Sol. $M=400 \mathrm{kNm} T=300 \mathrm{kNm} \mathrm{d}=$ diameter of shaft

Equivalent Bending

$$
M_{e}=\frac{1}{2}\left(M+\sqrt{M^{2}+T^{2}}\right)
$$

Equivalent Turning
moment $\boldsymbol{T}_{\boldsymbol{e}}=\sqrt{\boldsymbol{M}^{\mathbf{2}}+\boldsymbol{T}^{\mathbf{2}}}$
According to Maximum principle stress theory;
$M_{e}=\frac{1}{2}\left(M+\sqrt{M^{2}+T^{2}}\right)=\frac{\pi}{32} d^{3} \sigma$
According to Maximum shear stress
theory; $T_{e}=\sqrt{M^{2}+T^{2}}=\frac{\pi}{16} d^{3} \tau$
Dividing both the equations;

$$
\frac{\frac{1}{2}\left(M+\sqrt{M^{2}+T^{2}}\right)}{\sqrt{M^{2}+T^{2}}}=\frac{\sigma}{\tau \times 2}
$$

Putting values of M and T
$\frac{450}{500}=\frac{\sigma}{\boldsymbol{\tau} \times 2}$
$\therefore \frac{\boldsymbol{\tau}}{\boldsymbol{\sigma}}=\frac{\mathbf{5}}{\mathbf{9}}$
(Option (a))
43. Find the Solution of the differential equation $y^{`}{ }^{`}+4 y `+13 y=0, y(0)=0$; $y^{\prime}(0)=1$
A. $y=\frac{e^{-3 x}}{3} \sin (3 x)$
B. $\mathrm{y}=\frac{e^{-2 x}}{2} \sin (2 \mathrm{x})$
C. $y=\frac{e^{-2 x}}{3} \sin (3 x)$
D. $y=\frac{e^{-2 x}}{3} \sin (2 x)$

Ans. C
Sol. $y^{`}{ }^{`}+4 y `+13 y=0$
$\left(D^{2}+4 D+13\right)=0$
$\mathrm{D}=\frac{\frac{-4 \pm \sqrt{16-52}}{2}}{2}=\frac{-4 \pm i 6}{2}=-2 \pm i 3$
$y=e^{-2 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)$
At $x=0, y=0$
$0=C_{1}$
$y=e^{-2 x} C_{2} \sin 3 x$
$y^{`}=C_{2}\left[e^{-2 x}(3 \cos 3 x)+(-2) e^{-2 x}\right.$
$\sin 3 x]$
At $x=0$ and $y^{`}=1$
so $C_{2}=1 / 3$
$y=\frac{e^{-2 x}}{3} \sin (3 x)$
44. A slab milling operation is performed on a mild steel workpiece by a straight slab cutter of 80 mm diameter with 40 teeth. The depth of cut and the rotational speed of cutter are 3 mm and 50 rpm , respectively. If the table feed is $25 \mathrm{~mm} / \mathrm{min}$, the value of maximum uncut chip thickness (in microns) will be _ (Rounded upto two decimals).
Sol. Given,
Cutter diameter, $\mathrm{D}=80 \mathrm{~mm}$
Depth of cut, d=3 mm
Rotational speed, $\mathrm{N}=50 \mathrm{rpm}$
Table feed, $\mathrm{f}_{\mathrm{m}}=25 \mathrm{~mm} / \mathrm{min}$
Number of teeth, z $=40$
Maximum uncut chip-thickness,
$t_{1}=2 f_{1} \sqrt{\frac{d}{D}} \quad\left[\right.$ where, $f_{t}=$ feed per tooth $]$
Now, $f_{m}=f_{1} z N$
$\Rightarrow 25=\mathrm{f}_{\mathrm{t}} \times 40 \times 50$
$\mathrm{f}_{1} \frac{1}{80} \mathrm{~mm}$
$\therefore t_{1}=2 \times \frac{1}{80} \times \sqrt{\frac{3}{80}}=4.84 \mu \mathrm{~m}$
45. The composite bar consisting of steel and copper components is connected to two grips at the ends at a temperature of $80^{\circ} \mathrm{C}$ as shown in figure. If the temperature of this system falls to $30^{\circ} \mathrm{C}$ and the ends are allowed to yield by 0.3 mm then the stresses induced in steel (in MPa)
(take $E_{s}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{c}}=100$ GPa, $a_{s}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}, a_{c}=2.5 \times 10^{-}$ $5^{5}{ }^{\circ} \mathrm{C}$,
where, s and c abbreviation refers to steel and copper respectively)

A. 73.5
B. 103
C. 147
D. 206

Ans. A
Sol. Given,

$$
\begin{array}{ll}
A_{s}=350 \mathrm{~mm}^{2}, & A_{c}=250 \mathrm{~mm}^{2}, \\
\mathrm{I}_{\mathrm{s}}=300 \mathrm{~mm}, & \mathrm{I}_{\mathrm{c}}=500 \mathrm{~mm},
\end{array}
$$

permissible yielding $=0.3 \mathrm{~mm}$ Total contraction prevented $=$ Contraction prevented in steel + Contraction prevented in copper......
(i)

Total contraction prevented $=$ free
contraction - yielding
Free contraction of composite bar $=$ Contraction in steel + Contraction in copper
$=a_{s} \times \Delta T \times l_{s}+a_{c} \times \Delta T \times l_{c}$
$=2 \times 10^{-5} \times(80-30) \times 300+2.5 \times 10^{-}$
${ }^{5} \times(80-30) \times 500$
$\Delta \mathrm{L}_{\max }=0.925 \mathrm{~mm}$

From (ii),
Total contraction prevented $=0.925$
$-0.3=0.625 \mathrm{~mm}$
Tensile stress will induce when the contraction is prevented.
Let σ_{s} and σ_{c} are stresses induced in steel and copper rods.
Also, $\sigma_{s} A_{s}=\sigma_{c} A_{c}(\because$ same force
exists in both the rods)
$\sigma_{s} \times 350=\sigma_{c} \times 250$
$\sigma_{c}=1.4 \sigma_{\mathrm{s}}$
Also from (i),
Total contraction prevented $=$
$\frac{\sigma_{\mathrm{S}} \mathrm{l}_{\mathrm{S}}}{\mathrm{E}_{\mathrm{S}}}+\frac{\sigma_{\mathrm{c}} \mathrm{l}_{\mathrm{c}}}{\mathrm{E}_{\mathrm{c}}}$
$=\frac{\sigma_{\mathrm{S}} \times 300}{200 \times 10^{3}}+\frac{\sigma_{\mathrm{C}} \times 500}{100 \times 10^{3}}$
$=\left(1.5 \sigma_{s}+5 \sigma_{c}\right) \times 10^{-3}$
$=\left(1.5 \sigma_{s}+5 \times 1.4 \sigma_{c}\right) \times 10^{-3}$
$=8.5 \times 10^{-3} \sigma_{\mathrm{s}}$
From (iii) and (v)
$8.5 \times 10^{-3} \sigma_{s}=0.625$
$\sigma_{\mathrm{s}}=73.53 \mathrm{MPa}$
46. Consider the following problem of assembly line balancing. The tasks and their time duration in minutes are mentioned:

If the cycle time is 8 min , then the line efficiency (in \%) based on shortest processing time (SPT) is
Sol. Assigned task on a station in such a way that total task time of that station should not be exceed the cycle time.

Work station	Tasks	Time
1	A, B	$2+3=5$
2	C	4
3	D	5
4	E,F	$6+2=8$

So, the minimum no. of work stations required based on SPT $=4$ Line efficiency
$=\frac{\sum \mathrm{t}}{\mathrm{NT}_{\mathrm{C}}}$
$\sum \mathrm{t}$ = Sum of all task time
$=2+3+4+5+6+2=22 \mathrm{~min}$.
$\mathrm{N}=$ no. of work stations required $=4$
T_{c} = cycle time
$=8 \mathrm{~min}$
Line efficiency $=\frac{22}{4 \times 8}=0.6875=$ 68.75 \%
47. An electronic semiconductor device generates $0.16 \mathrm{~kJ} / \mathrm{hr}$ of heat. To keep the surface temperature at the upper safe limit of $75^{\circ} \mathrm{C}$, it is desired that the generated heat should be dissipated to the surrounding environment which is at $30^{\circ} \mathrm{C}$. The task is accomplished by attaching aluminium fins, $0.5 \mathrm{~mm}^{2}$ square and 10 mm to the surface. Work out the number of fins if thermal conductivity of fin material is $690 \mathrm{~kJ} / \mathrm{m}$-hr-deg and the heat transfer coefficient is 45 $\mathrm{kJ} / \mathrm{m}^{2}$-hr-deg. Neglect the heat loss from the tip of the fin.
A. 3
B. 6
C. 7
D. 4

Ans. D
Sol. For a fin of rectangular cross-
section,
$P=2(b+\delta)=2(0.5+0.5)$
$=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
$\mathrm{A}_{\mathrm{c}}=\mathrm{b} \times \delta=0.5 \times 0.5$
$=0.25 \mathrm{~mm}^{2}$
$=0.25 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{m}=\sqrt{\frac{\mathrm{hP}}{\mathrm{kA}}}=\sqrt{\frac{45 \times 2 \times 10^{-3}}{690 \times 025 \times 10^{-6}}}=22.84 \mathrm{~m}^{-1}$
For a fin with insulated tip,
$Q_{\text {fin }}=k A_{c} m\left(t_{0}-t_{a}\right) \tanh m l$
$=690 \times\left(0.25 \times 10^{-6}\right) \times 22.84 \times$
(75-30) tanh (22.84×0.01)
$=39.77 \times 10^{-3} \mathrm{~kJ} / \mathrm{hr}$ per fin
\therefore Number of fins
$=\frac{0.16}{39.77 \times 10^{-3}}=4.02$

Thus, 4 fins are needed to dissipate the required amount of heat.
48. If is given that the solution of the differential
equation $\frac{d y}{d t}=t(1+y)$ passes
through origin. The value of $y(2)$ will be \qquad
$\frac{d y}{d t}=t(1+y)$
$\frac{d y}{1+y}=t d t$
By taking integration on both sides, we get
$\ln (1+y)=\frac{t^{2}}{2}+c$
Given, that above equation passes through given
So for $t=0, y=0$.
$\ln (1)=0+c$
$\ln (1+y)=\frac{t^{2}}{2}$
$y=-1+e^{t^{2} / 2}$
$y(2)=-1+e^{2}=6.40$
49. If a root of the equation $3 x^{3}-4 x^{2}-$ $4 x+7=0$ is found out using Newton Raphson's method. If the first assumption for the root is 2.5 , then the root after two iterations will be \qquad .
Sol. $f(x)=3 x^{3}-4 x^{2}-4 x+7$
$f^{\prime}(x)=9 x^{2}-8 x-4$
$x_{1}=x_{0}-\left.\frac{f(x)}{f^{\prime}(x)}\right|_{x=2.5}$
$=2.5-\frac{3 \times(2.5)^{3}-4 \times(2.5)^{2}-4 \times 2.5+7}{9 \times(2.5)^{2}-8 \times 2.5-4}=$
1.9147

Similarly by doing second iteration by taking $\mathrm{x}_{1}=1.9147$
we get $x_{2}=1.495$
50. In a casting of a toy, sprue hight is 200 mm \& cross section area of sprue at beginning is $580 \mathrm{~mm}^{2} \&$ the discharge rate of liquid is
$5.8^{*} 10^{5} \mathrm{~mm}^{3} / \mathrm{s}$ calculate cross section area at the bottom(in mm^{2})?
Sol. $\mathrm{H}_{\mathrm{s}}=200 \mathrm{~mm}$
$\mathrm{A}_{2}=580 \mathrm{~mm}^{2}$
$\mathrm{Q}=5.8 * 10^{5} \mathrm{~mm}^{3} / \mathrm{s}$
$\mathrm{A}_{3}=$?

$\mathrm{Q}_{3}=\mathrm{A}_{3} \mathrm{~V}_{3}$
$V_{3}=\sqrt{ }\left(2 g h_{t}\right) \quad\left\{h_{t}=h_{c}+h_{t}\right\}$
$V_{2}=\sqrt{ }\left(2 g h_{c}\right)$
$\mathrm{Q}_{2}=\mathrm{A}_{2} \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{2}=\mathrm{Q} / \mathrm{A}_{2}$
$V_{2}=\left(5.8 * 10^{5}\right) / 580=1000 \mathrm{~mm} / \mathrm{s}$
$V_{2}=\sqrt{ }\left(2 g h_{c}\right) g=9810 \mathrm{~mm} / \mathrm{s}^{2}$
$1000=\sqrt{ }\left(2 * 9810 * h_{c}\right)$
$h_{c}=50.96 \mathrm{~mm}$
$h_{t}=h_{s}+h_{c}=200+50.96=250.96 \mathrm{~mm}$
$h_{t} / h_{c}=\left(A_{2} / A_{3}\right)^{2}$
$A_{3}=261.36 \mathrm{~mm}^{2}$
51. A concrete column used in bridge construction is cylindrical in shape with a diameter of 1 metre. The column is completely poured in a short interval of time and the hydration of concrete results in the equivalent of a uniform source strength of $0.7 \mathrm{~W} / \mathrm{kg}$. Determine the temperature (in ${ }^{0} \mathrm{C}$) at the centre of the cylinder at a time when the outside surface temperature is $75^{\circ} \mathrm{C}$. The column is sufficiently long so that temperature variation along its length may be neglected.
For concrete :
Average thermal conductivity $=0.95$
W/mk
Average density $=2300 \mathrm{~kg} / \mathrm{m}^{3}$
Sol. Since the hydration of concrete results in uniform internal heat generation, the maximum temperature occurs at the centre of
the cylindrical column and is described by the equation,
$\mathrm{t}_{\text {max }}=\mathrm{t}_{\mathrm{w}}+\frac{\mathrm{q}_{g}}{4 \mathrm{k}} \mathrm{R}^{2}$
$\mathrm{q}_{\mathrm{g}}=0.7 \mathrm{~W} / \mathrm{kg}=0.7 \times 2300 \mathrm{~W} / \mathrm{m}^{3}$
Substituting the given values
$t_{\max }=75+\frac{0.7 \times 2300}{4 \times 0.95}(0.5)^{2}$
$t_{\max }=180.92{ }^{\circ} \mathrm{C}$
52. The minimum diameter of hole which can be produced on the sheet of thickness 4 mm , having shear strength of 400 MPa , crushing yield strength of punch as 1600 MPa and a factor of safety of 2 is
A. 16 mm
B. 8 mm
C. 4 mm
D. 2 mm

Ans. B
Sol. $\mathrm{d}_{\text {min }}=$?
$\mathrm{t}=4 \mathrm{~mm}$
$\sigma s=400 \mathrm{MPa}$
$\sigma_{\mathrm{c}}=1600 \mathrm{MPa}$
Fos $=2$
Fos $=\frac{\sigma_{\mathrm{C}}}{\sigma_{\text {allowable }}}$
$\Rightarrow \sigma_{\text {allowable }}=\frac{1600}{2}=800 \mathrm{MPa}$
$d_{\min .}=\frac{4 t \sigma_{s}}{\sigma_{\text {allowable }}}$
$=\frac{4 \times 4 \times 400}{800}$
$=8 \mathrm{~mm}$
53. A disc of weight 200 N is mounted on a shaft of length 5 m rotating at a speed of 1000 rpm . The plane of the mounted disc is not perfectly at right angle but having mismatch of 1.5° from the vertical axis. If the reaction on each bearing due to gyroscopic couple is $200 \mathrm{~N}-\mathrm{m}$. Then diameter of the mounted disc will be
A. 56 cm
B. 62 cm
C. 68 cm
D. 74 cm

Ans.
Sol. given,
$\mathrm{N}=1000 \mathrm{rpm}$,
weight of the rotor $=200 \mathrm{~N}$ reaction at the end of bearing is 200Nm
plane of the disc is inclined from the vertical by 1.5° thus angle between the axis of the shaft and the rotor is 1.5°
$\omega=2 п N / 60=104.719 \mathrm{rad} / \mathrm{s}$
mass,
$\mathrm{m}=200 / 9.81=20.39 \mathrm{~kg}$
Gyroscopic Couple for disc $=\frac{m r^{2} \omega^{2} \sin (2 \theta)}{8}$
$200=\frac{20.39 \times r^{2} \times 104.719^{2} \sin \left(2 \times 1.5^{\circ}\right)}{8}$
$r=0.3697 \mathrm{~m}$
Diameter, $d=2 r=0.7395 \mathrm{~m}$ $\mathrm{d}=74 \mathrm{~cm}$
54. A slender bar of mass ' M ' and length L is pivoted at $L / 3$ from one end and constrained to rotate in the horizontal plane with the help of springs as shown. What will be the frequency of vibration in (rad/sec)

A. $\sqrt{\frac{\mathrm{K}}{\mathrm{m}}}$
B. $\quad 2 \sqrt{\frac{K}{m}}$
C. $\frac{1}{2} \sqrt{\frac{K}{m}}$
D. None of the above

Ans. B
Sol.

Moment about the Hinge
$=I \ddot{\theta}+\frac{K}{2} \frac{2 L}{3} \cdot \frac{2 L \theta}{3}+2 K \frac{L}{3} \cdot \frac{L \theta}{3}=0$
$I=\frac{m^{2}}{9}$ about the point @L/3
$\Rightarrow \frac{\mathrm{mL}^{2}}{9} \ddot{\theta}+4 \frac{\mathrm{KL}^{2}}{9} \theta=0$
$\omega_{\mathrm{n}}=\sqrt{\frac{4 \mathrm{KL}^{2} / 9}{\mathrm{~mL}^{2} / 9}}=2 \sqrt{\frac{\mathrm{~K}}{\mathrm{~m}}}$
55. A new multiple plate clutch disc having inner and outer diameters 100 mm and 200 mm respectively transmits power through contact surface.If the friction coefficient and permissible intensity of pressure is 0.2 and 1 MPa . Then the no. of pair of contacting surfaces if the torque carrying capacity of clutch at 750 rpm is $1.1 \mathrm{KN}-\mathrm{m}$.
A. 1
B. 2
C. 3
D. 4

Ans. C
Sol. The torque carrying capacity of multiple clutches is given by $\mathrm{T}=\mathrm{n} \mu \mathrm{WR}$ m
Where,
$\mathrm{n}=$ No. of pair of contacting surfaces
$\mu=0.2, \quad P=1 \mathrm{MPa}$
$\mathrm{T}=1.1 \mathrm{kNm} \quad \mathrm{N}=750 \mathrm{rpm}$
$\mathrm{W}=$ Operating force
$r=\frac{\frac{100}{2}}{2}=50 \mathrm{~mm}$
200
$R=\overline{2}=100 \mathrm{~mm}$
$R_{m}=$ mean radius
$R_{m}=\frac{\frac{2}{3} \frac{\left(R^{3}-r^{3}\right)}{\left(R^{2}-r^{2}\right)}}{\text { For uniform pressure }}$
theory
R+r
$=2$ For uniform wear theory
$R_{m}=\frac{2\left(100^{3}-50^{3}\right)}{3} \frac{\left(100^{2}-50^{2}\right)}{(107 m}$
$\mathrm{W}=$ pressure \times Area

$$
\begin{aligned}
& \mathrm{W}=\pi\left[\mathrm{R}^{2}-\mathrm{r}^{2}\right] \times \mathrm{p}= \\
& \pi\left[100^{2}-50^{2}\right] \times 1
\end{aligned}
$$

$\mathrm{P}=23561.95 \mathrm{~N}$
$\mathrm{T}=\mathrm{n} \times 0.2 \times 23561.95 \times 77.77 \mathrm{~N}-\mathrm{mm}$ $=0.366 \times$ Z KN-m
$1.1=0.366 \times n$
$\mathrm{n}=3$
56. A hemispherical bulge of diameter 1.2 m is provided in the bottom of a tank. If the depth of water above the horizontal floor of the tank is 3.0 m . The magnitude (in KN) of net hydrostatic force on bulge is
Sol. By symmetry the net horizontal force $=0$

Vertical force
Fv = weight of fluid above the hemisphere
$=\gamma\left[\pi \mathrm{R}^{2} \mathrm{H}-\frac{1}{2} \cdot \frac{4}{3} \pi \mathrm{R}^{3}\right]$
$=9.81\left[\pi \times(0.6)^{2} \times 3.0-\frac{2}{3} \pi(0.6)^{3}\right]$
$=28.84 \mathrm{kN}$
Resultant force is the same as the vertical force $\mathrm{Fv}=28.84 \mathrm{kN}$ acting vertically at the centre of the hemisphere.
57. A pelton turbine is to operate under a net head of 500 m at 420 rpm . If a single jet with diameter 18 cm is used, find the specific speed of the machine. Take $C_{v}=0.98, \varphi=0.45$ and overall efficiency $\eta_{0}=0.85$.

Sol. $H=500 \mathrm{~m}$
$\mathrm{V}_{1}=\mathrm{C}_{\mathrm{v}} \sqrt{2 \mathrm{gH}}$
$=0.98 \sqrt{2 \times 9.81 \times 500}$
$=97.06 \mathrm{~m} / \mathrm{s}$
Discharge
$\mathrm{Q}=\frac{\pi}{4} \mathrm{~d}_{2} \mathrm{~V}_{1}=\frac{\pi}{4} \times(0.18)^{2} \times 97.06$
$=2.47 \mathrm{~m}^{3} / \mathrm{s}$
Power developed
$P=\eta_{0} \gamma \mathrm{QH}$
$=0.85 \times 9.81 \times 2.47 \times 500$
$=10,298 \mathrm{~kW}$
Specific speed
$N_{s}=\frac{N \sqrt{P}}{H^{5 / 4}}=\frac{420 \sqrt{10,277}}{(500)^{5 / 4}}=18$
58. A manufacturing plant has a capacity to produce 15000 units of a product per year. It average monthly demand of product increases from 1000 units in 2018 to 1100 units in 2019, the percentage change in production factor is equal to
A. 29.1
B. 24.2
C. 32.2
D. 22.4

Ans. A
Sol. Given capacitor $p=15000$
units/year
$d_{1}=1000 \times 12=12000$ unit/year
$d_{2}=1100 \times 2=13200$ unit/year
Production factor $X=\sqrt{\frac{P}{P-d}}$
$x_{1}=\sqrt{\frac{15000}{15000-12000}}=\sqrt{5}=2.236$
$x_{2}=\sqrt{\frac{15000}{15000-13200}}=\frac{5}{\sqrt{3}}=2.887$
$\%$ charge $=$
$\frac{X_{2}-X_{1}}{X_{1}} \times 100$
$=$
$\frac{(2.887-2.236)}{2.236} \times 100$
$=29.1 \%$
59. A force F has magnitude of 15 N . Direction of F is at 37° from negative x-axis towards positive y-axis. Represent F in terms of \hat{i} and ${ }^{\hat{j}}$?
A. $(-12 \hat{i}-9 \hat{j})$
B. $(-12 \hat{i}+9 \hat{j})$
C. $(12 \hat{i}+9 \hat{j})$
D. $(+12 \hat{i}-9 \hat{j})$

Ans. B
Sol.

The given force is an shown in figure. Let us find its x and y components.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{x}} & =\mathrm{F} \cos 37^{\circ} \\
& =15 \times \frac{4}{5} \\
& =12 \mathrm{~N} \text { (along negative } \mathrm{x} \text {-axis) } \\
\mathrm{F}_{\mathrm{y}} & =\mathrm{F} \sin 37^{\circ} \\
& =15 \times \frac{3}{5} \\
& =9 \mathrm{~N} \quad \text { (along positive } y-\text { axis) }
\end{aligned}
$$

From parallelogram law of vector addition, we can see that
$\mathrm{F}=\mathrm{OM}+\mathrm{ON}$
$=F_{x}(-\hat{i})+F_{y}(\hat{j})$

$$
=(-12 \hat{i}+9 \hat{j}) N
$$

60. A carnot cycle refrigerator ' A ' operates between 500K and 900K, whereas a carnot cycle refrigerator ' B ' operates between 300 K and 500K. Find out the ratio of coefficient of performance of A to B
A. 1
B. 0.34
C. 0.83
D. 0.54

Ans. C

Sol. We know that, coefficient of

So, ratio of C.O.P's

$$
=\frac{\operatorname{COP}_{A}}{\operatorname{COP}_{B}}=\frac{1.25}{1.50}=0.83
$$

61. An anti-aircraft gun can take a maximum of four shots at an enemy plane moving away from it. The probabilities of hitting the plane destroyed at first, second, third and the fourth shot are $0.4,0.3,0.2$ and 0.1 respectively. What is the probability that the gum hits the plane?
A. 0.6024
B. 0.0024
C. 0.8976
D. 0.6976

Ans. D
Sol. Let $P\left(i^{\text {st }}\right.$ shot $)=0.4, P\left(2^{\text {nd }}\right.$ shot $)=$
0.3
$P\left(3^{\text {rd }}\right.$ shot $)=0.2, P\left(4^{\text {th }}\right.$ shot $)=0.1$
\therefore Requires probability
$=P\left(1^{\text {st }}\right)+\left(1-P\left(1^{\text {st }}\right)\right) P\left(2^{\text {nd }}\right)+(1-P$
$\left.\left(1^{\text {st }}\right)\right)\left(1-P\left(2^{\text {nd }}\right)\right) P\left(3^{\text {rd }}\right)+(1-P$
$\left.\left(1^{\text {st }}\right)\right)\left(1-P\left(2^{\text {nd }}\right)\left(1-P\left(3^{\text {rd }}\right)\left(P\left(4^{\text {th }}\right)\right.\right.\right.$
$=0.4+0.6 \times 0.3+0.6 \times 0.7 \times 0.2$
$+0.6 \times 0.7 \times 0.8 \times 0.1$
$=0.4+0.18+0.084+0.0336=$
0.6976
62. A cantilever beam as shown is acted upon by two loads P_{1} and P_{2}. If the net deflection at the end is zero then the ratio of P_{1} / P_{2} is \qquad —.

Sol. Net deflection at the free end due to combination of two point load is
$\delta=\frac{P_{1}(0.4 L)^{3}}{3 E I}+\frac{P_{1}(0.4 L)^{2}}{2 E I} \times 0.6 L-\frac{P_{2}(0.8 L)^{3}}{3 E I}-\frac{P_{2}(0.8 L)^{2}}{2 E I} \times 0.2 L$
since net defection is given is zero thus,
$0=\frac{P_{1}(0.4 L)^{3}}{3 E I}+\frac{P_{1}(0.4 L)^{2}}{2 E I} \times 0.6 L-\frac{P_{2}(0.8 L)^{3}}{3 E I}-\frac{P_{2}(0.8 L)^{2}}{2 E I} \times 0.2 L$

After solving the above equation
we get,
$\frac{P_{1}}{P_{2}}=3.384$
63. Air ($c_{p}=1.005 \mathrm{~kJ} / \mathrm{kg}^{\circ}{ }^{\circ} \mathrm{C}$) enters the heat exchanger at 95 kPa and $20^{\circ} \mathrm{C}$ with a rate of $1.6 \mathrm{~m}^{3} / \mathrm{s}$. The combustion gases ($c_{p}=1.10 \mathrm{~kJ} / \mathrm{kg}-$ ${ }^{\circ} \mathrm{C}$) enters at $180^{\circ} \mathrm{C}$ with a rate of 2.2 kg / s and leave at $95^{\circ} \mathrm{C}$. What will be the rate of entropy generation?
A. $0.455 \mathrm{~kW} / \mathrm{K}$
B. $0.91 \mathrm{~kW} / \mathrm{K}$
C. $0.091 \mathrm{~kW} / \mathrm{K}$
D. $9.1 \mathrm{~kW} / \mathrm{K}$

Ans. C
Sol. We take the exhaust pipes as the system, which is a control volume. The energy balance for the steadyflow system can be expressed in the rate form as
$\dot{\mathrm{E}}_{\text {in }}-\dot{\mathrm{E}}_{\text {out }}=\Delta \dot{\mathrm{E}}_{\text {sytem }}=0$
$\dot{E}_{\text {in }}=\dot{E}_{\text {out }}$
$\dot{m h}_{1}=\dot{Q}_{\text {out }}+\dot{m} h_{2}$
(since $\Delta K . E . \cong \Delta$ P.E. $\cong 0$)
Then, the rate of heat transfer from the exhaust gases becomes

$$
\begin{aligned}
\dot{\mathrm{Q}} & =\left[\dot{\mathrm{m}} \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{\text {in }}-\mathrm{T}_{\text {out }}\right)\right]_{\text {gas }}=2.2 \times 1.10 \times(180-95) \\
& =205.7 \mathrm{~kW}
\end{aligned}
$$

The mass flow rate of air is
$\dot{m}=\frac{p \dot{u}}{R T}=\frac{95 \times 1.6}{0.287 \times 293}=1.808 \mathrm{~kg} / \mathrm{s}$

The heat loss by the exhaust gases is equal to the heat gain by the air, then the outlet temperature of the air becomes

$$
\begin{aligned}
\dot{\mathrm{Q}} & =\left[\dot{\mathrm{m}}_{\mathrm{p}}\left(\mathrm{~T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)\right]_{\text {air }} \\
\mathrm{T}_{\text {out }} & =\mathrm{T}_{\text {in }}+\frac{\dot{\mathrm{Q}}}{\dot{\mathrm{~m}} \mathrm{c}_{\mathrm{p}}}=20+\frac{205.7}{1.808 \times 1.005} \\
& =133.2^{\circ} \mathrm{C}
\end{aligned}
$$

The rate of entropy generation within the heat exchanger is determined by applying the rate form of the entropy balance on the entire heat exchanger
$\dot{\mathrm{S}}_{\text {in }}-\dot{\mathrm{S}}_{\text {out }}+\dot{\mathrm{S}}_{\text {gen }}=\Delta \dot{\mathrm{S}}_{\text {system }}=0$
$\dot{m}_{1} \mathrm{~S}_{1}+\dot{\mathrm{m}}_{3} \mathrm{~S}_{3}-\dot{\mathrm{m}}_{2} \mathrm{~S}_{2}-\dot{\mathrm{m}}_{3} \mathrm{~s}_{4}+\dot{\mathrm{S}}_{\text {gen }}=0$
(since $Q=0$)
$\dot{m}_{\text {ehheust }}^{1}$ $+\dot{m}_{\text {eirs3 }}-\dot{m}_{\text {exhauts } 2}+\dot{m}_{\text {ars }}+\dot{\mathrm{s}}_{\text {gen }}=0$
$\dot{m}_{\text {exhaust }}\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)+\dot{\mathrm{m}}_{\text {air }}\left(\mathrm{s}_{4}-\mathrm{S}_{3}\right)=\dot{\mathrm{s}}_{\text {gen }}$
Then, the rate of entropy generation is determined to be
$\dot{S}_{g e n}=\dot{m}_{\text {exhaust }} c_{p} \ln \frac{T_{2}}{T_{1}}+\dot{m}_{\text {air }} c_{p} \ln \frac{T_{4}}{T_{3}}$
(Since heat exchanger works at constant pressure)
$=(2.2 \times 1.1) \ln \frac{368}{453}+(1.808 \times 1.005) \ln \frac{406.2}{293}$
$=0.091 \mathrm{~kW} / \mathrm{K}$
64. Determine the distance of the centroid of the cross-sectional area of an unequal I-section from bottom edge.

A. 10.96 cm
B. 9.96 cm
C. 8.96 cm
D. 11.96 cm

Ans. A
Sol. The figure is symmetrical about the vertical line which is also chosen as the y-axis.
x-axis is chosen to coincide with the bottom edge AB
The figure can be considered to be made up of three rectangles, $A B C D$ EFGH and IJKL.
y|

From symmetry, centroid of the total figure lies on y-axis.
Therefore,

$$
\begin{aligned}
y_{e} & =\frac{A_{1} y_{1}+A_{2} y_{2}+A_{3} y_{3}}{A_{1}+A_{2}+A_{3}} \\
& =\frac{(150 \times 2.5)+(75 \times 12.5)+(100 \times 22.5)}{150+75+100} \\
y_{e} & =\frac{3562.5}{325} \\
y_{e} & =10.96 \mathrm{~cm} \text { Ans }
\end{aligned}
$$

65. The power source characteristic is given by $I^{2}=300(100-V)$ and the voltage length characteristics is given by $V=25+5 L$ (L is length in mm, V is voltage in Volts, I is in Ampere). Change in power for a change in arc length from 5 mm to 7 mm is \qquad kW (Upto 2 decimals)
Sol. 1. When length is 5 mm .
$\mathrm{V}=25+25=50 \mathrm{~V}$
$I^{2}=300 * 50 \rightarrow \mathrm{I}=122.4745 \mathrm{Amp}$ Power, $\mathrm{P}=\mathrm{VI}=50 * 122.4745=$
6123.725 W \qquad (1)
66. When length is 7 mm .
$\mathrm{V}=25+35=60 \mathrm{~V}$
$I^{2}=300 * 40_{\rightarrow \mathrm{I}}=109.5445 \mathrm{Amp}$ Power, $\mathrm{P}=\mathrm{VI}=60 * 109.5445=$ 6572.670 W. \qquad (2)

Change in Power $=6572.670$ -
$6123.725=448.945 \mathrm{~W}$
$=0.448 \mathrm{~kW}$

OUR TOP GRADIANS IN GATE 2019

Anshul Goel AIR-2
Mechanical Engg.

Mahesh Singh AIR-10
Mechanical Engg.

Manthan Sharma AIR-22
Electrical Engg.

AIR-45
Computer Science Engg.

Nishant Pahuja AIR-48

Electrical Engg.

Raja Keshri AIR-11
Electrical Engg.

Swastik Samantaray AIR-23 Electronics Engg.

Electronics Engg.

Sairam
AIR-13

Mechanical Engg.

Nikhil Kote AIR-63 Mechanical Engg.

Pradeep Kumar AIR-5 Electrical Engg.

Raghvendra Sharma AIR-16
Computer Science Engg.

Sethu Raj R AIR-33 Civil Engg.

Ankur Agrawal AIR-65 Mechanical Engg.

Shreyans Mehta AIR-7 Civil Engg.

Ghanendra Singh AIR-21 Electronic Engg.

Ajay Kumar Sharma AIR-37 Civil Engg.

Syed Hashim AIR-70 Mechanical Engg.

Abhinav Sridhar | AIR-80 |
| :---: |
| Alectronics Engg. |
| Alvil Engg. |

Vision 2021

Vision 2021

A Course for ESE \& GATE Aspirants (Mechanical)

Crack ESE \& GATE with the Most Comprehensive Course
> 550+ hours of Live Classes for ESE \& GATE Technical Syllabus
> 150+ hours of Live Classes for ESE Prelims Paper 1 Syllabus
> 700+ Quizzes and Conventional Assignments for Practice
> Subject \& Full-Length Mock Tests for GATE \& ESE Prelims

