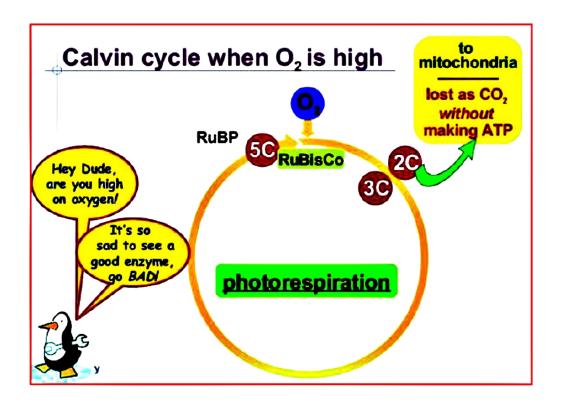
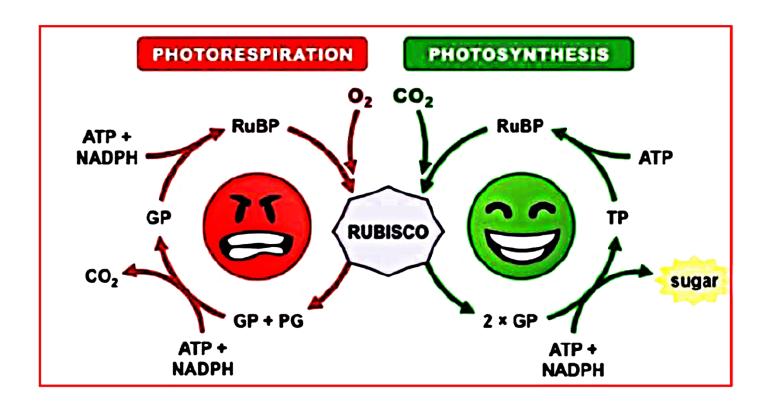
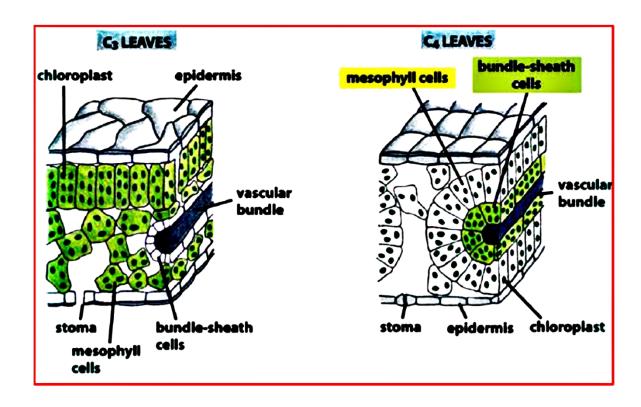
Photosynthesis _III

DARK REACTION OR BIOSYNTHETIC PHASE

Q. Fixation of one CO₂ molecule through Calvin cycle requires?


JIPMER 2017


- A. 1 ATP and 2 NADPH₂
- B. 2 ATP and 2 NADPH₂
- C. 3 ATP and 2 NADPH₂
- D. 2 ATP and 1 NADPH₂


Q. Phosponol pyruvate (PEP) is the primary CO_2 acceptor in

[NEET-2017]

- A. C₃ plants
- B. C₄ plants
- C. C₂ plants
- D. C_3 and C_4 plants

Q. The process which makes major difference between C_3 and C_4 plants is

[NEET-2016]

A. Glycolysis B. Calvin cycle

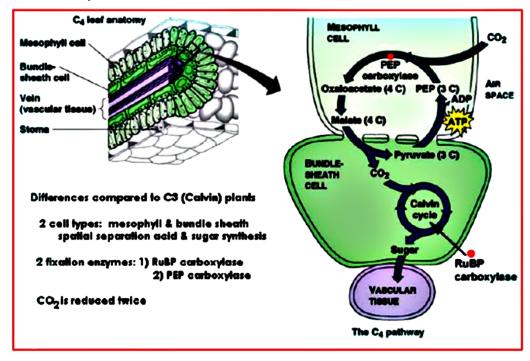
C. Photorespiration D. Respiration

Q. A process that makes important difference between C_3 and C_4 plants is

[AIPMT-2012]

- A. Photosynthesis
- **B.** Photorespiration
- C. Transpiration
- D. Glycolysis

Q. In Kranz anatomy, the bundle sheath cells have


[AIPMT-2011]

- A. Thin walls, no intercellular spaces and several chloroplast
- B. Thick walls, many intercellular spaces and few chloroplasts
- C. Thin walls, many intercellular spaces and no chloroplasts
- D. Thick walls, no intercellular spaces and large number of chloroplasts
 - Q. Photosynthesis in C₄ plants is relatively less limited by atmospheric CO₂ levels because?

[AIIMS 2016]

- A. there is effective pumping of CO₂ into bundle sheath cells
- B. RUBISCO in C₄ plants has higher affinity for CO₂
- C. Six carbon acids are the primary initial CO₂ fixation products
- D. The primary fixation of CO₂ is mediated via PEP carboxylase

C₄ plants

Q. A plant in your garden avoids photorespiratory losses, has improved water use efficiency, shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilisation. In which of the following physiological groups would you assign this plant?

[NEET-2016]

A. Nitrogen fixer B. C₃

C. C₄ D. CAM

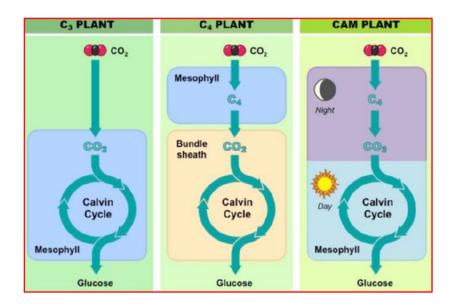
Q. C_4 plants are more efficient in photosynthesis than C_3 plants due to

[AIPMT-2010]

- A. Lower rate of photorespiration
- B. Higher leaf area
- C. Presence of larger number of chloroplasts in the leaf cells
- D. Presence of thin cuticle

Q. Which of these is incorrect for C₄ plants?

[JIPMER 2018]


- A. Kranz anatomy
- B. CO₂ acceptor is PEP
- C. PEP Case in mesophyll
- D. RUBISCO in mesophyll

Q. C₄ plants have better productivity because?

[AIIMS-2017]

- A. C₄ plants absorbs more light
- B. C₄ plants absorbs more CO₂
- C. C₄ plants lack photorespiration
- D. All of these

CAM Plants

