Memory-Based Questions

JEE Main (Jan) 2020

LIVE Exam Anclysis

9 January 6:00PM Onwards
(co)
Live in 3 hours
Jenury 9, 6:00 PM

```
A setreminder
```


JEE-Main 2020 (9 Jan. 1 ${ }^{\text {st }}$ Shift)

Physics

1. Position of a particle as a function of time is given as $x^{2}=a t^{2}+2 b t+c$, where a, b, c are constants. Acceleration of particle varies with x^{-} ${ }^{n}$ then value of n is.

Ans. $\mathrm{n}=3$
Sol:

$$
\begin{aligned}
& x^{2}=a t^{2}+2 b t+c \\
& 2 x v=2 a t+2 b \\
& x v=a t+b \\
& v^{2}+a x=a \\
& a x=a-\left(\frac{a t+b}{x}\right)^{2} \\
& a=\frac{a\left(a t^{2}+2 b t+c\right)-(a t+b)^{2}}{x^{3}} \\
& a=\frac{a c-b^{2}}{x^{3}} \\
& a \propto x^{-3}
\end{aligned}
$$

2. A rod of length 1 m is released from rest as shown in the figure below.

If ω of rod is $V 3$ at the moment it hits the ground, then find n.
Ans. 15
Sol:
$\mathrm{mg} \frac{\ell}{2} \sin 30^{\circ}=\frac{1}{2} \frac{\mathrm{~m} \ell^{2}}{3} \omega^{2}$
Solving
$\omega^{2}=15$
$\omega=\sqrt{15}$
3. Particle moves from point A to point B along the line shown in figure under the action of
force. $\vec{F}=-x \hat{i}+y \hat{j}$. Determine the work done on the particle by \vec{F} in moving the particle from point A to point B.

A. 1 J
B. 4 J
C. 6J
D. 7J

Ans. A

Sol:

$$
\begin{aligned}
W & =\int \vec{F} \cdot d \vec{s} \\
& =(-x \hat{i}+y \hat{j}) \cdot(d x \hat{i}+d y \hat{j}) \\
& =\int_{1}^{0}-x d x+\int_{0}^{1} y d y \\
& =-\left.\frac{x^{2}}{2}\right|_{1} ^{0}+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=\left(0+\frac{1}{2}\right)+\left(\frac{1}{2}\right)=1 \mathrm{~J}
\end{aligned}
$$

4. A wire of length $\ell=3 \mathrm{~m}$ and area of cross section $10^{-2} \mathrm{~cm}^{2}$ and breaking stress $4.8 \times 10^{-7} \mathrm{~N} / \mathrm{m}^{2}$ is attached with block of mass 10 kg . Find the maximum possible value of angular velocity with which block can be moved in circle with string fixed at one end.
Ans. $4 \mathrm{rad} / \mathrm{s}$
Sol:

5. For the given P-V graph for an ideal gas, chose the correct V - T graph. Process BC is adiabatic.

A.

B.

C.

D.

Ans. D

Sol:

$\begin{aligned} \text { For process } A-B ; & \text { Volume is constant; } \\ P V=n R T ; & \text { as } P \text { increases; } T \text { increases }\end{aligned}$
For process B-C ;
PV = Constant ;
$\Rightarrow \quad \mathrm{TV}^{\gamma-1}=$ Constant
For process $\mathrm{C}-\mathrm{A}$; pressure is constant $V=k T$
6. If reversible voltage of 200 V is applied across an inductor, current in it reduces from 0.25 A to OA in 0.025 ms . Find inductance of inductor (in mH).
Ans. 20

Sol:

$$
\begin{aligned}
& 200=\frac{L(0.25)}{0.025} \times 10^{3} \\
& \therefore \quad L=200 \times 10^{-4} \mathrm{H} \\
& \\
& \quad=20 \mathrm{mH}
\end{aligned}
$$

7. Given $\vec{p}=-\hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{r}=\hat{i}+3 \hat{j}+5 \hat{k}$. Find vector parallel to electric field at position $\overrightarrow{\mathrm{r}} \quad[$ Note that $\overrightarrow{\mathrm{p}} . \overrightarrow{\mathrm{r}}=0]$
A. $\hat{i}+3 \hat{j}-2 \hat{k}$
B. $2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
C. $-3 \hat{i}+\hat{j}-2 \hat{k}$
D. $\hat{i}+2 \hat{j}+2 \hat{k}$

Ans. A

Sol:

Since $\vec{p} . \vec{r}=0$
$\overrightarrow{\mathrm{E}}$ must be antiparallel to $\overrightarrow{\mathrm{p}}$
So, $\vec{E}=-\lambda(\overrightarrow{\mathrm{p}})$
where λ is a arbitrary positive constant
Now $\overrightarrow{\mathrm{A}}=a \hat{i}+b \hat{j}+c \hat{k}$
$\vec{A} \| \vec{E}$

$$
\frac{a}{\lambda}=\frac{b}{3 \lambda}=\frac{c}{-2 \lambda}=k
$$

So

$$
\overrightarrow{\mathrm{A}}=\lambda \mathrm{k}(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

8. A particle of mass m is revolving around a planet in a circular orbit of radius R. At the instant the particle has velocity \vec{V}, another particle of mass $\frac{m}{2}$ moving at velocity $\frac{\vec{V}}{2}$ collides perfectly inelastically with the first particle. The new path of the combined body will take is
A. Circular
B. Elliptical
C. Straight line
D. Fall directly below on the ground

Ans. B
Sol:
Conserving momentum:
$\frac{m}{2} \frac{v}{2}+m v=\left(m+\frac{m}{2}\right) v_{f}$
$v_{f}=\frac{5 \mathrm{mV}}{4 \times \frac{3 \mathrm{~m}}{2}}=\frac{5 \mathrm{~V}}{6}$
$\mathrm{v}_{\mathrm{f}}<\mathrm{v}_{\text {orb }}(=\mathrm{v})$ thus the combined mass will go on to an elliptical path.
9. Find current in the wire $B C$.

A. 1.6 A
B. 2 A
C. 2.4 A
D. 3A

Ans. B

$R_{\text {eff }}=\frac{4}{5}+\frac{6}{5}=2 \Omega$
$\mathrm{i}=\frac{20}{2}$
$=10 \mathrm{~A}$
$I=\frac{4 i}{5}-\frac{3 i}{5}=+\frac{i}{5}=2 A$
10. Two immiscible liquids of refractive index $\sqrt{2}$ and 2 $\sqrt{2}$ are filled with equal height h in a vessel. Then apparent depth of bottom surface of the container given that outside medium is air :
A. $\frac{3 \sqrt{2} h}{4}$
B. $\frac{3 \mathrm{~h}}{4}$
C. $\frac{3 \mathrm{~h}}{2}$
D. $\frac{3 \mathrm{~h}}{4 \sqrt{2}}$

Ans. A
Sol:

$d=\frac{h}{\sqrt{2}}+\frac{h}{2 \sqrt{2}}$
$\Rightarrow d=\frac{h}{\sqrt{2}} \times \frac{3}{2}=\frac{3 \sqrt{2} h}{4}$
11. A telescope of aperture diameter 5 m is used to observe the moon from the earth. Distance between the moon and earth is $4 \times 10^{5} \mathrm{~km}$. Determine the minimum distance between two points on the moon's surface which can be resolved using this telescope. (Wave length of light is 5893 Å.
A. 60 m
B. 20 m
C. 600 m
D. 200 m

Ans. A
Sol:

$\theta=1.22 \frac{\lambda}{a}$

$$
\begin{aligned}
\text { distance } & =\mathrm{O}_{1} \mathrm{O}_{2}=\mathrm{d} \theta \\
& =1.22 \frac{\lambda}{\mathrm{a}} \mathrm{~d}
\end{aligned}
$$

distance $=\mathrm{O}_{1} \mathrm{O}_{2}=\frac{1.22 \times 5893 \times 10^{-10} \times 4 \times 10^{8}}{5} \approx 57.5 \mathrm{~m}$
\therefore answer from options $=60 \mathrm{~m}$
(minimum distance)
12. Three waves of same intensity (I_{0}) having initial phases $0, \frac{\pi}{4},-\frac{\pi}{4}$ rad respectively interfere at a point. Find the resultant Intensity
A. Io
B. 0
C. $5.8 \mathrm{I}_{0}$
D. $0.2 \mathrm{I}_{0}$

Ans. C
Sol:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{res}}=(\sqrt{2}+1) \mathrm{A} \\
& \mathrm{I}_{\mathrm{res}}=(\sqrt{2}+1)^{2} \mathrm{I}_{0} \\
& =(3+2 \sqrt{2}) \mathrm{I}_{0}=5.8 \mathrm{I} \mathrm{~s}
\end{aligned}
$$

13. Three identical solid spheres each having mass ' m ' and diameter ' d ' are touching each other as shown in figure. Calculate ratio of moment of inertia about an axis (perpendicular to plane of paper) passing through point P and B as shown in figure. Given P is centroid of triangle $A B C$.

A. 13 / 23
B. $11 / 19$
C. $7 / 9$
D. $13 / 11$

Ans. A

Sol:

M.I about $P=3\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M\left(\frac{d}{\sqrt{3}}\right)^{2}\right]=\frac{13}{10} M d^{2}$
M.I about $B=2\left[\frac{2}{5} M\left(\frac{d}{2}\right)^{2}+M(d)^{2}\right]+\frac{2}{5} M\left(\frac{d}{2}\right)^{2}=\frac{23}{10} M d^{2}$

Now ratio $=\frac{13}{23}$
14. Consider an infinitely long current carrying cylindrical straight wire having radius 'a'. Then the ratio of magnetic field at distance $\frac{a}{3}$ and 2a from axis of wire is.
A. $3 / 5$
B. $2 / 3$
C. $1 / 2$
D. $4 / 3$

Ans. B

Sol:

$B_{A}=\frac{\mu_{0} i r}{2 \pi a^{2}}=\frac{\mu_{0} i \frac{a}{3}}{2 \pi a^{2}}=\frac{\mu_{0} i}{\pi a^{2}} \frac{a}{6}=\frac{\mu_{0} i}{6 \pi a}$
$B_{B}=\frac{\mu_{0} \mathrm{i}}{2 \pi(2 a)}$

$$
\frac{\mathrm{B}_{\mathrm{A}}}{\mathrm{~B}_{\mathrm{B}}}=\frac{4}{6}=\frac{2}{3}
$$

15. A solid sphere having radius R and Uniform charge density ρ has a cavity of radius $R / 2$ as shown in figure. Find the ratio of magnitude

A. $18 / 19$
B. $11 / 17$
C. $9 / 17$
D. $9 / 19$

Ans. C
Sol:
For a solid sphere
$E=\frac{\rho r}{3 \varepsilon_{0}}$
$E_{A}=\frac{-\rho R}{2\left(3 \varepsilon_{0}\right)}$
$\left|E_{A}\right|=\frac{\rho R}{6 \varepsilon_{0}}$
Electric field at point $B=E_{B}=E_{1 A}+E_{2 A}$
$\mathrm{E}_{1 \mathrm{~A}}=$ Electric Field Due to solid sphere

$$
\begin{aligned}
& \text { of radius } R=\frac{\rho R}{3 \varepsilon_{0}} \\
& =-\frac{K Q^{\prime} \times 4}{9 R^{2}}=-\frac{\rho R}{54 \varepsilon_{0}} \\
& E_{B}=E_{1 A}+E_{2 A}=\frac{\rho R}{3 \varepsilon_{0}}-\frac{\rho R}{54 \varepsilon_{0}}=\frac{17 \rho R}{54 \varepsilon_{0}} \\
& \frac{\left|E_{A}\right|}{\left|E_{B}\right|}=\frac{9}{17}
\end{aligned}
$$

16. Two electromagnetic waves are moving in free space whose electric field vectors are given by $\vec{E}_{1}=E_{0} \hat{j} \cos (k x-\omega t) \& \vec{E}_{2}=E_{0} \hat{k} \cos (k y-\omega t)$. A charge q is moving with velocity $\vec{v}=0.8 \mathrm{c} \hat{j}$. Find the net Lorentz force on this charge at $\mathrm{t}=0$ and when it is at origin.
A. $q E_{0}(0.4 \hat{i}+0.2 \hat{j}+0.2 \hat{k})$
B. $q E_{0}(0.8 \hat{i}+\hat{j}+0.2 \hat{k})$
C. $q E_{0}(0.6 \hat{i}+\hat{j}+0.2 \hat{k})$
D. $q E_{0}(0.8 \hat{i}+\hat{j}+\hat{k})$

Ans. B
17. Two particles of same mass ' m ' moving with velocities $\vec{v}_{1}=v \hat{i}$ and $\vec{v}_{2}=\frac{v}{2} \hat{i}+\frac{v}{2} \hat{j}$ collide in-elastically. Find the loss in kinetic energy.
A. $\frac{m v^{2}}{8}$
B. $\frac{5 m v^{2}}{8}$
C. $\frac{m v^{2}}{4}$
D. $\frac{3 m v^{2}}{8}$

Ans. A
Sol:
Conserving momentum
$m v \hat{i}+m\left(\frac{v}{2} \hat{i}+\frac{v}{2} \hat{j}\right)=2 m\left(v_{1} \hat{i}+v_{2} \hat{j}\right)$
on solving
$v_{1}=\frac{3 v}{4}$ and $v_{2}=\frac{v}{4}$
Change in K.E.

Conserving momentum
$m v \hat{i}+m\left(\frac{v}{2} \hat{i}+\frac{v}{2} \hat{j}\right)=2 m\left(v_{1} \hat{i}+v_{2} \hat{j}\right)$
on solving
$v_{1}=\frac{3 v}{4}$ and $v_{2}=\frac{v}{4}$
Change in K.E.
$\left[\frac{1}{2} m v^{2}+\frac{1}{2} m\left(\frac{v}{2} \sqrt{2}\right)^{2}\right]-\left[\frac{1}{2}(2 m)\left(\frac{9 v^{2}}{16}+\frac{v^{2}}{16}\right)\right]$
$=\frac{3 m v^{2}}{4}-\frac{5 m v^{2}}{8}=\frac{m v^{2}}{8}$
18. Two ideal di-atomic gases A and $B . A$ is rigid, B has an extra degree of freedom due to vibration. Mass of A is m and mass of B is $\frac{m}{4}$. The ratio of molar specific heat of A to B at constant volume is :
A. 7/9
B. 5/9
C. $5 / 11$
D. 5/7

Ans. D

Sol:

Molar heat capacity of A at constant volume $=\frac{5 R}{2}$
Molar heat capacity of B at constant volume $=\frac{7 R}{2}$
Dividing both, $\frac{\left(\mathrm{C}_{\mathrm{v}}\right)_{\mathrm{A}}}{\left(\mathrm{C}_{\mathrm{v}}\right)_{\mathrm{B}}}=\frac{5}{7}$
19. The dimensional formula of $\sqrt{\frac{\mathrm{hc}^{5}}{\mathrm{G}}}$ is
A. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
B. $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
C. $\left[\mathrm{ML}^{-2} \mathrm{~T}^{2}\right]$
D. $\left[\mathrm{MLT}^{-2}\right]$

Ans. B
Sol:
[$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
$[\mathrm{hc}]=\left[\mathrm{ML}^{3} \mathrm{~T}^{-2}\right]$
[c] $=\left[\mathrm{LT}^{-1}\right]$
$[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
20. An ideal liquid (water) flowing through a tube of non-uniform cross section area at A and B are 40 cm^{2} and $20 \mathrm{~cm}^{2}$ respectively. If pressure difference between $A \& B$ is $700 \mathrm{~N} / \mathrm{m}^{2}$ then volume flow rate is:

A. $2732 \mathrm{~cm}^{3} / \mathrm{s}$
B. $2142 \mathrm{~cm}^{3} / \mathrm{s}$
C. $1832 \mathrm{~cm}^{3} / \mathrm{s}$
D. $3218 \mathrm{~cm}^{3} / \mathrm{s}$

Ans. A
Sol:
using equation of continuity

$$
40 \mathrm{~V}_{\mathrm{A}}=20 \mathrm{~V}_{\mathrm{B}}
$$

$\Rightarrow \quad 2 \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}$
Using Bernoullies equation

$$
\begin{array}{ll}
& P_{A}+\frac{1}{2} \rho V_{A}^{2}=P_{B}+\frac{1}{2} \rho V_{B}^{2} \\
\Rightarrow & P_{A}-P_{B}=\frac{1}{2} \rho\left(V_{B}^{2}-V_{A}^{2}\right) \\
\Rightarrow & \Delta P=\frac{1}{2} 1000\left(V_{B}^{2}-\frac{V_{B}^{2}}{4}\right) \\
\Rightarrow & \Delta P=500 \times \frac{3 V_{B}^{2}}{4} \\
\Rightarrow & V_{B}=\sqrt{\frac{(\Delta P) \times 4}{1500}}=\sqrt{\frac{(700) \times 4}{1500}} \mathrm{~m} / \mathrm{s}
\end{array}
$$

Volume flow rate $=20 \times 100 \times \mathrm{V}_{\mathrm{B}}=2732 \mathrm{~cm}^{3} / \mathrm{s}$
21. A screw gauge advances by 3 mm in 6 rotations. There are 50 divisions on circular scale. Find least count of screw gauge ?
A. 0.002 cm
B. 0.001 cm
C. 0.01 cm
D. 0.02 cm

Ans. B
Sol:
Pitch $=\frac{3}{6}=0.5 \mathrm{~mm}$
L.C. $=\frac{0.5 \mathrm{~mm}}{50}=\frac{1}{100} \mathrm{~mm}=0.01 \mathrm{~mm}=0.001 \mathrm{~cm}$
22. Kinetic energy of the particle is E and it's De-Broglie wavelength is λ. On increasing it's $K E$ by ΔE, it's new De-Broglie wavelength becomes $\frac{\lambda}{2}$. Then $\Delta \mathrm{E}$ is
A. 3 E
B. E
C. 2 E
D. 4 E

Ans. A
Sol:

$$
\begin{aligned}
& \lambda=\frac{\mathrm{h}}{\sqrt{2(\mathrm{KE}) \mathrm{m}}} \Rightarrow \lambda \propto \frac{1}{\sqrt{\mathrm{KE}}} \\
& \frac{\lambda}{\lambda / 2}=\sqrt{\frac{\mathrm{KE}}{f}} \mathrm{KE}
\end{aligned} \begin{aligned}
& 4 \mathrm{KE}_{\mathrm{i}}=K E_{f} \\
& \Rightarrow \Delta \mathrm{E}=4 \mathrm{KE}-\mathrm{K}-\mathrm{KE}=3 \mathrm{KE}=3 \mathrm{E}
\end{aligned}
$$

23. Photons of wavelength $6556 \AA$ Aalls on a metal surface. If ejected electrons with maximum K.E. moves in magnetic field of $3 \times 10^{-4} \mathrm{~T}$ in circular orbit of radius $10^{-2} \mathrm{~m}$, then work function of metal surface is
A. 1.8 eV
B. 0.8 eV
C. 1.1 eV
D. 1.4 eV

Ans. C
24. Which of the following statements are correct for moving charge as shown in figure.

(A) Magnitude of electric field $E=\frac{3}{4}\left(\frac{m v^{2}}{q a}\right)$
(B) Rate of change of work done at point A is $\frac{3}{4}$ $\frac{m v^{3}}{a}$
(C) Rate of change of work done by both fields at point B is zero.
(D) Change in angular momentum is 2 maV
A. A, B, C are correct
B. A, B, C, D are correct
C. A, B are correct
D. B, C, D are correct.

Ans. A
25. In the given circuit both diodes are ideal having zero forward resistance and built-in potential of 0.7 V . Find the potential of point E in volts.

Ans. 12

Chemistry

1. Determine wavelength of electron in 4th Bohr's orbit?
A. $4 \pi \mathrm{aO}$
B. $2 \pi \mathrm{aO}$
C. $8 \pi \mathrm{aO}$
D. $6 \pi \mathrm{aO}$

Ans. C
2. Which of the following species have one unpaired electron each?
A. $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$
B. $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}$
C. $\mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-}$
D. $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{2-}$

Ans. C
3. For $\mathrm{Br} 2(\mathrm{I})$

Enthalpy of atomisation $=x \mathrm{~kJ} / \mathrm{mol}$
Bond dissociation enthalpy of bromine $=\mathrm{y}$ $\mathrm{kJ} /$ mole
Then
A. $x>y$
B. $x<y$
C. $x=y$
D. Relation does not exist

Ans. A
4. Which of the following oxides are acidic, Basic Amphoteric Respectively
A. $\mathrm{MgO}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}$
C. $\mathrm{SO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$
D. $\mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{MgO}$

Ans. B
5. Complex $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cln}$ shows geometrical isomerism and also reacts with AgNO_{3} solution. Given: Spin only magnetic moment $=3.8$ B.M. What is the IUPAC name of the complex.
A. Hexaaquachromium(III) chloride
B. Tetraaquadichloridochromium (III) chloride dihydrate
C. Hexaaquachromium(IV) chloride
D. Tetraaquadichloridochromium
(IV) chloride dihydrate

Ans. B
6. The electronic configuration of bivalent Europium and trivalent cerium respectively is: (Atomic Number: $\mathrm{Xe}=54, \mathrm{Ce}=58, \mathrm{Eu}=63$)
A. $[\mathrm{Xe}] 4 \mathrm{f}^{7},[\mathrm{Xe}] 4 \mathrm{f}^{1}$
B. $[X e] 4 f^{7} 6 s^{2},[X e] 4 f^{1}$
C. $[X e] 4 f^{7} 6 s^{2},[X e] 4 f^{1} 5 d^{1} 6 s^{2}$
D. $[\mathrm{Xe}] 4 \mathrm{f} 7,[\mathrm{Xe}] 4 \mathrm{f}^{1} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$

Ans. A
7. Determine degree of hardness in term of ppm of CaCO_{3} of 10^{-3} molar $\mathrm{MgSO}_{4}(\mathrm{aq})$.
Ans. 100.00
8. Which of the following can not act as both oxidising and reducing agent ?
A. $\mathrm{H}_{2} \mathrm{SO}_{3}$
B. HNO_{2}
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}$

Ans. C
9. $\quad[\mathrm{PdFClBrI}]^{2-}$ Number of Geometrical Isomers $=\mathrm{n}$. For $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{\mathrm{n}-6}$, Determine the spin only magnetic moment and CFSE (Ignore the pairing energy)
A. 1.73 B.M., $-2 \Delta_{0}$
B. 2.84 B.M., $-1.6 \Delta_{0}$
C. $0,-1.6 \Delta_{0}$
D. 5.92 B.M., $-2.4 \Delta_{0}$

Ans. A.
10.
$A \longrightarrow B 700 \mathrm{~K}$
$A \xrightarrow{C} B 500 \mathrm{~K}$
Rate of reaction in absence of catalyst at 700 K is same as in presence of catalyst at 500 K . If catalyst decreases activation energy barrier by $30 \mathrm{~kJ} / \mathrm{mole}$, determine activation energy in presence of catalyst. (Assume 'A' factor to be same in both cases)
A. 75 kJ
B. 135 kJ
C. 105 kJ
D. 125 kJ

Ans. A
11.

The major product for above sequence of reaction is:
A.

B.

C.

D.

Ans. B
12. Which of the following is correct order for heat of combustion?
(A)

(B)

(C)

A. $C>B>A$
B. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
C. $B>A>C$
D. $\mathrm{C}>\mathrm{A}>\mathrm{B}$

Ans. A
13. Write the correct order of basicity.

(a)
$\overline{\mathrm{C}} \mathrm{H}_{3}$
(b)
: $\overline{\mathrm{C}}=\mathrm{N}:$
(c)
$\overline{\mathrm{C}}=\mathrm{CH}$
(d)
(e)
A. $a>b>d>e>c$
B. $a>b>e>d>c$
C. $b>a>d>c>e$
D. $c>e>d>b>a$

Ans. A
14.

Predict the compound (P) on the basis of above sequence of the reactions?
Where compound (P) gives positive lodoform test.
A.

B.

C.

D.

Ans. B
15. First Ionisation energy of Be is higher than that of Boron. Select the correct statements regarding this
(i) It is easier to extract electron from $2 p$ orbital than 2 s orbital
(ii) Penetration power of 2 s orbital is greater than $2 p$ orbital
(iii) Shielding of $2 p$ electron by $2 s$ electron
(iv) Radius of Boron atom is larger than that of Be
A. (i), (ii), (iii), (iv)
B. (i), (iii), (iv)
C. (ii), (iii), (iv)
D. (i), (ii), (iii)

Ans. D
16. Given a solution of HNO_{3} of density $1.4 \mathrm{~g} / \mathrm{mL}$ and $63 \% \mathrm{w} / \mathrm{w}$. Determine molarity of HNO_{3} solution.
Ans. 14.00
17. Ksp of $\mathrm{PbCl}_{2}=1.6 \times 10^{-5}$

On mixing $300 \mathrm{~mL}, 0.134 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (aq.) +100 $\mathrm{mL}, 0.4 \mathrm{M} \mathrm{NaCl}$ (aq.)
A. $Q>K s p$
B. $Q<K s p$
C. $Q=K s p$
D. Relation does not exit

Ans. A

18. A substance ' X ' having low melting point, does not conduct electricity in both solid and liquid state. 'X' can be :
A. Hg
B. ZnS
C. SiC
D. CCl_{4}

Ans. D
19. Determine the amount of NaCl to be dissolved in $600 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to decrease the freezing point by $0.2^{\circ} \mathrm{C}$
Given: k_{f} of $\mathrm{H}_{2} \mathrm{O}=2 \mathrm{k}-\mathrm{m}^{-1}$
density of $\mathrm{H}_{2} \mathrm{O}(\ell)=1 \mathrm{~g} / \mathrm{ml}$
Ans. 01.76
20. On passing a particular amount of electricity in AgNO_{3} solution, 108 g of Ag is deposited. What will be the volume of $\mathrm{O}_{2}(\mathrm{~g})$ in litre liberated at 1 bar, 273 k by same quantity of electricity?
Ans. 05.68
21. Find percentage nitrogen by mass in Histamine?

Ans. 37.84
22. A can reduce BO 2 under which conditions.

A. $>1400^{\circ} \mathrm{C}$
B. $<1400^{\circ} \mathrm{C}$
C. $>1200^{\circ} \mathrm{C}$ and $<1400^{\circ} \mathrm{C}$
D. $<1200^{\circ} \mathrm{C}$

Ans. A
23. Which of the following can give highest yield in Friedel craft reaction?
A.

B.

C.

D.

Ans. C
24.

What will be the major product ?
A.

B.

C.

D.

Ans. A
25. A, B, C and D are four artificial sweetners.
(i) $A \& D$ give positive test with ninhydrin.
(ii) C form precipitate with AgNO_{3} in the lassaigne extract of the sugar.
(iii) B \& D give positive test with sodium nitroprusside.
Correct option is:
A. A - Saccharine, B - Aspartame, C - Sucralose, D - Alitame
B. A - Aspartame, B - Saccharine, C - Sucralose, D - Alitame
C. A - Saccharine, B - Aspartame, C - Alitame , D - Sucralose
D. A - Aspartame, B - Sucralose, C - Saccharine, D - Alitame
Ans. B

Maths

1. Find the number of solution of $\log _{\frac{1}{2}}$

$$
(|\sin (x)|)=2-\log _{\frac{1}{2}}(|\cos (x)|), x \in[0,2 \pi] ?
$$

Ans. 8
2. If e_{1} and e_{2} are eccentricities of $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ respectively and if the point $\left(e_{1}, e_{2}\right)$ lies on ellipse $15 x^{2}+3 y^{2}=k$. Then find value of k
A. 14
B. 15
C. 16
D. 17

Ans. C
3. Find integration $\int \frac{d x}{(x-3)^{6 / 7}(x+4)^{8 / 7}}$
A. $49\left(\frac{x-3}{x+4}\right)^{1 / 7}+c$
B. $7\left(\frac{x-3}{x+4}\right)^{1 / 7}+c$
C. $49\left(\frac{x-3}{x+4}\right)^{6 / 7}+c$
D. $7\left(\frac{x+4}{x-3}\right)^{6 / 7}+c$

Ans. A
4. If $\left|\frac{z-i}{z+2 i}\right|=1,|z|=\frac{5}{2}$ then value of $|z+3 i|$ is
A. $7 / 2$
B. $\sqrt{10}$
C. $\sqrt{5}$
D. $\sqrt{3}$

Ans. A
5. $2^{1 / 4} \cdot 4^{1 / 16} \cdot 8^{1 / 48}$ \qquad $\infty=$
A. $\sqrt{2}$
B. 2
C. $2^{1 / 4}$
D. 1

Ans. 1
6. Value of

$$
\cos ^{3}\left(\frac{\pi}{8}\right) \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right)
$$

A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Ans. A
7. Find the value of $\int_{0}^{2 \pi} \frac{x \sin ^{8} x}{\sin ^{8} x+\cos ^{8} x}$
A. π^{2}
B. $2 \pi^{2}$
C. π
D. 2π

Ans. A
8. If $f(x)=a+b x+c x^{2}$ where $a, b, c \in R$ then $\int_{0}^{1} f(x) d x$ is
A. $\frac{1}{3}\left(\mathrm{f}(1)+\mathrm{f}(0)+2 \mathrm{f}\left(\frac{1}{2}\right)\right)$
B. $\frac{1}{6}\left(f(1)+f(0)+4 f\left(\frac{1}{2}\right)\right)$
C. $\frac{1}{6}\left(f(1)+f(0)-4 f\left(\frac{1}{2}\right)\right)$
D. $\frac{1}{6}\left(f(1)-f(0)-4 f\left(\frac{1}{2}\right)\right)$

Ans. B
9. If number of 5 digit numbers which can be formed without repeating any digit while tenth place of all of the numbers must be 2 is 336 k find value of k
A. 8
B. 7
C. 6
D. 5

Ans. A
10. $A(3,-1), B(1,3), C(2,4)$ are vertices of $\triangle A B C$ if D is centroid of $\triangle A B C$ and P is point of intersection of lines $x+3 y-1=0$ and $3 x-y+$ $1=0$ then which of the following points lies on line joining D and P
A. $(-9,-7)$
B. $(-9,-6)$
C. $(9,6)$
D. $(9,-6)$

Ans. B
11. If $f(x)$ is twice differentiable and continuous function in $x x \in[a, b]$ also $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$ and $C \in(a, b)$ then $\frac{f(c)-f(a)}{f(b)-f(c)}$ is greater than
A. $\frac{b-c}{c-a}$
B. 1
C. $\frac{a+b}{b-c}$
D. $\frac{c-a}{b-c}$

Ans. D
$\therefore \lambda=\left\{\right.$ mean $\left.\left(\mathrm{x}_{\mathrm{i}}-5\right)\right\}+2=3$
$\mu=\operatorname{var}\left(x_{i}-5\right)=\frac{\sum\left(x_{i}-5\right)^{2}}{10}-\frac{\sum\left(x_{i}-5\right)}{10}=3$
14. In a bag there are 20 cards 10 names A and another 10 names B. Cards are drawn randomly one by one with replacement then find probability that second A comes before third B.
A. $\frac{13}{16}$
B. $\frac{11}{16}$
C. $\frac{7}{16}$
D. $\frac{9}{16}$

Ans. B
15. The negation of ' $\sqrt{5}$ is an integer or 5 is an irrational number' is
A. $\sqrt{5}$ is an integer and 5 is not an irrational Number
B. $\sqrt{5}$ is not an integer and 5 is an irrational Number
C. $\sqrt{5}$ is not an integer or 5 is not an irrational Number
D. $\sqrt{5}$ is not an integer and 5 is not an irrational Number
Ans. D
16. If a circle touches y-axis at (0,4) and passes through $(2,0)$ then which of the following can not be the tangent to the circle
A. $3 x+4 y-6=0$
B. $3 x+4 y-24=0$
C. $4 x-3 y-17=0$
D. $4 x+3 y-6=0$

Ans. A
17. If $f^{\prime}(x)=\tan ^{-1}(\sec x+\tan x), x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $f(0)=0$ then the value of $f(1)$ is
A. $\frac{\pi+1}{4}$
B. $\frac{\pi-1}{4}$
C. $\frac{\pi+1}{2}$
D. 0

Ans. A
18. A sphere of 10 cm radius has a uniform thickness of ice around it. Ice is melting at rate $50 \mathrm{~cm}^{3} / \mathrm{min}$ when thickness is 5 cm then rate of change of thickness
A. $\frac{1}{36 \pi}$
B. $\frac{1}{18 \pi}$
C. $\frac{1}{9 \pi}$
D. $\frac{1}{12 \pi}$

Ans. B
19. Find number of real roots of equation $e^{4 x}+e^{3 x}$ $-4 e^{2 x}+e^{x}+1=0$ is
A. 1
B. 2
C. 3
D. 4

Ans. A
20.

$$
\text { If } A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 3 & 4 \\
1 & -1 & 3
\end{array}\right], B=\operatorname{adj}(A) \text { and } C=3 A \text { then } \frac{|\operatorname{adjB}|}{|C|} \text { is }
$$

A. 8
B. 4
C. 2
D. 16

Ans. A
21.

$$
(1+x) \frac{d y}{d x}=\left((1+x)^{2}+(y-3)\right) \text {, If } y(2)=0 \text { then } y(3)=\text { ? }
$$

Ans. 3
22.

$$
f(x)= \begin{cases}\frac{\sin (a+2) x+\sin x}{x} ; & x<0 \\ b ; & x=0 \\ \frac{\left(x+3 x^{2}\right)^{\frac{1}{3}}-x^{\frac{1}{3}}}{x^{\frac{4}{3}}} ; & x>0\end{cases}
$$

Function is continuous at $x=0$, find $a+2 b$.
Ans. 0
23. Find the coefficient of x^{4} in $\left(1+x+x^{2}\right)^{10}$

Ans. 615
24.

$$
\begin{aligned}
& \text { If } \vec{P}=(a+1) \hat{i}+a \hat{j}+a \hat{k} \\
& \vec{Q}=a \hat{i}+(a+1) \hat{j}+a \hat{k} \\
& \vec{R}=a \hat{i}+a \hat{j}+(a+1) \hat{k} \\
& \text { and } \vec{P}, \vec{Q}, \vec{R} \text { are coplanar vectors and } 3(\vec{P} \cdot \vec{Q})^{2}
\end{aligned}
$$

$-\lambda|\vec{R} \times \vec{Q}|^{2}=0$ then value of λ is
Ans. 1
25. If points $A(2,4,0), B(3,1,8), C(3,1,-3), D(7$, $-3,4)$ are four points then projection of line segment $A B$ on line $C D$.

Ans. 8

gradeup Classroom

RankUp JEE 2020

A Score Booster Course

Crack JEE Main (April) with a day-wise study plan

WHY TAKE THIS COURSE?

, A thoroughly designed 60-day course to help you clear JEE Main 2020
> All topics are covered through Live Classes, Study Notes, DPPs and Mind Maps
, Weekly Tests and Full Mock tests for revision
, Best utilisation of your time with a Day-Wise Study Plan

