Answer Set

1. Ans. A.

By Pythagoras theorem
$A C^{2}=A D^{2}+D C^{2}$
$\mathrm{DC}=\sqrt{A C^{2}-A D^{2}}$
$=\sqrt{13^{2}-5^{2}}$
$\mathrm{DC}=12 \mathrm{~cm}$
Perimeter=2(AD+DC)
$=2(5+12)$
$=2 \times 17$
$=34$
2. Ans. C.

Given, area of a rhombus-shaped garden $=200 \sqrt{3}$ square meter and the acute angle formed by the two sides of the rhombus is 60 degree

We know that,
Area of a rhombus with side length 'a' and acute angle ${ }^{\theta}$ formed by sides $=$ a x ax $\sin { }^{\theta}$
$200 \sqrt{3}=\mathrm{axax} \sin 60$
On solving, we get, $\mathrm{a}=20$ metres

Perimeter $=4 \mathrm{x}$ side $=80 \mathrm{~m}$
Since the boundary is half meter high. Thus, area of boundary $=0.5 \times 80=40$
The cost of making a boundary per square meter = Rs. 148
Therefore, the cost of making a half meter high boundary around the garden if the cost of making boundary per square meter be Rs. $148=40 \times 148=$ Rs. 5920

So option (c) is the correct answer.

3. Ans. B.

Let breadth of room $(b)=x$ m.
Length of room $(1)=2 \times \mathrm{m}$.
Given, height of room $=4 \mathrm{~m}$.
According to question,
$2 h(l+b)=120$
$\Rightarrow 2 \times 4(2 x+x)=120$
$\Rightarrow 3 x=\frac{120}{2 \times 4}=15$
$\Rightarrow x=\frac{15}{3}=5 \mathrm{~m}$.
So, length of room $=5 \times 2=10 \mathrm{~m}$.
Breadth of room $=5 \mathrm{~m}$.
Area of the floor $=l \times b$
$=10 \times 5=50 \mathrm{~m}^{2}$
Hence option (b)
4. Ans. D.

In a rectangle, consecutive sides are perpendicular to each other.
Thus, if slope of side DA of a rectangle, $m=5 / 3$
Then slope of side $A B=-1 / m=-3 / 5$
5. Ans. C.

Diagonal of square $=14 \sqrt{ } 2$
Let the side of square $=\mathrm{a}$
Let the radius of circle $=r$
Diagonal of square $=\sqrt{ } 2 a=14 \sqrt{ } 2$
$\mathrm{a}=14$
As circle is inscribed in a square then circle diameter is equal to the length of side
$2 \mathrm{r}=14$
$\mathrm{r}=7$
Area of cirle $=\pi r^{2}$
$=\frac{22}{7} \times 7 \times 7=154 \mathrm{~cm}^{2}$
6. Ans. B.

Quantity 1: Let the radius of cone be rcm
Given, CSA of cone = CSA of cylinder
$=25 \pi r=2 \pi x 5 x 17.5$
$\mathrm{r}=7 \mathrm{~cm}$

Now, for cone
$=h^{2}=25^{2}-7^{2}$
$=\mathrm{h}=24 \mathrm{~cm}$
Therefore, volume of cone
$=\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 24=1232 \mathrm{~cm}^{2}$
Quantity 2: Volume of cuboidal box $=15 \times 12 \times 8=1440 \mathrm{~cm}^{2}$
Therefore, Quantity 2 > Quantity 1
So option (b) is the correct answer.
7. Ans. C.

PQ is parallel to side AB and side CD .
Length of $\mathrm{PQ}=\frac{\mathrm{AP} \times \mathrm{DC}+\mathrm{PD} \times \mathrm{AB}}{\mathrm{AP}+\mathrm{PD}}$
Length of $\mathrm{PQ}=\frac{3 \times 15+2 \times 40}{3+2}=\frac{125}{5}=25 \mathrm{~cm}$
8. Ans. E.

Let base radius and height of conical pit is 21x and 40x respectively
Volume of 22 cuboidal bricks + volume of 22 cylindrical bricks $=$ volume of mud from conical pit
$=22 \times\left[(14 \times 4 \times 4)+\frac{22 \times 7 \times 7 \times 4}{7}\right]=\frac{1}{3} \times \frac{22}{7} \times(21 \mathrm{x})^{2} \times 40 \mathrm{x}$
$=840=21 \times 40 \times \mathrm{x}^{3}$
$=x^{3}=1 ; x=1$
Quantity I:
Half of height of conical pit $=\frac{40 \mathrm{x}}{2}=20 \mathrm{~cm}$
Quantity II:
Two less than the total number of cuboidal bricks made $=22-2=20$
So, Quantity I = Quantity II
So option (e) is the correct answer.
9. Ans. D.

Let the side of the square $=$ a metre and the radius of the circle $=\mathrm{r}$ metre
According to question,

$$
\begin{aligned}
& a=2 r=a^{2}-\pi r^{2}=168 \\
& (2 r)^{2}-\pi r^{2}=168 \\
& 4 r^{2}-\frac{22}{7} r^{2}=168 \\
& r^{2}(28-22)=168 \times 7 \\
& r^{2}=\frac{168 \times 7}{6}=198 \times 7 \\
& r=14 \mathrm{~m}
\end{aligned}
$$

Side of square $=a=2 r=2 \times 14=28 \mathrm{~m}$
Perimeter of square $=4 a=4 \times 28=112 \mathrm{~m}$
\therefore Required cost $=112 \times 20=2,240$
10. Ans. C.

L/B=5/4.......1)
\& $\mathrm{L}=20+\mathrm{B}$.
Putting 2) in 1), we get:
$(20+B) / B=5 / 4$
$\rightarrow 80+4 \mathrm{~B}=5 \mathrm{~B}$
$\rightarrow \mathrm{B}=80$
$\rightarrow \mathrm{L}=100$
So, Perimeter=2(L+B)
\rightarrow Perimeter $=2(100+80)=360$
11. Ans. C.

As per the given information I draw two rhombuses PQRS, JKLM Then side of $\mathrm{PQRS}=\mathrm{AB}=5$ (right angle is formed)
Then side of MLKJ=CD=15 (MLJ is an equilateral triangle)
hence median $\mathrm{MN}=(\mathrm{AB}+\mathrm{CD}) / 2=(15+5) / 2=10$

12. Ans. C.

Length of the diagonal of $\mathrm{It}^{\text {st }}$ square $=\sqrt{ }(2 * 200)=20 \mathrm{~m}$
\therefore Length of the diagonal of new square $=20 \sqrt{ } 2 \mathrm{~m}$
\therefore Area of the new square $=1 / 2 \times(20 . \sqrt{ } 2) 2=400$ sq. m

13. Ans. A.

Let the side of the square be x cm , then
Length \times breadth $=3(\text { side })^{2}$
\Rightarrow side $=10 \mathrm{~cm}$
14. Ans. C.

Given radius of cone $=8.4 \mathrm{~m}$
Vertical height of cone $=3.5 \mathrm{~m}$
Number of bag $=\frac{\text { Volume of conical tent }}{\text { Volume of each bag }}$
$=\frac{\frac{1}{3} \pi r^{2} h}{1.96}$
$=\frac{1 \times 22 \times 8.4 \times 8.4 \times 3.5}{3 \times 7 \times 1.96}$
$=22 \times 6=132$
Hence option (c)
15. Ans. A.

Volume of $I=\frac{2}{3} \pi r^{3}$ [$\mathrm{r}=$ radius]
Volume of $I I=\pi r^{2}(2 r)=2 \pi r^{3} \quad$ [As h=2r]
Volume of building $=\frac{2}{3} \pi r^{3}+2 \pi r^{3}$
$=\frac{8}{3} \pi r^{3}$
According to question:
$\frac{8}{3} \pi r^{3}=67 \frac{1}{21}=\frac{1408}{21}$
$\Rightarrow r^{3}=\frac{1408 \times 3}{21 \times 8 \times \pi}$
$\Rightarrow r^{3}=\frac{1408 \times 3 \times 7}{21 \times 8 \times 22}=8$
$\Rightarrow r^{3}=2^{3}$
$\Rightarrow r=2$
Hence, height of building $=3 r=3 \times 2=6 \mathrm{~m}$
Hence option (a)
16. Ans. C.

Let radius and height of base of solid circular cylinder be r and h respectively.
Given,
$\frac{r}{h}=\frac{2}{3}$
$\Rightarrow r=\frac{2 h}{3}$
Volume of cylinder $=\pi r^{2} h$
$\Rightarrow 1617=\frac{22}{7} \times\left(\frac{2 h}{3}\right)^{2} \times h$
$\Rightarrow \frac{1617 \times 7}{22}=\frac{4 h^{2}}{9} \times h$
$\Rightarrow h^{3}=\frac{9 \times 1617 \times 7}{22 \times 4}$
$\Rightarrow h^{3}=1157.625$
$\Rightarrow h^{3}=(10.5)^{3}$
$\Rightarrow h=10.5 \mathrm{~cm}$
$r=\frac{2 \times 10.5}{3} \quad$ [From (i)]
$\Rightarrow r=7$
Total surface Area of cylinder $=2 \pi r^{2}+2 \pi r h$
$=2 \pi r(r+h)$
$=2 \times \frac{22}{7} \times 7 \times(7+10.5)$
$=770 \mathrm{~cm}^{2}$
Hence option (c)
17. Ans. A.

Given, height $(\mathrm{h})=24 \mathrm{~cm}$
Radius of bottom circle (r) $=\frac{18}{2}=9 \mathrm{~cm}$
Also, given capacity of glass
i.e. volume of glass is in shape of frustum be πx \qquad

As, volume of frustum $=\frac{\pi h}{3}\left[r^{2}+R^{2}+r R\right]$
$=\pi \times \frac{24}{3}\left[2^{2}+9^{2}+2 \times 9\right]$
$=\pi \times 8[4+81+18]$
$=\pi \times 824$
After comparing (i) and (ii), we get
$x=824$
Hence option (a)
18. Ans. C.

Given diameter of base and height of cylinder vessel be 2 m and 3.5 m respectively.
Then radius of base (r) $=\frac{2}{2}=1 \mathrm{~m}$
$h=3.5 \mathrm{~m}$
Let height of roof be H m
Then volume of roof $=22 \times 20 \times H$
Volume of cylindrical vessel $=\pi r^{2} h$
$=\frac{22}{7} \times 1^{2} \times 3.5$
As $(i)=(i i)$
Then, $22 \times 20 \times H=\frac{22}{7} \times 1 \times 3.5$
$\Rightarrow H=\frac{22 \times 3.5}{7 \times 22 \times 20}$
$\Rightarrow H=0.025$
$\Rightarrow H=0.025 \times 100 \mathrm{~cm}$
$\Rightarrow H=2.5 \mathrm{~cm}$
Hence option (c)
19. Ans. B.

Area of base $=38.5=\pi r^{2}$
$\frac{22}{7} \times r^{2}=38.5$
$=r^{2}=12.25$
$\mathrm{r}=3.5$
Volume of tent $=154$
Then $154={ }^{\frac{1}{3}} \pi r^{2} \times h$
$154 \times 3=38.5 \times \mathrm{h}$
$\mathrm{h}=12$
slant height of tent $=\sqrt{ }(12.25+144)=\sqrt{ }(156.25)=12.5=1$
$\frac{22}{7} \times 3.5 \times(12.5+3.5)=176$
width of canvas $=2 \mathrm{~cm}$
so length of canvas $=176 / 2=68 \mathrm{~cm}$
20. Ans. C.

The total surface area of a hemisphere $=166.32 \mathrm{sq} \mathrm{cm}$
$3 \pi r^{2}=166.32$
$\Rightarrow \mathrm{r}=4.2 \mathrm{~cm}$
Now, it's curved surface area $=2 \pi \mathrm{r}^{2}$
$=2 \times(22 / 7) \times(4.2)^{2}$
$=110.88 \mathrm{sq} . \mathrm{cm}$
21. Ans. C.

Curved surface of cone $=\boldsymbol{\pi r} \boldsymbol{I}$
Let the curved surface area of first cone be $=\boldsymbol{\pi} r_{1} \boldsymbol{I}_{1}$
Let the curved surface area of second cone be $=\boldsymbol{\pi} r_{2} \boldsymbol{I}_{\mathbf{2}}$
According to question,
$\frac{\pi r_{1} l_{1}}{\pi r_{2} l_{2}}=\frac{1}{9}$
And
$\frac{l_{1}}{l_{2}}=\frac{3}{1}$
Therefore,
Putting equation (ii) in equation (i) we get,
$\frac{r_{1} \times 3}{r_{2} \times 1}=\frac{1}{9}$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{1}{27}$
22. Ans. A.

On melting and recasting, volume doesn't change.
So, volume of cone $=$ volume of sphere
$\Rightarrow \frac{1}{3} \pi r^{2} h=\frac{4}{3} \pi R^{3}$
Here, $\mathrm{R}=21 \mathrm{~cm}$ and $\mathrm{r}=(21 / 2) \mathrm{cm}$
$\therefore h=4 \times \frac{R^{3}}{r^{2}}$
$=4 \times \frac{21^{3}}{\left(\frac{21}{2}\right)^{2}}$
$=336 \mathrm{~cm}$
23. Ans. B.

Side of square base $=14 \mathrm{~cm}$
Area of square base $=14 \times 14=196$
Volume of pyramid=area of base \times height $==^{\prime} 196^{\prime} \times 22$
Let the radius of sphere $=r$
Then $196 \times 22=4 \times \frac{22}{7} \times r^{3}$
$\mathrm{r}^{3}=49 \times 7$
$\mathrm{r}=7 \mathrm{~cm}$
24. Ans. B.

Volume of earth taken out $=\pi r^{2} h$
$=(22 / 7) \times(7)^{2} \times 80$
$=12320 \mathrm{~m}^{3}$
Area of field which is not dug $=1 \times b-\pi r^{2}$
$=28 \times 22-(22 / 7) \times(7)^{2}$
$=616-154$
$=462 \mathrm{~m}^{2}$
Now, increase in the level of the field = volume of earth taken out/area of field which is not dug
$=12320 / 462$
$\approx 26.66 \mathrm{~m}$
25. Ans. D.

The volume in both cases would be the same.
Let the height of the cone $=h$
Then, external radius $=6 \mathrm{~cm}$
Internal radius $=4 \mathrm{~cm}$
$4 \hat{\mathrm{I}} *(1 / 8)\left(6^{3}-4^{3}\right) / 3=\hat{\mathrm{I}} * 4^{2 *} \mathrm{~h} / 3$
$\mathrm{H}=\left(6^{3}-4^{3}\right) / 32=38 / 8 \mathrm{~cm}=4.75 \mathrm{~cm}$

