

Direction : In the question two rows are given and to find out the resultant of a particular row you need to follow the following steps: Step 1: if an odd number is followed by a perfect cube then the resultant will be the addition of the cube number and the odd number. Step 2: if an odd number is followed by an even number (not a perfect cube) then the resultant will be the square of multiplication of both the numbers.
Step 3: if an even number is followed by another even number then the resultant will be the addition of both the numbers. Step 4: if an even number is followed by an odd number then the resultant will be the quotient obtained by dividing the larger number with the smaller number.
Step 5: if an odd number is followed by another odd number then the resultant comes by subtracting the smaller number from the larger number.
Note: 1 will not count as perfect cube but as an odd number.

1. 327107
81×6
Find the resultant of second row if X is the resultant of first row.
A. 48
B. 24
C. 36
D. 52
E. 40

Direction: In the question two rows are given and to find out the resultant of a particular row you need to follow the following steps: Step 1: if an odd number is followed by a perfect cube then the resultant will be the addition of the cube number and the odd number. Step 2: if an odd number is followed by an even number (not a perfect cube) then the resultant will be the square of multiplication of both the numbers.
Step 3: if an even number is followed by another even number then the resultant will be the addition of both the numbers.
Step 4: if an even number is followed
by an odd number then the resultant will be the quotient obtained by dividing the larger number with the smaller number. Step 5: if an odd number is followed by another odd number then the resultant comes by subtracting the smaller number from the larger number.
Note: 1 will not count as perfect cube but as an odd number.
2. 1032 X

5274
Find the sum of the resultant of two rows if X is the resultant of second row.
A. 66
B. 72
C. 82
D. 44
E. 625
3. 25216123

410205
Find the sum of resultant of two rows.
A. 14
B. 18
C. 24
D. 40
E. 35

Direction: In the question two rows are given and to find out the resultant of a particular row you need to follow the following steps: Step 1: if an odd number is followed by a perfect cube then the resultant will be the addition of the cube number and the odd number. Step 2: if an odd number is followed by an even number (not a perfect cube) then the resultant will be the square of multiplication of both the numbers.
Step 3: if an even number is followed by another even number then the resultant will be the addition of both the numbers. Step 4: if an even number is followed by an odd number then the resultant will be the quotient obtained by dividing the larger number with the smaller number.
Step 5: if an odd number is followed by another odd number then the resultant comes by subtracting the smaller number from the larger number.
Note: 1 will not count as perfect cube but as an odd number.
4. 515106

464123
Find the average the resultants of both the rows.
A. 52
B. 24
C. 48
D. 26
E. 28
5. 310714

1410 X
If the sum of the resultants of two rows is 150 , then find the value of X considering positive integer values for all.
A. 12
B. 10
C. 3
D. 8
E. 14

Direction (6 - 10): Read the following information carefully and answer the following question: In a certain code language 'economics is not good' is written as '\$S2 @S9 *D4 /T3', 'internal and external economy ' is written as '\$L8 @Y8 @L8 \#D3', 'demand supply theory' is written as '^Y6 \&D6 \%Y6'. 'the system principle' is written as 'ヘE3 \%M6 !E9'.
6. What will be the code 'supply' in the given code language?
A. ^Y6
B. \&D6
C. \%Y6
D. Either A or C
E. Cannot be determined.
7. What will be the possible code for 'student at school'?
A. \%S6 ^T7 \#T2
B. ^L6 \%T7 \#T2
C. !T7 \%I6 \#T2
D. \%L6 \#T2 \%T7
E. Cannot be determined.
8. What is the code for 'gold and silver'?
A. *D4 \#D3 \%R6
B. ^D3 @D4 \%R6
C. *G4 \#A3 \%S6
D. \$R6 @A3 \%D4
E. Cannot be determined
9. What is the code for 'internal'?
A. \$L8
B. @Y8
C. @L8
D. \#D3
E. Cannot be determined.
10. What will be the possible code for 'Smoking is injurious'?
A. \$S2 ^L7 @G7
B. $\$ \mathrm{~S} 2$ \$S9 \%G7
C. @G7 \#L7 \$S2
D. @S2 *G7 \#L7
E. Cannot be determined.

Direction (11 - 15): Study the following information carefully and answer the questions given below. In a certain code language, 'guess the relation correct' is written as 'U2D D5S S4M H3R'. 'have same stylus around' is written as 'T5R B3C I2D T2D'. 'loved way for handle' is written as 'G2Q X2X I4D M3C'. 'give them money' is written as 'U3L N3X H2D'.
11. Which of the following code for 'apprentice'?
A. B2D
B. D3B
C. B6D
D. D 6 B
E. B7D
12. Which of the following code for 'hypocritic'?
A. J7F
B. G 4 K
C. I7B
D. I6B
E. B7I
13. In the given code language, what does the code 'D4R' stand for?
A. Causals
B. Capsules
C. Dedicate
D. Dices
E. Campaigns
14. Which of the following code for 'right hand side'?
A. S3S I3C T3C
B. S3S I3C T2D
C. T2D S4S I2C
D. T2D I2C S4S
E. I3C T2D S4S
15. Which of the following code for 'gamble'?
A. H4E
B. E4H
C. H3D
D. H4D
E. None of these

Direction (16 - 20): Study the information given below and answer the questions based on it.
In a certain language,
"music extra income welcome" is written as "G6N G7N E5J C5S"
"cancel father dance floor" is written as "T6F N6F T5P G5D"
"chair computer outcome shoes" is written as "T8F T5J U5F G7N"
"page orange manage building" is written as "G6H G6H G4H I8O"
16. What is the code of "Market"?
A. V5F
B. F6V
C. V6F
D. E7T
E. V8T
17. What is the code of "Father"?
A. G5D
B. T6F
C. N6F
D. T5P
E. Can't be determined
18. " G 4 H " is the code of which of the following?
A. Page
B. Orange
C. Manage
D. Building
E. Can't be determined
19. What is the code of "shoes"?
A. G7N
B. T8F
C. T5J
D. U5F
E. Can't be determined
20. What is the code of "Income"?
A. G7N
B. G6N
C. C5S
D. E5J
E. Can't be determined

Direction (21 - 25): Study the information given below and answer the questions based on it. In a certain code, LIKE YOUR DREAMS is code as 'LI TU JI'
LIFE WITHOUT LOVE is code as 'LO KA ER'
FACE YOUR FEAR is code as 'OU EU TU'
DREAMS WITHOUT FEAR' is code as 'OU LI ER'
(all codes are two-letter codes only)
21. What is the code for "FACE"?
A. OU
B. TU
C. EU
D. KA
E. LA

Direction: Study the information given below and answer the questions based on it. In a certain code, LIKE YOUR DREAMS is code as 'LI TU JI'
LIFE WITHOUT LOVE is code as 'LO KA

ER'
FACE YOUR FEAR is code as 'OU EU TU'
DREAMS WITHOUT FEAR' is code as 'OU LI ER'
(all codes are two-letter codes only)
22. What does the code "KA" stands for?
A. LIFE
B. LOVE
C. Either 'FEAR' or 'FACE'
D. WITHOUT
E. Either 'LIFE' or 'LOVE'

Direction: Study the information given below and answer the questions based on it. In a certain code, LIKE YOUR DREAMS is code as 'LI TU JI'
LIFE WITHOUT LOVE is code as 'LO KA ER'
FACE YOUR FEAR is code as 'OU EU TU'
DREAMS WITHOUT FEAR' is code as 'OU LI ER' (all codes are two-letter codes only)
23. How will "FOLLOW YOUR DREAMS" be coded?
A. TU ER LI
B. LI TU JI
C. KA LO LI
D. QM TU LI
E. OU EU TU
24. What will be the code for "LO KA" in the given code language?
A. WITHOUT LOVE
B. LOVE LIFE
C. LOVE DREAMS
D. None of these
E. Other than those given as options
25. In the given code language, what does the code "ER" stands for?
A. LIFE
B. Either "LIFE" or "LOVE"
C. Either "YOUR" or "FEAR"
D. WITHOUT
E. FACE

Direction (26-30) : Study the information given below and answer the questions based on it. In a certain code, "to buy precious gift'is written as "my po kj sw". "special gift and money" is written as "my pa re sr". "only money and time" is written as "pa tp sr mx". "buy precious stuff only" is written as "sw po sd tp".
26. What is the possible code for "only money and gift" in the given code language?
A. my po mxtp
B. tp pa sd sw
C. re tp pa po
D. sr pa my tp
E. po kj pa re
27. What is the code for "precious buy" in the given language?
A. po sw
B. sw kj
C. sd po
D. sd kj
E. Cannot be determined
28. What is the code for "to" in the given code language?
A. re
B. sw
C. kj
D. my
E. po
29. What is the code for "stuff" in the given code language?
A. tp
B. sd
C. SW
D. po
E. Either po or sd
30. What is the code for "special time to gift" in the given code language?
A. my po sr tp
B. to kj sw sd
C. pa tp $m \times u j$
D. sr my po pa
E. mx re kj my

Direction (31 - 35): Study the information given below and answer the questions based on it. In a certain code language, 'first early unite rope' is written as 'O14 R1 C16 B35'. 'pure general natural civil' is written as 'K41 M8 Z19 D40'. 'broad heavy talk week' is written as 'T12 E7 Y2 Q20'.
31. Which of the following code for 'independent'?
A. F31
B. F28
C. G22
D. F26
E. G24
32. Which of the following code for 'obvious'?
A. N38
B. M37
C. L38
D. L37
E. L39
33. In the given code language, what does the code 'X10' stand for?
A. vacuum
B. adjust
C. actual
D. action
E. ugly
34. Which of the following code for 'quick display morning'?
A. J4 N16 A34
B. A32 J6 N14
C. N13 J4 A34
D. N12 J5 A33
E. J4 N12 A34
35. Which of the following code for 'swimming'?
A. P4
B. P3
C. O 4
D. Q3
E. R3

Directions: In these questions, relationship between different elements is shown in the statements. The statements are followed by two conclusions. Find the conclusion which is definitely true.
36. Statements:
$A>B=C<D<E>F$
Conclusions:
I. $F<C$
II. $A>D$
A. If only Conclusion I is true.
B. If only Conclusion II is true.
C. If either Conclusion I or II is true.
D. If neither Conclusion I nor II is true.
E. If both Conclusions I and II are true.

Directions: In these questions, relationship between different elements is shown in the statements. The statements are followed by two conclusions. Find the conclusion which is definitely true.
37. Statements:
$A=B>C>D ; E<C$

Conclusions:

I. $\mathrm{E}<\mathrm{A}$
II. $\mathrm{D}<\mathrm{E}$
A. If only Conclusion I is true.
B. If only Conclusion II is true.
C. If either Conclusion I or II is true.
D. If neither Conclusion I nor II is true.
E. If both Conclusions I and II are true.
38. Statements:
$AC>D ; A>E, D>F$

Conclusions:

I. $F>B$
II. $B>E$
A. If only Conclusion I is true.
B. If only Conclusion II is true.
C. If either Conclusion I or II is true.
D. If neither Conclusion I nor II is true.
E. If both Conclusions I and II are true.
39. Statements:
$A=B<C>D ; E>C<$
Conclusions:
I. E > A
II. $F>D$
A. If only Conclusion I is true.
B. If only Conclusion II is true.
C. If either Conclusion I or II is true.
D. If neither Conclusion I nor II is true.
E. If both Conclusions I and II are true.
40. Statements:
$A>B=C ; D<C>E$
Conclusions:
I. $\mathrm{D}<\mathrm{A}$
II. $\mathrm{E}<\mathrm{A}$
A. If only Conclusion I is true.
B. If only Conclusion II is true.
C. If either Conclusion I or II is true.
D. If neither Conclusion I nor II is true.
E. If both Conclusions I and II are true.

Direction (41 - 45): In these questions, relationship between different elements is shown in the statement. The statements are followed by two conclusions. Choose the correct answer given below:
41. Statements:
$\mathrm{F}>\mathrm{J}=\mathrm{L}>\mathrm{Q}, \mathrm{W} \geq \mathrm{F}>\mathrm{H}, \mathrm{L} \leq \mathrm{T}<\mathrm{X}$ Conclusions:
I. $\mathrm{H}>\mathrm{J}$
II. J < X
A. Only conclusion II follows.
B. Only conclusion I follows.
C. Both conclusions I and II follow.
D. Neither conclusion I nor conclusion

II
follows.
E. Either conclusion I or conclusion II follows.
42. Statements:
$D>B=A>T, B \geq N>V, A \leq Z<X$ Conclusions:
I. $Z>T$
II. $\mathrm{N}<\mathrm{D}$
A. Only conclusion II follows.
B. Only conclusion I follows.
C. Both conclusions I and II follow.
D. Neither conclusion I nor conclusion II follows.
E. Either conclusion I or conclusion II follows.
43. Statements:
$2>3>4=1<5,9 \leq 7=8<4<$ 0
Conclusions:
I. $3>7$
II. $9 \leq 1$
A. Neither Conclusion 1 nor Conclusion 2 follows B. Only Conclusion 1 follows C. Both Conclusion 1 and Conclusion 2 follow
D. Only Conclusion 2 follows E. Either Conclusion 1 or Conclusion 2 follows
44. Statements:
$\mathrm{C}<\mathrm{O} \leq \mathrm{G}=\mathrm{E} \leq \mathrm{P}<\mathrm{I}, \mathrm{J}=\mathrm{P}<\mathrm{H} \leq$ $\mathrm{S} \leq \mathrm{V}>\mathrm{N}, \mathrm{A} \leq \mathrm{V}<\mathrm{B}=\mathrm{Z}=\mathrm{W}>\mathrm{U}$ Conclusions:
I. $\mathrm{O}<\mathrm{B}$
II. $\mathrm{S}>\mathrm{G}$
A. Neither Conclusion 1 nor Conclusion 2 follows B. Only Conclusion 1 follows C. Both Conclusion 1 and Conclusion 2 follow
D. Only Conclusion 2 follows E. Either Conclusion 1 or Conclusion 2 follows
45. Statements:
$7>5>9=1<3,4 \leq 2=6<9<$ 0
Conclusions:
I. $5>2$
II. $4 \leq 1$
A. Neither Conclusion 1 nor Conclusion 2 follows
B. Only Conclusion 1 follows C. Both Conclusion 1 and Conclusion 2 follow D. Only Conclusion 2 follows E. Either Conclusion 1 or Conclusion 2 follows

Direction (46 - 50): Study the information given below and answer the questions based on it. ' P \$ Q ' means ' P is not smaller than Q'.
'P @ Q ' means ' P is not greater than Q'.
' $P \delta Q^{\prime}$ means ' P is neither smaller than nor equal to Q^{\prime}. ' P \# Q ' means ' P is neither greater than nor equal to Q^{\prime}. ' P \%Q' means ' P is neither smaller than nor greater than Q^{\prime}. Now in each of the following questions assuming the given statements to be true, find which of the two conclusions I and II given below them is/are definitely true?
46. Statements:

F @ N, N $\quad \mathrm{R}, \mathrm{H}$ @ R Conclusions:
I. $\mathrm{H} \delta \mathrm{N}$
II. F \# R
A. only Conclusion I is true.
B. only Conclusion II is true.
C. either Conclusion I or II is true.
D. neither Conclusion I nor II is true.
E. both Conclusions I and II are true.
47. Statements:

M \# T, T @ K, K \$ N
Conclusions:
I. M \# N
II. K ठ M
A. only Conclusion I is true.
B. only Conclusion II is true.
C. either Conclusion I or II is true.
D. neither Conclusion I nor II is true.
E. both Conclusions I and II are true.
48. Statements:

T \% H, H \$ W, M\%J Conclusions:
I. W \# T
II. W \% T
A. only Conclusion I is true.
B. only Conclusion II is true.
C. either Conclusion I or II is true.
D. neither Conclusion I nor II is true.
E. both Conclusions I and II are true.
49. Statements: N ס K, K \# D, D \% M Conclusions:
I. M $\delta \mathrm{K}$
II. D $\delta \mathrm{N}$
A. if only Conclusion I is true. B. if only Conclusion II is true. C. if either Conclusion I or II is true. D. if neither Conclusion I nor II is true.
E. if both Conclusions I and II are true.
50. Statements: J \$ B, B \% R, R δ F Conclusions:
I. F \# B
II. R @ J
A. if only Conclusion I is true.
B. if only Conclusion II is true.
C. if either Conclusion I or II is true.
D. if neither Conclusion I nor II is true.
E. if both Conclusions I and II are true.

Direction (51-55) : Study the following information carefully to answer the given questions. $A \& B$ means A is neither greater than nor equal to B. A \% B means A is neither smaller than nor greater than B. $A * B$ means A is not greater than B. $A \$ B$ means A is greater than B. A @ B means A is either greater than or equal to B.
51. Statement: A \$ B @ C * D; C \% E @ F
Conclusions:
I. A \$ D
II. F * D
A. Only I is true
B. Only II is true
C. Either I or II true
D. Neither I nor II is true
E. Both I and II are true
52. Statement: N @ $T \$ P * Q$ T $\$ \mathrm{R} ; \mathrm{P}$ \$

Conclusions:

I.T \$ S
II. R \& N
A. Only I is true
B. Only II is true
C. Either I or II true
D. Neither I nor II is true
E. Both I and II are true
53. Statement: M * N \& O @ P; O * Q * S
Conclusions:
I. Q \$ M
II. $\mathrm{P} * \mathrm{~S}$
A. Only I is true
B. Only II is true
C. Either I or II true
D. Neither I nor II is true
E. Both I and II are true
54. Statement: G @ H @ I \% J @ K; A *
Conclusions:
I.A \$ G
II. A \% G
A. Only I is true
B. Only II is true
C. Either I or II true
D. Neither I nor II is true
E. Both I and II are true
55. Statement: N @ T \$ P * Q; T \$ R; P \$ S

Conclusions:

I. R \& Q
II. Q \$ S
A. Only I is true
B. Only II is true
C. Either I or II true
D. Neither I nor II is true
E. Both I and II are true

Direction (56-60): In these questions, a relationship between different elements is shown in each statement. The statements are followed by two conclusions.
56. Statements:
$R>S \geq T<U, V>T>X$
Conclusions:
I. $V>S$
II. U $>\mathrm{V}$
A. Only conclusion I is true.
B. Only conclusion II is true.
C. Either conclusion I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
57. Statements:
$A=B \leq C>D, C \geq E$
Conclusions:
I. $A \geq E$
II. $\mathrm{E}>\mathrm{D}$
A. Only conclusion I is true.
B. Only conclusion II is true.
C. Either conclusion I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
58. Statements:
$H<I>J=K \geq L, J \leq M$
Conclusions:
I. $K \geq M$
II. $\mathrm{M} \geq \mathrm{H}$
A. Only conclusion I is true.
B. Only conclusion II is true.
C. Either conclusion I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
59. Statements:
$P=Q \geq R<S, R \geq T$

Conclusions:

I. $\mathrm{S}>\mathrm{T}$
II. $P \geq T$
A. Only conclusion I is true.
B. Only conclusion II is true.
C. Either conclusion I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
60. Statements:
$\mathrm{M}>\mathrm{N} \geq \mathrm{O}<\mathrm{P}, \mathrm{Q}<\mathrm{O} \leq \mathrm{R}$
Conclusions:
I. $R>P$
II. $R \geq N$
A. Only conclusion I is true.
B. Only conclusion II is true.
C. Either conclusion I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.

Direction (61 - 65) : In the question, the symbols @, \%, ©, \# and $\$$ are used with the following meaning.
' X @ Y^{\prime} means ' X is greater than Y.'
' $X \$ Y^{\prime}$ means ' X is equal to Y.'
' X \% Y ' means ' X is neither greater
than nor equal to Y.'
' X © Y ' means ' X is either smaller than or equal to Y.' ' X \# Y ' means ' X is either greater than or equal to Y.'
Now, the following question assuming the given statements to be true, find which of the two conclusions numbered I and II given below them is/are definitely true and give answer.
61. Statements: M @ N, O \# N, N \$ P Conclusions:
I. O \$ P
II. M @ P
A. Only conclusion I is true.
B. Only conclusion II is ture.
C. Either I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
62. Statements: Q @ M, M \$ O, O \# P Conclusions:
I. Q \% P
II. Q \$ P
A. Only conclusion I is true.
B. Only conclusion II is ture.
C. Either I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
63. Statements: P © R, Q @ R, Q \# N Conclusions:
I. R @ N
II. P © N
A. Only conclusion I is true.
B. Only conclusion II is ture.
C. Either I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
64. Statements: M @ Q, Q \$ S, S © N Conclusions:
I. N @ M
II. N \# Q
A. Only conclusion I is true.
B. Only conclusion II is ture.
C. Either I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.
65. Statements: O © M, M @ N, N \$ P Conclusions:
I. O \$ M
II. O \% M
A. Only conclusion I is true.
B. Only conclusion II is ture.
C. Either I or II is true.
D. Neither conclusion I nor II is true.
E. Both conclusion I and II are true.

Direction: In the following question assuming the given statements to be true, find which of the conclusion among given conclusions is /are definitely true and then give your answers accordingly.
66. Statements:
$A \geq B \geq C \leq D ; E \geq F \geq G=A$ Conclusions:
I. $F>D$
II. $B \geq F$
A. Only conclusion I is true
B. Only conclusion II is true
C. Either conclusion I or II is true
D. Neither conclusion I nor II is true
E. Both conclusions I and II are true

Direction: In the following question assuming the given statements to be true, find which of the conclusion among given conclusions is /are
definitely true and then give your answers accordingly.
67. Statements:
$E \geq G \neq H \geq F ; I \geq H \geq J$
Conclusions:
I. $G<H$
II. $\mathrm{H}<\mathrm{G}$
A. Only conclusion I is true
B. Only conclusion II is true
C. Either conclusion I or II is true
D. Neither conclusion I nor II is true
E. Both conclusion I and II are true

Direction: In the following question assuming the given statements to be true, find which of the conclusion among given conclusions is /are definitely true and then give your answers accordingly.
68. Statements:
$\mathrm{V} \geq \mathrm{U}=\mathrm{T} ; \mathrm{Q}=\mathrm{R} \leq \mathrm{S} \geq \mathrm{V}$

Conclusions:

I. $\mathrm{V}<\mathrm{Q}$
II. $U \leq R$
A. Only conclusion I is true
B. Only conclusion II is true
C. Either conclusion I or II is true
D. Neither conclusion I nor II is true
E. Both conclusions I and II are true
69. Statements:
$\mathrm{P} \neq \mathrm{Q}=\mathrm{R} \geq \mathrm{S} \geq \mathrm{T} ; \mathrm{U}<\mathrm{V} \leq \mathrm{W}<\mathrm{X}$
Conclusions:
I. $T<X$
II. $\mathrm{P}>\mathrm{Q}$
A. If only conclusion I is true
B. If only conclusion II is true
C. If either conclusion I or II is true
D. If neither conclusion I nor II is true
E. If both conclusion I and II are true
70. Statements:
$F \geq G<E ; G>D \geq C ; D \geq A<B$

Conclusions:

I. $F>C$
II. $F \geq A$
A. If only conclusion I is true
B. If only conclusion II is true
C. If either conclusion I or II is true
D. If neither conclusion I nor II is true
E. If both conclusion I and II are true

ANSWERS

1. Ans. C.

In row 1,
According to step $1,3+27=30$
Then step $3,30+10=40$
Then step 4, quotient of $40 / 7=5$
Resultant to row $1=5=x$
In row 2,
According to step 4 , quotient of $8 / 1=8$
Then step 4 , quotient of $8 / 5=1$
Then step 2 , square of $\left(1^{*} 6\right)=36$
Resultant of row 2 is 36
2. Ans. B.

In row 2,
In row 2,
According to step 2, square of $(5 * 2)=100$
Then step 4, quotient of $100 / 7=14$
Then step $3,14+4=18$
Resultant of row $2=18=X$
In $1^{\text {st }}$ row,
According step 4, quotient of $10 / 3=3$
Then step 2 , square of $(3 * 2)=36$
Then step 3 , square of $(36+18)=54$
Resultant of the row $1=54$
Sum of the both rows $=18+54=72$
3. Ans. A.

In row 1,
According to step 5, 25-21=4
Then step 4 , quotient of $61 / 4=15$
Then step 5, 23-15=8
In row 2,
According to step $3,4+10=14$
Then step 3, 14+20=34
Then step $1,34 / 5=6$
Sum of the both rows $=6+8=\mathbf{1 4}$
4. Ans. D.

In row 1,
According to step 5, 15-5=10
Then step 3, 10+10=20
Then step 3, 20+6=26
Resultant of row $1=26$
In row 2,
According to step $3,64+4=68$
Then step 3, 68+12=80
Then step $4, q u o t i e n t$ of $80 / 3=26$
Average $=(26+26) / 2=26$
5. Ans. C.

In row 1,
According to step 2, square of $(10 * 3)=900$
Then step 4, quotient of 900/7=128
Then step 3, 128+14=142
Resultant of row $1=142$

Resultant of row $2=$ Total resultant resultant of row $1=150-142=8$
In row 2,
According to step 2 , square of $(1 * 4)=16$
Then step $3,16+10=26$
Now so as to obtain 8 as resultant, only step 4 can be used.
So quotient of $26 / 3=8$
Therefore X should be $\mathbf{3}$
6. Ans. C.
i. Every symbol represents the first letter of each word in the following manner:

Code	Letter
$@$	E
$\$$	I
$/$	N
$*$	G
$\#$	A
$\&$	D
$\%$	S
\wedge	T
$!$	P

ii. Every letter in the code represents the last letter of the respective word.
iii. Every number represent the total number of letters in the word.
Thus the code for supply will be \%Y6
7. Ans. D.
i. Every symbol represents the first letter of each word in the following manner:

Code	Letter
$@$	E
$\$$	I
$/$	N
$*$	G
$\#$	A
$\&$	D
$\%$	S
\wedge	T
$!$	P

ii. Every letter in the code represents the last letter of the respective word.
iii. Every number represent the total number of letters in the word.
Thus the code for student at school will be \%L6 \#T2 \%T7.
8. Ans. A.
i. Every symbol represents the first letter of each word in the following manner:

Code	Letter
$@$	E
$\$$	I
$/$	N
$*$	G
$\#$	A
$\&$	D
$\%$	S
\wedge	T
$!$	P

ii. Every letter in the code represents the last letter of the respective word.
iii. Every number represent the total number of letters in the word.
Thus the code for gold and silver will be *D4 \#D3 \%R6
9. Ans. A.
i. Every symbol represents the first letter of each word in the following manner:

Code	Letter
$@$	E
$\$$	I
$/$	N
$*$	G
$\#$	A
$\&$	D
$\%$	S
\wedge	T
$!$	P

ii. Every letter in the code represents the last letter of the respective word.
iii. Every number represent the total number of letters in the word.
Thus the code for internal will be \$L8. 10. Ans. B.
i. Every symbol represents the first letter of each word in the following manner:

Code	Letter
$@$	E
$\$$	I
$/$	N
$*$	G
$\#$	A
$\&$	D
$\%$	S
\wedge	T
$!$	P

ii. Every letter in the code represents the last letter of the respective word.
iii. Every number represent the total
number of letters in the word.
Thus the code for smoking is injurious will be \$S2 \$S9 \%G7.
11. Ans. C.

In this code language, there are some letters given we have to find the exact code used for them.

Example- Relation

Step I- first increase the first letter by one alphabet i.e. S, then count the number of consonants in the whole word i.e. 4

Step II- then decrease the last letter by one alphabet M .
So, 'relation' is coded as 'S4M'.
So, apprentice is coded like above rule- 'B6D'
12. Ans. C.

In this code language, there are some letters given we have to find the exact code used for them.
Example- Relation
Step I- first increase the first letter by one alphabet i.e. S, then count the number of consonants in the whole word i.e. 4

Step II- then decrease the last letter by one alphabet M .
So, 'relation' is coded as 'S4M'.
So, hypocritic is coded like above rule- 'I7B'
13. Ans. A.

In this code language, there are some letters given we have to find the exact code used for them.
Example- Relation
Step I- first increase the first letter by one alphabet i.e. S, then count the number of consonants in the whole word i.e. 4

Step II- then decrease the last letter by one alphabet M .
So, 'relation' is coded as 'S4M'.
So, causals is coded like above rule'D4R'
14. Ans. E.

In this code language, there are some letters given we have to find the exact code used for them.
Example- Relation
Step I- first increase the first letter by one alphabet i.e. S , then count the number of consonants in the whole word i.e. 4

Step II- then decrease the last letter by
one alphabet M .
So, 'relation' is coded as 'S4M'.
So, right hand side is coded like above rule- 'I3C T2D S4S'
15. Ans. D.

In this code language, there are some letters given we have to find the exact code used for them.

Example- Relation

Step I- first increase the first letter by one alphabet i.e. S, then count the number of consonants in the whole word i.e. 4

Step II- then decrease the last letter by one alphabet M .
So, 'relation' is coded as 'S4M'.
So, gamble is coded like above rule'H4D'
16. Ans. C.

Hence, option C.

"Market" = V6F

At the first place-last letter is " t " then $\mathrm{T}+2=\mathrm{V}$ so " V " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is " 6 ",
17. Ans. B.
"Market" = V6F
At the first place-last letter is " t " then $\mathrm{T}+2=\mathrm{V}$ so " V " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is "6".
Following the same pattern the code of "father" is "T6F".
At the first place-last letter is " R " then
$R+2=T$ so " T " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is " 6 ".
Hence, option B. - T6F
18. Ans. A.
" G 4 H " is the code of "page".
Hence, option A.
"Market" = V6F
At the first place-last letter is " t " then $\mathrm{T}+2=\mathrm{V}$ so " V " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is "6", 19. Ans. D.

"Market" = V6F

At the first place-last letter is " t " then $\mathrm{T}+2=\mathrm{V}$ so " V " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is " 6 ".
Shoes
At the first place-last letter is " S " then $\mathrm{S}+2=\mathrm{U}$ so " U " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is " 5 ", Shoes is coded as U5F.
20. Ans. B.
"Market" = V6F
At the first place-last letter is " t " then $\mathrm{T}+2=\mathrm{V}$ so " V " is at the first place. At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $E+1=F$.
Numbers are representing total letter in the word so in this case is "6".
Income
At the first place-last letter is "E" then $E+2=G$ so " G " is at the first place.
At the last place- $2^{\text {nd }}$ last letter of the word is "e" so $M+1=N$.
Numbers are representing total letter in the word so in this case is "6".
Income is coded as G6N
21. Ans. C.

LIKE YOUR DREAMS is code as 'LI TU JI', LIFE WITHOUT LOVE is code as 'LO KA $E R^{\prime}$,
FACE YOUR FEAR is code as 'OU EU TU' DREAMS WITHOUT FEAR' is code as 'OU LI ER'

Words	code
Like	JI
Your	TU
Dreams	LI
Life/ Love	KA/LO
Without	ER
Face	EU
Fear	OU

22. Ans. E.

LIKE YOUR DREAMS is code as 'LI TU JI', LIFE WITHOUT LOVE is code as 'LO KA ER',
FACE YOUR FEAR is code as 'OU EC TU' DREAMS WITHOUT FEAR' is code as 'OU

LI ER'

Words	code
Like	JI
Your	TU
Dreams	LI
Life/ Love	KA/LO
Without	ER
Face	EU
Fear	OU

23. Ans. D.

LIKE YOUR DREAMS is code as 'LI TU JI', LIFE WITHOUT LOVE is code as 'LO KA ER',
FACE YOUR FEAR is code as 'OU EC TU' DREAMS WITHOUT FEAR' is code as 'OU LI ER'

Words	code
Like	JI
Your	TU
Dreams	LI
Life/ Love	KA/LO
Without	ER
Face	EU
Fear	OU

24. Ans. B.

LIKE YOUR DREAMS is code as 'LI TU JI', LIFE WITHOUT LOVE is code as 'LO KA ER',
FACE YOUR FEAR is code as 'OU EC TU' DREAMS WITHOUT FEAR' is code as 'OU LI ER'

Words	code
Like	JI
Your	TU
Dreams	LI
Life $/$ Love	KA/LO
Without	ER
Face	EU
Fear	OU

25. Ans. D.

LIKE YOUR DREAMS is code as 'LI TU JI', LIFE WITHOUT LOVE is code as 'LO KA ER',
FACE YOUR FEAR is code as 'OU EC TU' DREAMS WITHOUT FEAR' is code as 'OU

LI ER'

Words	code
Like	JI
Your	TU
Dreams	LI
Life/ Love	KA/LO
Without	ER
Face	EU
Fear	OU

26. Ans. D.
gift \rightarrow my,
precious/buy \rightarrow po/sw,
money/and $\rightarrow \mathrm{pa} / \mathrm{sr}$,
only \rightarrow tp,
to $\rightarrow \mathrm{kj}$,
stuff \rightarrow sd,
special \rightarrow re,
time $\rightarrow m x$
27. Ans. A.
gift \rightarrow my, precious/buy $\rightarrow \mathrm{po} / \mathrm{sw}$,
money/and $\rightarrow \mathrm{pa} / \mathrm{sr}$, only $\rightarrow \mathrm{tp}$, to $\rightarrow \mathrm{kj}$, stuff \rightarrow sd, special \rightarrow re, time $\rightarrow m x$ 28. Ans. C.
gift \rightarrow my, precious/buy $\rightarrow \mathrm{po} / \mathrm{sw}$, money/and $\rightarrow \mathrm{pa} / \mathrm{sr}$, only $\rightarrow \mathrm{tp}$, to $\rightarrow \mathrm{kj}$, stuff \rightarrow sd, special \rightarrow re, time $\rightarrow \mathrm{mx}$ 29. Ans. B.
gift \rightarrow my, precious/buy \rightarrow po/sw, money/and $\rightarrow \mathrm{pa} / \mathrm{sr}$, only $\rightarrow \mathrm{tp}$, to $\rightarrow \mathrm{kj}$, stuff \rightarrow sd, special \rightarrow re, time $\rightarrow \mathrm{mx}$ 30. Ans. E.
gift \rightarrow my, precious/buy \rightarrow po/sw, money/and $\rightarrow \mathrm{pa} / \mathrm{sr}$, only $\rightarrow \mathrm{tp}$, to $\rightarrow \mathrm{kj}$, stuff \rightarrow sd, special \rightarrow re, time $\rightarrow \mathrm{mx}$ 31. Ans. D.

In this code language, there are some letters given we have to find the exact code used for them.

Example- general

Step I- firstly, the first letter is decremented by three i.e. 'D'
Step II- then write the value for individual letters i.e. $A=1, B=2, C=3$ and so on. Now, general is denoted by G $=7, E=5, N=14, R=18, L=12$.
Step III- Add the value of odd places letters like $\mathrm{g}=7+\mathrm{n}=14+\mathrm{r}=18+\mathrm{l}$ $=12$, after adding $=51$ and assign them as 1 .
Step IV- Add all the value of the even places letter like $\mathrm{e}=5+\mathrm{e}=5+\mathrm{a}=1$, after adding $=11$ and assign them as 2 .

Step V- Now, Subtract the 1 from 2, i.e. 51-11 = 40
So, 'general' is coded as 'D40'.
So, 'independent' is coded like above rule- 'F26'.
32. Ans. E.

In this code language, there are some letters given we have to find the exact code used for them.

Example- general

Step I- firstly, the first letter is decremented by three i.e. 'D'
Step II- then write the value for individual letters i.e. $A=1, B=2, C=3$ and so on. Now, general is denoted by G $=7, E=5, N=14, R=18, L=12$.
Step III- Add the value of odd places letters like $g=7+n=14+r=18+l=$ 12 , after adding $=51$ and assign them as 1.
Step IV- Add all the value of the even places letter like e = 5 + e = 5 +a = 1, after adding $=11$ and assign them as 2.
Step V- Now, Subtract the 1 from 2, i.e.
$51-11=40$
So, 'general' is coded as 'D40'.
So, 'obvious' is coded like above rule'L39'.
33. Ans. D.

In this code language, there are some letters given we have to find the exact code used for them.

Example- general

Step I- firstly, the first letter is decremented by three i.e. 'D'
Step II- then write the value for
individual letters i.e. $A=1, B=2, C=3$ and so on. Now, general is denoted by G $=7, E=5, N=14, R=18, L=12$.
Step III- Add the value of odd places letters like $\mathrm{g}=7+\mathrm{n}=14+\mathrm{r}=18+\mathrm{l}=$ 12 , after adding $=51$ and assign them as 1.
Step IV- Add all the value of the even places letter like $e=5+e=5+a=1$, after adding $=11$ and assign them as 2 .
Step V- Now, Subtract the 1 from 2, i.e. $51-11=40$
So, 'general' is coded as 'D40'.
So, 'action' is coded like above rule'X10'.
34. Ans. C.

In this code language, there are some letters given we have to find the exact code used for them.

Example- general

Step I- firstly, the first letter is
decremented by three i.e. 'D'
Step II- then write the value for
individual letters i.e. $A=1, B=2, C=3$ and so on. Now, general is denoted by G $=7, E=5, N=14, R=18, L=12$.
Step III- Add the value of odd places letters like $\mathrm{g}=7+\mathrm{n}=14+\mathrm{r}=18+\mathrm{l}=$ 12 , after adding $=51$ and assign them as 1.
Step IV- Add all the value of the even places letter like $e=5+e=5+a=1$,
after adding $=11$ and assign them as 2.
Step V- Now, Subtract the 1 from 2, i.e. 51-11 = 40
So, 'general' is coded as 'D40'.
So, 'quick display morning' is coded like above rule- 'N13 A34 J4'.
35. Ans. B.

In this code language, there are some letters given we have to find the exact code used for them.

Example- general

Step I- firstly, the first letter is decremented by three i.e. 'D'
Step II- then write the value for
individual letters i.e. $A=1, B=2, C=3$ and so on. Now, general is denoted by G $=7, E=5, N=14, R=18, L=12$.
Step III- Add the value of odd places letters like $\mathrm{g}=7+\mathrm{n}=14+\mathrm{r}=18+\mathrm{l}=$ 12, after adding $=51$ and assign them as 1.
Step IV- Add all the value of the even places letter like e = 5 + e = 5 +a = 1, after adding $=11$ and assign them as 2. Step V- Now, Subtract the 1 from 2, i.e. 51-11 = 40
So, 'general' is coded as 'D40'.
So, 'swimming' is coded like above rule'P3'.
36. Ans. D.
$A>B=C<D<E>F$
Conclusions:
For conclusion I -
$C<D<E>F-$ no relation between F and C .
I. F < C (false)

For conclusion II -
$A>B=C<D-$ no relation betwenn A and D.
II. A > D (false)

Hence, neither conclusion I nor II is true.
37. Ans. A.
$A=B>C>D ; E<C$
Conclusions:
For conclusion I -
$E<C<B=A-E$ is smaller than A
I. $\mathrm{E}<\mathrm{A}$ (true)

For conclusion II -
E < C > D - no relation between E and D.
II. D $<\mathrm{E}$ (false)

Hence, only Conclusion I is true.
38. Ans. B.

A $<\mathrm{B}>\mathrm{C}>\mathrm{D} ; \mathrm{A}>\mathrm{E}, \mathrm{D}>\mathrm{F}$
by combining both the statement we get
$\mathrm{E}<\mathrm{A}<\mathrm{B}>\mathrm{C}>\mathrm{D}>\mathrm{F}$
Conclusions:
For conclusion I -
$B>C>D>F-B$ is greater than F
I. $F>B$ (false)

For conclusion II -
$E<A<B-B$ is greater than E.
II. $B>E$ (true)

Hence, only Conclusion II is true.
39. Ans. E.
$A=B<C>D ; E>C<F$

Conclusions:

For conclusion I -

$A=B<C<E-E$ is greater than A
I. $\mathrm{E}>\mathrm{A}$ (true)

For conclusion II-
F>C>D
II. $\mathrm{F}>\mathrm{D}$ (true)

Hence, both Conclusions I and II are true.
40. Ans. E.
$A>B=C ; D<C>E$
Conclusions:
For conclusion I -
$A>B=C>D-D$ is smaller than A I. $\mathrm{D}<\mathrm{A}$ (true)

For conclusion II
$A>B=C>E-E$ is smaller than A
II. $\mathrm{E}<\mathrm{A}$ (true)

Hence, both Conclusions I and II are
true
41. Ans. A.

Statements: $\mathrm{F}>\mathrm{J}=\mathrm{L}>\mathrm{Q} \mathrm{W} \geq \mathrm{F}>\mathrm{HL}$
$\leq \mathrm{T}<\mathrm{X}$
Conclusions: $\mathrm{H}>\mathrm{J}, \mathrm{J}<\mathrm{X}$
For conclusion I: H > J
From the statements I and II, we get:
J < F > H
Here, the signs on inequalities between J
and F are getting reversed. Conclusion I hence doesn't follow.
For conclusion II: J < X
Combining statements I and III, we get:
$\mathrm{J}=\mathrm{L} \leq \mathrm{T}<\mathrm{X}$
Here, the common sign between J and X is ' $<$ ' and the given conclusion is also J
$<\mathrm{X}$. Hence, conclusion II follows.
Hence, the correct answer would be
'Only conclusion II follows'.
Hence option A is correct.
42. Ans. C.

Statements: $\mathrm{D}>\mathrm{B}=\mathrm{A}>\mathrm{T} \mathrm{B} \geq \mathrm{N}>\mathrm{VA}$ $\leq \mathrm{Z}<\mathrm{X}$
Conclusions: Z > T, N < D
For conclusion I: Z > T
Combining statements I and III, we get:
$Z \geq A>T$
Here, the common sign between Z and T is ' $>$ ' and the given conclusion is $Z>T$.
Hence, conclusion I follows.
For conclusion II: N < D
Combining statements I and II, we get:
D $>\mathrm{B} \geq \mathrm{N}$
Here, the common sign between D and N is ' $>$ ' and the given conclusion is $\mathrm{N}<$ D. Conclusion II follows.

Hence, the correct answer would be
'Both the statements I and II follow'.
Hence option C is correct.
43. Ans. B.

Statements: $2>3>4=1<5,9 \leq 7=$ $8<4<0$
Conclusions: I. $3>7$ II. $9 \leq 1$
Combining equations to find the relationship between 3 and 7, we get $2>3>4>8=7$
Clearly, the common sign of inequalities between 3 and 7 is of ' $>$ ' and the conclusion given is $3>7$. C 1 , hence, follows.
Similarly, for 9 and 1 we get,
$9 \leq 7=8<4=1$
Here, the common sign of inequalities between 9 and 1 is of ' $<$ ' whereas the conclusion given is $9 \leq 1$. C2, hence, doesn't follow.
Hence option B is the correct answer. 44. Ans. C.

Statements: $\mathrm{C}<\mathrm{O} \leq \mathrm{G}=\mathrm{E} \leq \mathrm{P}<\mathrm{I}, \mathrm{J}=$ $\mathrm{P}<\mathrm{H} \leq \mathrm{S} \leq \mathrm{V}>\mathrm{N}, \mathrm{A} \leq \mathrm{V}<\mathrm{B}=\mathrm{Z}=\mathrm{W}$ $>\mathrm{U}$
Conclusions: I. O < B II. S > G
Combining both the equations to find the relationship between O and B, we get
$\mathrm{O} \leq \mathrm{G}=\mathrm{E} \leq \mathrm{P}<\mathrm{H} \leq \mathrm{S} \leq \mathrm{V}<\mathrm{B}$
Clearly, the common sign of inequalities between O and B is of ' $<$ ' and the given conclusion is $\mathrm{O}<\mathrm{B}$. C 1 , hence, follows. Similarly, for S and G, we get
$S \geq H>P \geq E=G$
Clearly, the common sign between S and G is of ' $>$ ' and the given conclusion is S $>$ G. C2, hence, follows as well.
Option C is hence the correct answer.
45. Ans. B.

Statements: $7>5>9=1<3,4 \leq 2=$ $6<9<0$
Conclusions: I. $5>2$ II. $4 \leq 1$
Combining equations to find the
relationship between 5 and 2, we get $7>5>9>6=2$
Clearly, the common sign of inequalities between 5 and 2 is of ' $>$ ' and the conclusion given is $5>2$. C 1 , hence, follows.
Similarly, for 4 and 1 we get,
$4 \leq 2=6<9=1$
Here, the common sign of inequalities between 4 and 1 is of ' $<$ ' whereas the conclusion given is $4 \leq 1$. C2, hence, doesn't follow.
Hence option B is the correct answer. 46. Ans. D.

$\$=\geq$	$@=\leq$	$\delta=>$
$\#=<$	$\%==$	

$\mathrm{F} @ \mathrm{~N} \Rightarrow \mathrm{~F} \leq \mathrm{N}$
$\mathrm{N} \mathrm{\delta R} \Rightarrow \mathrm{~N}>\mathrm{R}$
$H @ R \Rightarrow H \leq R$
Therefore, $\mathrm{F} \leq \mathrm{H}>\mathrm{R} \geq \mathrm{H}$
Conclusions I. H $\delta \mathrm{N} \Rightarrow \mathrm{H}>\mathrm{N}$, which is true.
And II. F \# R $\Rightarrow \mathrm{F}<\mathrm{R}$, which is true.
Thus, both conclusion follow.
Hence, option D is correct.
47. Ans. B.

$\$=\geq$	$@=\leq$	$\delta=>$
$\#=<$	$\%==$	

$M \# T \Rightarrow M<T$
$\mathrm{T} @ \mathrm{~K} \Rightarrow \mathrm{~T} \leq \mathrm{K}$
$K \$ N \Rightarrow K \geq N$
Therefore, $\mathrm{M}<\mathrm{T} \leq \mathrm{K} \geq \mathrm{N}$
Conclusions I. M \# N $\Rightarrow \mathrm{M}<\mathrm{N}$, which
is not true.
And II. $K \delta M \Rightarrow K>M$, which is true. Thus, only conclusion II follows.
Hence, option B is correct.
48. Ans. C.

$\$=\geq$	$@=\leq$	$\delta=>$
$\#=<$	$\%==$	

$\mathrm{T} \% \mathrm{H} \Rightarrow \mathrm{T}=\mathrm{H}$
$H \$ W \Rightarrow H \geq W$
Therefore, $\mathrm{T}=\mathrm{H} \geq \mathrm{W}$
Conclusions I. W \# T $\Rightarrow \mathrm{W}<\mathrm{T}$, which is not true.
And II. W \% T $\Rightarrow \mathrm{W}=\mathrm{T}$, which is not true.
T is either greater than or equal to W . Therefore, either conclusion I or II is true.
Hence, option C is correct.
49. Ans. A.

$\$=\geq$	$@=\leq$	$\delta=>$
$\#=<$	$\%==$	

$\mathrm{N} \delta \mathrm{K} \Rightarrow \mathrm{N}>\mathrm{K}$
K \# D $\Rightarrow \mathrm{K}<\mathrm{D}$
$D \% M \Rightarrow D=M$
Therefore, $\mathrm{N}>\mathrm{K}<\mathrm{D}=\mathrm{M}$
Conclusions I. M $\delta \mathrm{K} \Rightarrow \mathrm{M}>\mathrm{K}$, which is true.
And II. $D \delta B \Rightarrow D>N$, which is not true.
Thus, only Conclusion I is true.
Hence, option A is correct.
50. Ans. E.

J \$ B $\Rightarrow \mathrm{J} \geq \mathrm{B}$
$B \% R \Rightarrow B=R$
$R \delta F \Rightarrow R>F$
Therefore, $\mathrm{J} \geq \mathrm{B}=\mathrm{R}>\mathrm{F}$
Conclusions I. F \# B $\Rightarrow \mathrm{F}<\mathrm{B}$, which is true.
And II. R @ J $\Rightarrow \mathrm{R} \leq \mathrm{J}$, which is true.
Thus, both Conclusions I and II are true.
Hence, option E is correct.
51. Ans. B.
$A>B \geq C \leq D, C=E \geq F$
I. A > D, FALSE
II. $\mathrm{F} \leq \mathrm{D}-\mathrm{F} \leq \mathrm{C} \leq \mathrm{D}$, TRUE

Hence, Conclusion II is true.
52. Ans. E.
$\mathrm{N} \geq \mathrm{T}>\mathrm{P} \leq \mathrm{Q}, \mathrm{T}>\mathrm{R}, \mathrm{P}>\mathrm{S}$
I. $\mathrm{T}>\mathrm{S}-\mathrm{T}>\mathrm{P}>\mathrm{S}$, TRUE
II. $\mathrm{R}<\mathrm{N}-\mathrm{N} \geq \mathrm{T}>\mathrm{R}$, TRUE

Hence, Both conclusion I and II are true 53. Ans. E.
$\mathrm{M} \leq \mathrm{N}<\mathrm{O} \geq \mathrm{P}, \mathrm{O} \leq \mathrm{Q} \leq \mathrm{S}$
I. $\mathrm{Q}>\mathrm{M}-\mathrm{M} \leq \mathrm{N}<\mathrm{O} \leq \mathrm{Q}$, TRUE
II. $\mathrm{P} \leq \mathrm{S}-\mathrm{P} \leq \mathrm{O} \leq \mathrm{Q} \leq \mathrm{S}$, TRUE

Hence, both conclusion I \& II is true.
54. Ans. C.
$\mathrm{G} \geq \mathrm{H} \geq \mathrm{I}=\mathrm{J} \geq \mathrm{K}, \mathrm{A} \leq \mathrm{J}$
I. $A>G, G \geq J \geq A$, FALSE
II. $A=G, G \geq J \geq A$,FALSE

Hence, Either Conclusion I or II follows.
55. Ans. B.
$\mathrm{N} \geq \mathrm{T}>\mathrm{P} \leq \mathrm{Q}, \mathrm{T}>\mathrm{R}, \mathrm{P}>\mathrm{S}$
I. $R P \geq$ Q, FALSE
II. $\mathrm{Q}>\mathrm{S}, \mathrm{Q} \geq \mathrm{P}>\mathrm{S}$, TRUE

Hence, only Conclusion II is true.
56. Ans. D.
$\mathrm{S} \geq \mathrm{T}<\mathrm{V}$
I. $\mathrm{V}>\mathrm{S}$ (False)

U > T \& V > T
$\mathrm{U}>\mathrm{T}<\mathrm{V}$
II. $\mathrm{U}>\mathrm{V}$ (False)
57. Ans. D.
$A=B \leq C>D, C \geq E$
$C \geq A \& C \geq E$
$\mathrm{A} \leq \mathrm{C} \geq \mathrm{E}$
I. $A \geq E$ (False)
II. $C>D \& C \geq E$

D $<\mathrm{C} \geq \mathrm{E}$
So, E > D doesn't follow
58. Ans. D.
I. $K=J \& M \geq J$

So, $K \geq M$ doesn't follow
II. No relation between M \& H
59. Ans. E.
I. $S>R \& R \geq T$

So, $S>T$
II. $\mathrm{P} \geq \mathrm{R} \& \mathrm{R} \geq \mathrm{T}$

So, $P \geq T$ (follows)
60. Ans. D.
I. $R \geq O \& P>O$

So, R > P doesn't follow
II. $R \geq O \& N \geq O$
$\mathrm{R} \geq \mathrm{O} \leq \mathrm{N}$
So, $R \geq N$ doesn't follow.
61. Ans. B.
$\mathrm{M}>\mathrm{N}=\mathrm{P} \leq \mathrm{O}$
(I) $\mathrm{O} \$ \mathrm{P}$ implies $\mathrm{O}=\mathrm{P}$ is not true. So, conclusion is not true.
(II) M @ P implies $M>P$ is true. So, conclusion II is true.

$>$	\geq	$<$	\leq	$=$
@	$\#$	$\%$	(c)	$\mathbf{\$}$

62. Ans. D.
$Q>M=O \geq P$
(I) $\mathrm{Q} \% \mathrm{P}-\mathrm{Q}<\mathrm{P}$ is not true. So, conclusion I is not true.
(II) $\mathrm{Q} \$ \mathrm{P}-\mathrm{Q}=\mathrm{P}$ is not true. So, conclusion II is also not true.

$>$	\geq	$<$	\leq	$=$
@	$\#$	$\%$	(c)	$\mathbf{\$}$

So, it follows either or case.
63. Ans. D.
$\mathrm{P} \leq \mathrm{R}<\mathrm{Q} \geq \mathrm{N}$
(I) $\mathrm{R} @ \mathrm{~N}-\mathrm{R}>\mathrm{N}$, we can't compare R and N . So, conclusion I is not true.
(II) P © $\mathrm{N}-\mathrm{P} \leq \mathrm{N}$, we can't compare P and N . So, conclusion II is also not true.

$>$	\geq	$<$	\leq	$=$
@	$\#$	$\%$	(c)	$\mathbf{\$}$

64. Ans. B.
$M>Q=S \leq N$
(I) N @ M - $\mathrm{N}>\mathrm{M}$ we can't compare N and M. So, conclusion I is not true.
(II) $N \# Q-N \geq Q$ is true. So, conclusion II is true.

$>$	\geq	$<$	\leq	$=$
@	$\#$	$\%$	(c)	$\mathbf{\$}$

65. Ans. C.
$\mathrm{O} \leq \mathrm{M}>\mathrm{N}=\mathrm{P}$
(I) $O \$ M-O=M$ is not true.
(II) $O \% M-O<M$ is not true.

But both are complementary pair.

$>$	\geq	$<$	\leq	$=$
@	$\#$	$\%$	(c)	$\mathbf{\$}$

66. Ans. D.

Option 4) is the correct answer.
From the above statement, we can
conclude $\mathrm{F} \geq \mathrm{G}=\mathrm{A} \geq \mathrm{B} \geq \mathrm{C} \leq \mathrm{D}$.
Therefore, we can not determine any relationship between D and F
(because of opposite signs). Hence, conclusion I is not true.
For conclusion II,
$\mathrm{F} \geq \mathrm{B}$. Therefore, conclusion II is not true.
67. Ans. C.

Option 3) is the correct answer. We know that, only 3 types of relationships are possible between 2 elements (say G and H) which are:
i) $\mathrm{G}>\mathrm{H}$ ii) $\mathrm{G}<\mathrm{H}$ iii) $\mathrm{G}=\mathrm{H}$ But, it is given that $G \neq \mathrm{H}$ (i.e. G is not equal to H). Therefore, only 2
relationships are possible between G and H (i.e. either $G<H$ or $H<G$)
and both these relations are included in conclusion I and II.
So, the right answer is either I or II follows.
68. Ans. D.
$\mathrm{Q}=\mathrm{R} \leq \mathrm{S} \geq \mathrm{V} \geq \mathrm{U}=\mathrm{T}$
Option 4) is the correct answer as relationship can not be determined between V and Q as well as U and R . 69. Ans. D.

Option d) is the correct answer as the relationship can not be determined between V and Q . And there are 2 possibilities between P and Q (i.e either $\mathrm{P}>\mathrm{Q}$ or $\mathrm{P}<\mathrm{Q}$).
70. Ans. A.

Option a) is the correct answer.
As, $F \geq G>D \geq A$, Therefore, we can clearly see that $F>A$ (But the given relation is $F \geq A$ which is not true). And $\mathrm{F} \geq \mathrm{G}>\mathrm{D} \geq \mathrm{C}$, Therefore, we can clearly see that $F>C$ (so the given conclusion is true).

IBPS PO \& Clerk Combo Online Test Series

This pack includes:

1. 60+ Full Mocks for Practice
2. Previous Years' Papers in Mock Format
3. Available in English \& Hindi
4. All India Rank \& Performance Analysis
5. Available on Mobile \& Desktop
