General Aptitude

1. Newspapers are a constant source of delight and recreation for me. The only (what bother's) trouble is that I read too (a lot/ large) many of them.
2. $343=7^{3}$
$1331=11^{3}$
$4913=17^{3}$
All numbers given are cube of prime numbers so $13^{3}=2917$ satisfy the missing number.
3. The passengers were angry with the airline staff about the delay.
4. Time taken by X to now the lawn $=2$ hrs.
\therefore Work done by X in $\mathbf{1} \boldsymbol{h r}=\frac{\mathbf{1}}{\mathbf{2}}$
Similarly,
Work done by 4 in hr = $1 / 4$
Work done by $x+4$ in $1 h r=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
\therefore Total time taken by X \& 4 together $=\frac{4}{3}$ hours
$=\frac{4}{3} \times 60$ minutes
$=80$ Minutes
5. I am not sure if the bus that has been booked will be able to accommodate (occupy) all the students.
6. Given that $X=\{1,2,3\}$
$4=\{2,3,4\}$
$Z=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{3}{2}, \frac{3}{4}, \frac{3}{3}\right\}$
Minimum value in $z=\frac{1}{4}$
Maximum value in $z=\frac{3}{2}$

Product $=\frac{3}{8}$
7. Let number of boys participated $=4 x$

Number of girls participated $=3 x$
Total number of students participated $=7 x$
Total passed candidates $=\frac{80}{100} \times 7 x=\frac{28}{5} x$
Girls candidate who passed $=\frac{90}{100} \times 3 x=\frac{27}{10} x$
Boys candidate who passed $=$ Total passed candidate - Girls candidate who passed
$=\frac{28}{5} x-\frac{27}{10} x$
$=\frac{29}{10} x$
$=\frac{29 x}{10 \times 4 x} \times 100=72.5 \%$
8. The correct statement can be concluded from Venn diagram or using the Syllogism.
9.For all digits of a number which lie between 100 and 1000 are even,

Unit and tens digits can be filled from the set $\{0,2,4,6,8\}$
But hundred's digit does not include 0 as it will not remain a number which lie between 100 and 1000
\therefore Hundreds digit set is $\{2,4,6,8\}$

Total integer $=100$ numbers
10. Given that

Ganga > Rekha, Lakshmi
Lakshmi > Sana
Mita > Ganga
\therefore Mita > Ganga > Rekha, Lakshmi > Sana
$\therefore 2$ and statement 4 are correct

Electrical Engineering

1.Given that

Mean square of random process $=E\left(\boldsymbol{x}^{\mathbf{2}}\right)=\frac{\boldsymbol{k t}}{\boldsymbol{C}}$
Mean is given zero $\Rightarrow E(x)=0$
We know that $\mathrm{E}\left(\mathrm{x}^{2}\right)-[\mathrm{E}(\mathrm{x})]^{2}=$ variance
Variance $=\frac{K T}{C}$
Standard deviation $=\sqrt{\text { variance }}=\sqrt{\frac{K T}{C}}$
2.Applying R.H criteria for stability

$\Delta(S)=S^{4}+3 S^{3}+3 S^{2}+S+K=0$
S^{4}
S^{3}
S^{2}
S^{1}
S^{0}

For stability, first column should be greater than zero
$\frac{\frac{8}{3}-3 K}{8 / 3}>0$ and $k>0$
$\therefore 0<K<\frac{8}{9}$
3.
$H(S)=\frac{S+3}{S^{2}+2 S+1}$
$H(t)=L^{-1}[H(S)]$
$=L^{-1}\left[\frac{S+3}{s^{2}+2 S+1}\right]=L^{-1}\left[\frac{S+3}{(S+1)^{2}}\right]$
$=L^{-1}\left[\frac{S+1+2}{(S+1)^{2}}\right]=L^{-1}\left[\frac{1}{S+1}\right]+L^{-1}\left[\frac{2}{(S+1)^{2}}\right]$
$H(t)=e^{-t}+2 t e^{-t}$
4. We know that

Voltage Regulation $=\frac{V_{N L}-V_{F L}}{V_{N L}} \times 100$
Given that $\mathrm{V}_{\mathrm{FL}}=95 \mathrm{~V}$
$\mathrm{V}_{\mathrm{NL}}=100 \mathrm{~V}$
$\% \mathrm{VR}=\frac{100-95}{100} \times 100=5 \%$
5. We know that $\mathrm{P}=\mathrm{VI} \cos \varphi$, as load and voltage are same
$\therefore \mid \cos \varphi=$ constant
$l_{1} \cos \varphi_{1}=I_{2} \cos \varphi_{2}$
$\mathrm{I}_{1}=200 \mathrm{~A}$
$\operatorname{Cos} \varphi_{1}=1$
$\operatorname{Cos} \varphi_{2}=0.5$
$I_{2}=\frac{I_{1} \cos \phi_{1}}{\cos \phi_{2}}=400 \mathrm{~A}$
6. We know that

Figure (i)

Figure (ii)
$C_{1}=\frac{2 \pi \epsilon_{r}}{\ln \left(\frac{b}{a}\right)}=\frac{2 \pi\left(2 \epsilon_{o}\right)}{\ln \left(\frac{R}{r}\right)}$
$C_{1}=\frac{4 \pi \epsilon_{o}}{\ln \left(\frac{R}{r}\right)}$

Total portion cover 2π
$\therefore \frac{1}{4}$ portion covers $=\frac{2 \pi}{4}=\frac{\pi}{2}$
$\frac{\pi}{2}$ length for $\epsilon_{r_{1}}$ and $\frac{3 \pi}{2}$ length for $\in_{r_{1}}$
Both are connected in parallel

$C_{2}=C_{r 1}+C_{r 2}$

$$
\begin{aligned}
& =\frac{2 \pi\left(2 \epsilon_{0}\right)}{\ln \left(\frac{R}{r}\right)} \times \frac{3 \pi}{2}+\frac{2 \pi\left(\epsilon_{r_{2}} \in_{o}\right)}{\ln \left(\frac{R}{r}\right)} \times \frac{\pi}{2} \\
& =\frac{\pi \epsilon_{o}}{\ln \left(\frac{R}{r}\right)}\left[3+\frac{\epsilon_{r_{2}}}{2}\right]
\end{aligned}
$$

Given $C_{2}=2 C_{1}$
$\frac{\pi \epsilon_{o}}{\ln \left(\frac{R}{r}\right)}\left[3+\frac{\epsilon_{r_{2}}}{2}\right]=2\left(\frac{4 \pi E_{o}}{\ln \left(\frac{R}{r}\right)}\right)$

$$
\epsilon_{r_{2}}=10
$$

7.

$\frac{V_{1}}{f} \alpha \phi \alpha I_{m} \quad I_{m} \alpha \frac{V}{X m}$
$\frac{V \downarrow}{f(=\text { constt. })} \alpha \phi_{m} \downarrow$
By reducing the rms value of supply voltage at rated frequency, magnetizing current changes which changes the magnetizing reactance
8.
$H(s)=\frac{10}{s\left(s^{2}+s+100 \sqrt{2}\right)}$
For finding steady state value, we will apply final value theorem
$\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s)$
$y(\infty)=\lim _{s \rightarrow 0} s \times \frac{10}{s\left(s^{2}+s+100 \sqrt{2}\right)}$
$y(\infty)=\frac{1}{10 \sqrt{2}}$
9.
$G(s)=\frac{\pi e^{-0.25 s}}{s}$
Nyquist plot cut the negative real
Axis at $w=$ phase cross over frequency
$G(j \omega)=\frac{\pi e^{-0.25 j \omega}}{j \omega}$
$\phi=-90^{\circ}-0.25 \omega \times \frac{180^{\circ}}{\pi}$
$\left.\angle G(j \omega)\right|_{\omega=\omega_{p c}}=-180^{\circ}$
$\phi_{\omega=\omega_{p c}}=-90^{\circ} \cdots \cdots c^{\circ} \quad \pi$
$90^{\circ} \quad \cdots \mu\left(\frac{45^{\circ}}{\pi}\right)$
$\omega_{p c}=2 \pi$
Magnitude at cutting point
$X=|G(j \omega)|_{\omega_{p c}}$
$=\frac{\pi}{\omega_{p c}}=\frac{\pi}{2 \pi}$
$x=\frac{1}{2}$
Then, the co-ordinates becomes ($-0.5, \mathrm{j} 0$).
10. Given $Z_{\text {in }}=10 \Omega, Z_{o / p}=100 \Omega$

For CCCS

Series connection is output
$Z_{o / p}=Z_{o / p}(1+A \beta)=100(1+9)$
$=100 \mathrm{~K} \Omega$
11. We know that,

For 6-pulse converter harmonic present in AC current are $6 \mathrm{~K} \pm 1$
General expression NK ± 1 [$k=0,1,2,3$]
For 6 pulse $\mathrm{n}=6$
Lowest order harmonic = 5
Lower harmonic frequency $=5 \times 50=250 \mathrm{~Hz}$
12.

Applying nodal analysis at point 1 whose voltage is assumed as V_{1}.
$\frac{V_{1}-20}{2}-2+\frac{V_{1}-5 I}{3}=0 . \ldots \ldots$.
$I=\frac{20-V_{1}}{2}$.
Solving (1) and (2)
$-I-2+\frac{V_{1}-5 I}{3}=0$
$8 I=V_{1}-6$
$81=20-21-6$
$101=14$
$\mathrm{I}=1.4 \mathrm{~A}$
13.

Wave equation $\frac{d^{2} u}{d t^{2}}=c^{2}\left(\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}\right)$
Laplace equation $\nabla^{2} U=\frac{d^{2} u}{d x^{2}}+\frac{d^{2} u}{d y^{2}}=0$
Poission equation $\nabla^{2} U=f$
Heat equation $\frac{d u}{d t}-\alpha\left(\frac{d^{2} u}{d y^{2}}+\frac{d^{2} u}{d y^{2}}+\frac{d^{2} u}{d z^{2}}\right)=0$
14.

For $\frac{z^{2}-1}{z+2}$, the singularity $z=-2$ lies outside the $|z| \leq 1$
\therefore By Cauchy's integral theorem
$\int \frac{z^{2}-1}{z+2} d z=0$ for $|z| \leq 1$
15.

Given that
$y=2 x^{3}+3 y^{2}+4 z$
$\int \operatorname{grad} f . d r=$?
$\vec{u}-u x ı+d y \hat{j}+d z \hat{k}$
$\operatorname{grad} f=\frac{d f}{d x} \hat{i}+\frac{d f}{d y} \hat{j}+\frac{d f}{d z} \hat{k}$
$=6 x^{2} \hat{i}+F \cdot \hat{i} \cdot \wedge \hat{i}$
$\int \operatorname{grad} f . \overrightarrow{u i}-j u x^{2} d x+\int 6 y d y+\int 4 z d z$
Applying the limits

$$
\begin{aligned}
& \int_{C} g r a d f . d r=\left[\int_{-3}^{2} 6 x^{2} d x+\int_{-3}^{-3} 6 y d y+\int_{2}^{2} 4 d z\right] \\
& =\left[\int_{2}^{2} 6 x^{2} d x+\int_{-3}^{6} 6 y d y+\int_{2}^{2} 4 d z\right]+\left[\int_{2}^{2} 6 x^{2}+\int_{6}^{6} 6 y d y+\int_{2}^{-1} 4 d z\right] \\
& =\left[2 x^{3}\right]_{-3}^{2}+\left[3 y^{2}\right]_{-3}^{2}+[4 z]_{2}^{-1} \\
& =70+81-12=139
\end{aligned}
$$

16.

Net reactance of generator
$x=\frac{0.25}{5}=0.05$ p.u.
$I_{S C}=\frac{\operatorname{Pr} e-\text { fault voltage }}{X}=\frac{1}{0.05}=20$ p.u.
Short Circuit MVA $=I_{S C} \times$ Base MVA
$=20 \times 5=100 \mathrm{MVA}$
17. For NMOS transistor to be in saturation the condition will be
$V_{G S}>V_{\text {th }}$
And $V_{D S} \geq V_{G S}-V_{T h}$
18.
$\mathrm{I}_{\mathrm{sec}}=5 \times 20=100 \mathrm{~A}$
$V=I_{\text {sec }} R=100 \times 0.01=1 \mathrm{~V}$
VA output of $\mathrm{CT}=\mathrm{VI}_{\text {sec }}=100 \times 1100 \mathrm{VA}$
19.
$Y_{12}=-\left(y_{12}\right)=-j 20$
Series admittance of each line $=\frac{\boldsymbol{Y}_{\mathbf{1 2}}}{\mathbf{2}}=\frac{\mathbf{- j 2 0}}{2}=-\boldsymbol{j 1 0}$

Series reactance of each line $=\frac{1}{-\boldsymbol{j 1 0}}=\boldsymbol{j 0 . 1} \boldsymbol{p} . \boldsymbol{u}$.
20.
$M=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
Determinant of $\mathrm{M}=|\mathrm{M}|$
$|\mathrm{M}|=0[0-1]-1[0-1]+1[1-0]$
$|M|=2$
$|M| \neq 0$
\therefore Rank of $\mathrm{M}=$ number of columns
$P(M)=3$
21. $H(t)=1+e^{-a t} u(t)$
' 1 ' is a constant and two sided so the impulse response cannot be causal as for causal it should satisfy $h(t)=0 \quad t<0$
$\neq 0 \quad t>0$
Which it is not satisfying due to presence of constant
$\therefore \mathrm{It}$ is not causal
22.
$H(s)=\frac{a_{1} s^{2}+b_{1} s+c_{1}}{a_{2} s^{2}+b_{2} s+c^{2}}$
$a_{1}=b_{1}=0$
$H(s)=\frac{C_{1}}{a_{2} s^{2}+b_{2} s+C_{2}}$
At $\mathrm{s}=0$
H (0) = constant
At $s=\infty$

\therefore It is a low par filter
23. Waveform for output voltage of single phase full bridge PWM inverter

$V_{o}=\sum_{n=6 k \pm 1} \frac{4 V d c}{n \pi} \sin n d \sin \frac{n \pi}{2} n \omega t$
$\mathrm{V}_{\text {o1rms }}=$ fundamental r_{ms} output voltage
$V_{o 1}=\frac{2 \sqrt{2}}{\pi} V d c \sin d \sin \frac{\pi}{2}$
Given, $\mathrm{V}_{\mathrm{o} 1}=0.754 \mathrm{~V}_{\mathrm{dc}}$
$0.75 V_{d c}=\frac{2 \sqrt{2}}{\pi} V_{d c} \sin d$
$d=\sin ^{-1}\left[\frac{0.75}{0.9}\right]=56.44$
Pulse width $=2 d=112.88$
24. For series R - L circuit, $I(t)$ expression is

A. 60
B. 90
C. -30
D. -45
$i(t)=\left\{\frac{-V_{m}}{\sqrt{R^{2}+X_{L}^{2}}} \sin (\theta-\phi\} e^{-t / \tau}+\frac{V_{m}}{\sqrt{R^{2}+X_{L}^{2}}} \sin (\omega t-\phi)\right.$

Complimentary Integral

Particular
Integral
$i(t)=A e^{-t / \tau}+\frac{V_{M}}{Z} \sin (\omega t-\phi)$
DC offset $=A=\frac{-V_{m}}{z} \sin (\theta-\phi)$
For Maximum value of DC offset A
$\theta-\varphi=-90$
$\theta-\tan ^{-1}\left[\frac{\omega L}{R}\right]=-90$
$\theta-\tan ^{-1}\left[\frac{377 \times 10 \times 10^{-3}}{3.77}\right]=-90$
$\theta-45^{\circ}=-90^{\circ}$
$\theta=-45^{\circ}$
25. M is a 2×2 Matrix with Eigen value 4 and 9 If has λ_{1}, λ_{2} \qquad λ_{n} Eigen values $\mathrm{M}^{\mathrm{n}} \rightarrow \lambda_{1}{ }^{\mathrm{n}}, \lambda_{2}{ }^{\mathrm{n}}$ _- $\lambda_{\mathrm{n}}{ }^{\mathrm{n}}$ Eigen values $\mathrm{M}^{2} \rightarrow 4^{2}, 9^{2}$
$\therefore \mathrm{M}^{2}$ has Eigen values as 16 and 81
26. $\mathrm{V}_{\mathrm{S}}=400 \mathrm{KV}$
$\mathrm{I}=300 \mathrm{~km}$
$\mathrm{L}_{1}=1 \mathrm{mH} / \mathrm{km} /$ phase
$\mathrm{C}_{1}=0.01 \mu \mathrm{~F} / \mathrm{km} /$ phase
$v=\frac{1}{\sqrt{L_{1} C_{1}}}=\frac{1}{\sqrt{1 \times 10^{-3} \times 0.01 \times 10^{-6}}}=3.16 \times 10^{5} \mathrm{~km} / \mathrm{s}$
$\beta^{\prime}=\frac{2 \pi f l}{v}=\frac{2 \pi \times 50 \times 300}{3.16 \times 10^{5}}=0.29$
$A=1-\frac{\beta^{2}}{2}=1-\frac{(0.29)^{2}}{2}=0.955$
$V_{R}=\frac{V_{s}}{A}=\frac{400}{0.955}=418.85 \mathrm{KV}$
27. According to Mill man's Theorem, the equivalent circuit of the given circuit is

$E_{e q}=\frac{E_{1} / R_{1}+E_{2} / R_{2}+E_{3} / R_{3}+E_{4} / R_{4}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}$
$=\frac{\frac{200}{5}+\frac{160}{40}+\left[-\frac{100}{25}\right]+\left[-\frac{80}{20}\right]}{\frac{1}{50}+\frac{1}{40}+\frac{1}{25}+\frac{1}{20}}$
$\mathrm{E}_{\text {eq }}=0 \mathrm{~V}$
So, the current I flowing is 0 A
28. For synchronous motor
$\mathrm{E}_{\mathrm{g}}=\mathrm{V}_{1}-\mathrm{IZ}$
$v_{t}=\frac{\mathbf{2 2 0}}{\sqrt{3}} v$ (Phase)
$Z=(0.25+j 2.5) \Omega$
$\mathrm{I}=10 \angle-36.86 \mathrm{~A}$
$E_{g}=\frac{220}{\sqrt{3}}-(0.25+j 2.5) \times 10 \angle-36.86$
$\mathrm{E}_{\mathrm{g}}=141.658 \angle-8.7 \mathrm{~V}$ (phase)
$\mathrm{E}_{\mathrm{g}}=245.36 \mathrm{~V}$ (line)
29.

○ $\quad z=2 \pi j$ (sum of residues)
|z.
$=2 \pi j \times\left[\lim _{z \rightarrow 2}(z+2) \frac{\left(z^{3}+z^{2}+8\right.}{z+2}\right]$
$=2 \pi j\left[\frac{-8+4+8}{1}\right]=8 \pi j$
30.
$V(t)=-170 \sin \left(\mathbf{3 7 7} t-\frac{\pi}{\mathbf{6}}\right)$
$1(t)=8 \cos \left(377 t+\frac{\pi}{6}\right)$

$\mathrm{V}(\mathrm{t})=-170 \sin \left(\mathbf{3 7 7} t-\frac{\pi}{\mathbf{6}}\right)$
$\mathrm{V}(\mathrm{t})=170 \cos \left(\mathbf{3 7 7} \boldsymbol{t}-\frac{\boldsymbol{\pi}}{\mathbf{6}}+\frac{\boldsymbol{\pi}}{\mathbf{2}}\right)$
$V(t)=170 \cos \left(\mathbf{3 7 7} \boldsymbol{t}+\frac{\boldsymbol{\pi}}{\mathbf{3}}\right)$
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{ms}} \cos \varphi$
$P=\frac{170}{\sqrt{2}} \frac{8}{\sqrt{2}} \cos 30$
$P=588.89$ watts
31. Given $R_{1}=5.39 \Omega, R_{2}=5.72 \Omega, X_{1}=X_{2}=8.22 \Omega$ for frequency $\rightarrow 10 \mathrm{~Hz}$
$x_{1}=X_{2}=8.22 \times \frac{10}{50}=1.644 \Omega$
Starting phase current at 10 Hz
$I_{p n}=\frac{V_{p n}}{\sqrt{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}}}$
$=\frac{100}{\sqrt{(5.39+5.72)^{2}(1.644+1.644)^{2}}}$
$\mathrm{I}_{\mathrm{Pn}}=8.63 \mathrm{~A}$
Starting line current $=I_{L}=\sqrt{3} I_{\text {Ph }}$
$I_{L}=\sqrt{3} \times 8.63$
$I_{L}=14.95 \mathrm{~A}$
32. Given data $\mathrm{L}=50 \mathrm{mH}, \mathrm{C}=0.05 \mu \mathrm{~F}$

Critical resistance to avoid current shopping will be given as
$R=\frac{1}{2} \sqrt{\frac{L}{C}}=\frac{1}{2} \sqrt{\frac{50 \times 10^{-3}}{0.05 \times 10^{-6}}}$
$R=500 \Omega$
33.

$\mathrm{X}_{\text {eq }}=0.25+0.2+\frac{\mathbf{0 . 4}}{\mathbf{2}}$
$X_{\text {eq }}=0.65 \mathrm{PU}$
$\mathrm{P}=\mathrm{V}_{\mathrm{PU}} \mathrm{I}_{\mathrm{PV}} \cos \varphi$
$0.8=1 \times I_{P V} \times 0.8$
$\mathrm{I}_{\mathrm{PU}}=1 \mathrm{PU}$

[as 0.8 pf lagging]
$\vec{L}-+$, $\llcorner-36.86 \times j 0.65=1.484 \angle 20.51 P u$
$\delta=20.51$ degrees
34.

A. 600 mV
B. 500 mV
C. 400 mV
D. 100 mV

$V x=V 2 \frac{R_{2}}{R_{1}+R_{2}} \quad$ [Voltage division Rule]
$V_{\text {out }}=V_{x}\left[1+\frac{R_{2}}{R_{1}}\right]-V_{1} \frac{R_{2}}{R_{1}}$
$V_{\text {out }}=V_{2} \frac{R_{2}}{R_{1}+R_{2}}\left[1+\frac{R_{L}}{R_{1}}\right]-V_{1} \frac{R_{2}}{R_{1}}$
$V_{\text {out }}=V_{2} \frac{R_{2}}{R_{1}+R_{2}}\left[1+\frac{R_{L}}{R_{1}}\right]-V_{1} \frac{R_{2}}{R_{1}}$
$V_{\text {out }}=V_{2} \frac{R_{2}}{R_{1}}-V_{1} \frac{R_{2}}{R_{1}}=\frac{R_{2}}{R_{1}}\left(V_{2}-V_{1}\right)$
$V_{\text {out }}=\frac{100}{10}(50-10)$
$V_{\text {out }}=400 \mathrm{mV}$
35.

Output $=\bar{X} Y+X \bar{Y}$
$=\boldsymbol{X} \oplus \boldsymbol{Y}$
The above expression is for XOR gate
36. Discharging of capacitor equation
$V_{C}(t)=V_{o} e^{-t / \tau}$
Where $\tau=R C=\left(10^{3}\right)\left(10^{-7}\right)=10^{-4} \mathrm{sec}$
$V_{0}=100 \mathrm{~V}$
$V_{c}(t)=100 e^{-104 t}$
$V_{c}(t)=1 V$
$1=100 e^{-104 t}$
$\mathrm{T}=0.46 \mathrm{msec}$
37.

$$
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t+\sum_{n=1}^{\infty} b_{n} \sin n t .
$$

$a_{n}=\frac{2}{T} \int_{o}^{T} x(t) \cos n \omega t d(\omega t)$
$\left.a_{1}\right|_{\substack{\omega=1 \\ T=2 \pi}}=\frac{2}{2 x} \int_{o}^{2 x} A \sin t \cos t d t$
$=\frac{A}{\pi} \int_{0}^{\pi} \sin t \cos t d t$
$a_{1}=\frac{A}{\pi} \int_{0}^{\pi} \frac{\sin 2 t}{2}=\frac{A}{2 \pi}\left[\frac{-\cos 2 t}{2}\right]_{0}^{\pi}$
$a_{1}=0$
$b_{n}=\frac{2}{T} \int_{o}^{T} x(t) \sin n \omega t d(\omega t)$
$b_{1}=\frac{2}{2 \pi} \int_{0}^{\pi} A \sin t \sin t d t$
$b_{1}=\frac{A}{\pi} \int_{0}^{\pi} \sin ^{2} t d t$
$b_{1}=\frac{A}{\pi} \int_{0}^{\pi}\left(\frac{1}{2}-\frac{\cos 2 t}{2}\right) d t$
$b_{1}=\frac{A}{2}$
38.
$A=2 x \hat{i}+3 y \hat{j}+4 z \hat{k}, U=x^{2}+y^{2}+z^{2}$
$U A=\left(2 x^{3}+2 x y^{2}+2 x z^{2}\right) \hat{i}+\left(3 x^{2} y+3 y^{3}+3 y z^{2}\right) \hat{j}$
$+\left(4 x^{2} z+4 y^{2} z+4 z^{3}\right) \hat{k}$
$\operatorname{div}(U A)=\frac{d}{d x}\left(2 x^{3}+2 x y^{2}+2 x z^{2}\right)+\frac{d}{d 4}\left(3 x^{2} y+3 y^{3}+3 y z^{2}\right)$
$+\frac{d}{d z}\left(4 x^{2} z+4 y^{2} z+4 z^{3}\right)$
$\operatorname{div}(U A)=\left(6 x^{2}+2 y^{2}+2 z^{2}\right)+\left(3 x^{2}+9 y^{2}+3 z^{2}\right)+\left(4 x^{2}+4 y^{2}+12 z^{2}\right)$
at $(1,1,1) \Rightarrow x=1, y=1, z=1$
$\operatorname{div}(U A)=45$
39. PMMC Instrument
$\mathrm{I}_{\mathrm{fs}}=10 \mathrm{~mA}$
$R_{m}=10 \Omega$

$100=I_{f s}\left(R_{m}+R_{s e}\right)$
$100=10 \times 10^{-3}\left(10+R_{\text {sc }}\right)$
$R_{\text {se }}=10000-10=9990 \Omega$
40.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
; & 1 \\
; & , \\
-2 \beta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\alpha
\end{array}\right] r} \\
& y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

We know
$\therefore \quad B u$
$Y=C X+D u$
Comparing the above equation with the given problem
$A=\left[\begin{array}{cc}0 & 1 \\ -\alpha & -2 \beta\end{array}\right] \quad B=\left[\begin{array}{l}0 \\ \alpha\end{array}\right]$
$C=(1 \quad 0)$
Characteristic equation is
$|S I-A|=0$
$\left|\left[\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right]-\left[\begin{array}{cc}0 & 1 \\ -\alpha & -2 \beta\end{array}\right]\right|=0$
$\left|\begin{array}{cc}s & -1 \\ \alpha & s+2 \beta\end{array}\right|=$
$s^{2}+2 s \beta+\alpha=0$
$s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$
Comparing (1) and (2)
$\omega_{\mathrm{n}}{ }^{2}=\alpha$
$\omega_{n}=\sqrt{\alpha}$
$2 \xi \omega_{n}=2 \beta$
$\xi=\frac{\beta}{\omega_{n}}=\frac{\beta}{\sqrt{\alpha}}$
41.

$I_{D}=\frac{1}{2}\left(\mu_{n} C_{o x}\right)\left(\frac{w}{L}\right)\left(V_{g s}-V_{t}\right)^{2}$
$5 \times 10^{-6}=\frac{1}{2}\left(100 \times 10^{-6}\right) \times(10) \times\left(V_{\text {out }}-0.5\right)^{2}$
$\left(V_{\text {out }}-0.5\right)^{2}=0.01$
$V_{\text {out }}=0.6 \mathrm{~V}=600 \mathrm{mV}$
42.

From the given Bode plot,
$T(S)=$ Transfer function $=\frac{K}{s\left(1+\frac{s}{1}\right)\left(1+\frac{s}{20}\right)}$
It has three poles and no zero
So, statement 1 is false
$\angle \mathrm{T}(\mathrm{s})=-90-\tan ^{-1} \mathrm{w}-\tan ^{-1} \frac{\boldsymbol{w}}{\mathbf{2 0}}$
$\angle T(j w) \mid w \rightarrow \infty=-270^{\circ}$
So, statement 2 is true
43. Load supplied previously before adding extra load

12 KW at pf of 0.6
$S_{\text {Load }}=12+j 16$
Now, Let P be extra load added (${ }_{\text {extra }}=$ as unity p.f)
$\mathrm{S}_{\text {Load }}=12+\mathrm{P}+\mathrm{j} 16$
$\left|S_{\text {Load }}\right|=\sqrt{(12+P)^{\mathbf{2}}+16^{2}}$
Rated KVA $\left|S_{\text {rated }}\right|=25$
$25=\sqrt{(12+P)^{2}+16^{2}}$
$25^{2}=(12+P)^{2}+16^{2}$
$P=7.5,-31.2$
So, 7.20 KW is extra load which is added
44.

$$
M^{-1} M=1
$$

$\left[\begin{array}{l}U_{1}^{T} \\ U_{2}^{T}\end{array}\right]\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}U_{1} T_{V 1} & U_{1} T_{V 2} \\ U_{2} T_{V 1} & U_{2} T_{v 2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$U_{1}^{T} V_{1}=1 \quad U_{1}^{T} V_{2}=0$
$U_{2}^{T} V_{1}=0 \quad U_{2}^{T} V_{2}=1$
Statement 1 and 2 are both correct
45.
$\mathrm{V}_{\mathrm{sr}} \mathrm{I}_{\mathrm{sr}} \cos \varphi=\mathrm{V}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}$
For single phase fully - controlled converter
$I_{0}=I_{s r}=10 \mathrm{~A}$
$\cos \phi=\frac{V_{o}}{V_{s r}}=\frac{180}{230}=0.78$
46. Given that

Switch frequency, $\mathrm{f}_{\mathrm{s}}=250 \mathrm{~Hz}$
Load resistance $R_{L}=24 \Omega$
Supply voltage $\mathrm{V}_{\mathrm{s}}=48 \mathrm{~V}$
$\mathrm{T}_{\mathrm{ON}}=1 \mathrm{msec}$
$T=\frac{1}{f_{s}}=4 \mathrm{~ms}$
$\alpha=\frac{T_{O N}}{T}=0.25$
Load power $=\frac{V_{0}{ }^{2}}{R}=\frac{\left(\alpha V_{s}\right)^{2}}{R}=\frac{(0.25 \times 48)^{2}}{24}$
$P=6$ watts
47. $\mathrm{P}_{\mathrm{o}}=120 \mathrm{w}, \mathrm{Vs}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=48 \mathrm{~V}$
$V_{o}=\frac{V_{s}}{1-\alpha}$
$1-\alpha=\frac{24}{48}$
$\alpha=0.5$ [Duty cycle]
$\mathrm{P}_{\mathrm{o}}=\mathrm{V}_{\mathrm{o}} \mathrm{I}_{0}=120$
$I_{0}=\frac{120}{48}=2.54 \mathrm{~A}$
$\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{0} \mathrm{I}_{0}$
$I_{s}=\frac{120}{24}=5 \mathrm{~A}$
At boundary of continuous \& discontinuous
$I_{L}=I_{S}=\frac{\Delta I_{L}}{2}$
$\Delta I_{L}=\frac{\alpha V_{S}}{f^{L c}}=2 \times 5$
$L_{C}=\frac{0.5 \times 24}{50 \times 10^{3} \times 10}=24 \mu H$
48.

No load
$I_{\mathrm{NL}}=3 \mathrm{~A}$
$I_{C}=\frac{220}{R f}=\frac{220}{220}=1 A$
$I_{a}=I_{L}-I_{f}=2 A$
Back cmf $=\mathrm{Eb}_{\mathrm{N}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}$
$=220-2 \times 0.5=219 \mathrm{~V}$
Full load
$\mathrm{I}_{\mathrm{FL}}=25 \mathrm{~A}$
$\mathrm{N}_{\mathrm{f}}=1500 \mathrm{rpm}$
$\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A}$
$I_{a}=I_{f L}-I_{f}=24 \mathrm{~A}$
EbF $=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=220-24 \times 0.5=208 \mathrm{~V}$
We know $\mathrm{E} \alpha$ speed (N)
$\frac{E_{b F}}{E_{b N}}=\frac{N_{f}}{N_{N}}$
($\mathrm{N}_{\mathrm{N}}=$ speed at no load)
$\frac{208}{219}=\frac{1500}{N_{N}}$
$\mathrm{N}_{\mathrm{N}}=1579.33 \mathrm{rpm}$
49.

Ac line current $\mathrm{rms}=\left(I_{s}\right)_{\mathrm{rms}}=I_{o} \sqrt{\frac{2}{3}}=100 \sqrt{\frac{2}{3}}=81.65 \mathrm{~A}$
50.

PQ				
00	0	1	1	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

$\mathrm{F}(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})=\boldsymbol{S}+\boldsymbol{Q} \overline{\boldsymbol{R}}$
51.
$\mathrm{P}=0.02$
$\mathrm{n}=50$
$\lambda=n p=50(0.02)=1$
$P(x \geq 2)=1-P(x<2)$
$=1-[P(x=0)+P(x=1)]$
$=1-\left[\frac{e^{-\lambda} \lambda^{0}}{01}+\frac{e^{-\lambda} \lambda^{1}}{11}\right]=1-e^{-\lambda}(1+)$
$P(x \geq 2)=1-e^{-1}(1+1)=0.26$
52.

$\mathrm{L}_{\text {air }}=0.2 \mathrm{~cm}$
$\mathrm{L}_{\mathrm{m}}=40 \mathrm{~cm}$
Given $\mathrm{B}_{\mathrm{o}}=1$ Tesla at $\mu_{r} \rightarrow \infty$
$\mathrm{L}_{\text {core }}=40-0.2=39.8 \mathrm{~cm}$
Let $\mathrm{a}=$ uniform cross - sectional area
We know that
$\phi=f l u x=\frac{\text { MMF }}{\text { Total Reluctance }}=\frac{\mathrm{NI}}{\mathrm{S}}$
$\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{\text {airgap }}+\mathrm{S}_{\text {core }}$
$=\frac{L_{\text {air }}}{\mu_{0}(1) A}+\frac{L_{\text {core }}}{\mu_{o} \mu_{r} A}$
$S=\frac{1}{\mu_{0} A}\left[L_{\text {air }}+\frac{L_{\text {core }}}{\mu_{r}}\right]$
Case 1: when $\mu_{r} \rightarrow \infty, B=1 T$
$\mathrm{MMF}=\mathrm{NI}_{1}=\mathrm{B}_{1} \mathrm{~A}\left[L_{\text {air }}+\frac{L_{\text {core }}}{\mu_{r}} \rightarrow \infty\right] \frac{1}{\mu_{o} A}$
$\mathrm{Nl}_{1}=1$ (a) $\left[l_{\text {air }}\right] \times \frac{1}{\mu_{0} A}=\frac{L_{\text {air }}}{\mu_{0}}$
$N I_{1}=\frac{I_{\text {air }}}{\mu_{0}}$
Case 2:
$\mathrm{M}_{\mathrm{r}}=1000$
MMF = Same
$\mathrm{NI}_{1}=\mathrm{B}_{2} \mathrm{~A}\left[L_{\text {air }}+\frac{L_{\text {core }}}{\mu_{r}}\right] \frac{1}{\mu_{o} A}$
Put Ni_{1} from (1)
$\frac{L_{\text {air }}}{\mu_{o}}=B_{2} \frac{1}{\mu_{o}}\left[L_{\text {air }}+\frac{L_{\text {core }}}{1000}\right]$
$0.2=B_{2}\left[0.2+\frac{39.8}{1000}\right]$
$B_{L}=0.834$ Tesla
53. Fault current for SLG fault
$I_{F I G}=\frac{3 V}{X_{1}+X_{2}+X_{0}+3 X n}$
Fault current for 3φ fault
$I_{f 3 \phi}=\frac{V}{X_{1}}$
$\frac{3 V}{x_{1}+X_{2}+X_{0}+3 X}=\frac{V}{X_{1}}$
$x n=\frac{2 x_{1}-x_{0}-x_{2}}{3}$
$x_{n}=\frac{2(0.25)-0.05-0.15}{3}$
$\mathrm{X}_{\mathrm{n}}=0.1 \mathrm{Pu}$
$X_{n}(\operatorname{in} \Omega)=0.1 \times \frac{30^{2}}{50}$

$$
\left[Z p u=\frac{Z_{\text {bass }} \times M V A}{K V L}\right]
$$

54.

$I_{N}=I_{a}+I_{b}+I_{c}$
$\left(I_{N}\right)_{r m s}=100 \mathrm{~A}$
55.

$$
D(s)=\frac{3\left(s+\frac{1}{3 T}\right)}{\left(s+\frac{1}{T}\right)}
$$

$\mathrm{T}(\mathrm{s})=\frac{1+3 T S}{1+T S}$
Frequency at which $\angle T(j w)$ is maximum
$w_{m}=\frac{1}{T \sqrt{\alpha}}$
$T(S)=\frac{1+\alpha T S}{1+T S}$ is The general phase lead compensator
$\therefore \alpha=3$
$w_{m}=\frac{1}{T \sqrt{3}}=\frac{1}{\sqrt{3 T^{2}}}$

GATE EE 2020

 Online Test Series
1. Based on the Latest Exam Pattern

2. All India Rank \& Performance Analysis
3. Detailed Explanation of Solutions
4. Available on Mobile \& Desktop
