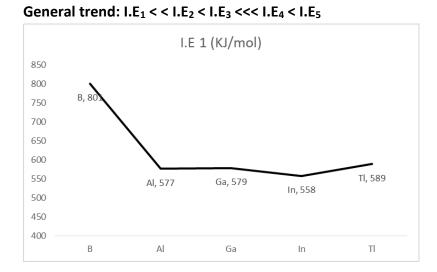
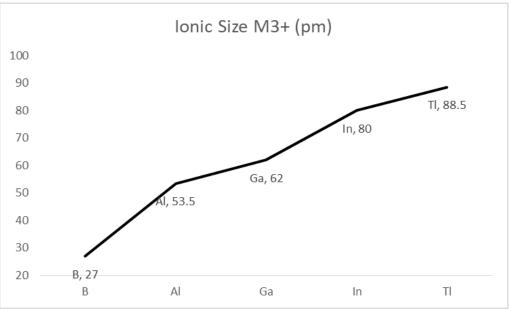
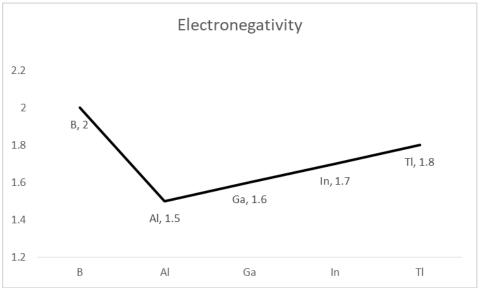

www.gradeup.co

Atomic Size:




Ionization Energy:

We know,


I.E = $f^n(n, Z_{eff}, penetration effect & stability of config)$

Ionic Size:

Electronegativity:

Oxidation Number:

Element	0. N
В	+3
Al	+3
Ga	+3, +1
In	+3, +1
TI	+3, +1

Chemical Properties: Inert pair effect:

The reluctance of ns electron pair of outermost shell of a heavy p block element to take part in bonding is called inert pair effect.

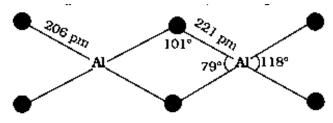
Due to this effect heavy p-block element show variable oxidation number.

For Group 13, General configuration: ns^2np^1

- Reluctance ns² of outermost shell electrons to participate in bonding. So, down the group stability of lower oxidation state is increases.
- Inert pair effect starts from elements of 4th period but become significant from elements of 6th period.

Compounds of group 13 elements:

In trivalent state they generally form electron deficient molecules. So, behaves like Lewis acid.


E.g - BF₃, BCl₃ etc. To achieve stability they accept lone pairs and behave like Lewis base.

Q. Anhydrous AlCl₃ is covalent, from data given below predict whether it would remain covalent or become ionic in aqueous solution.

(Ionization energy of AICl₃ = 5137 KJ/mol, $\Delta H_{(hydration of Al^{3+})} = -4665 KJ / mol;$ $\Delta H_{(hydration of Cl^{-})} = -381 KJ / mol;$

IIT 1997

- **Q.** Which is better lewis acid BCl₃ or AlCl₃?
- Q. Arrange BF₃, BCl₃ & BBr₃ according to their decreasing strength of Lewis acid. Note: AlCl₃ form dimer.

The Elements:

- Boron naturally occurs as Borax (Na₂B₄O₅(OH)₄.8H₂O) & Kernite (Na₂B₄(OH)₄.2H₂O), from which the impure element is obtained.
- Aluminum most important mineral is Bauxite (complex mixture of Hydrated aluminum hydroxide & aluminum oxide)
- Gallium oxide occurs as impurity in bauxite.
- In & Tl occur in trace amounts in many minerals.
 p-block elements ranges from metal to non-metal, through metalloids. (B is nonmetal, Al is amphoteric

Anomalous Property of Boron:

Boron show diagonal relationship with Si.

character & Ga, In, TI are metals)

- 1. B and Si form acidic oxides, B₂O₃ & SiO₂. (Al form amphoteric oxide)
- 2. B & Si form flammable gaseous hydrides (aluminum hydride is solid)
 - Amorphous Boron is brown powder. Amorphous boron of low purity called Moissan boron, obtained by reducing B_2O_3 with Mg or Na at high temperature.

$$Na_{2}[B_{4}O_{5}(OH)_{4}].8H_{2}O \xrightarrow{\text{acid}} H_{3}BO_{3}$$
$$\xrightarrow{\Delta} B_{2}O_{3} \xrightarrow{\text{MgorNa}} 2B + 3MgO$$

Crystalline Boron forms shiny black crystals. Difficult to obtain pure crystalline boron due to its high M.P.

$$2BCI_3 + 3H_2 \xrightarrow{\text{redhot W}} 2B + 6HCI$$

Reaction of Boron:

• Pure crystalline boron is very unreactive.

- Boron does not reactb with acid and base at low temperature. At high temp^r attacked by Na₂O₂ & mixture of hot conc. HNO₃ & H₂SO₄
- Finely divided amorphous boron is more reactive (containing some impurity)

$$2B + N_2 \longrightarrow 2BN$$

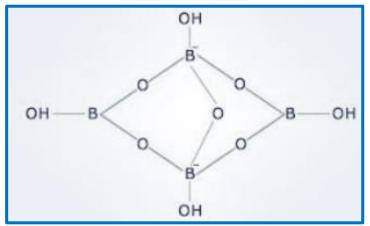
BN is similar to graphite, slippery white solid with layer structure similar too graphite.

$$4B + 3O_2 \longrightarrow 2B_2O_3$$

Reaction of Aluminum:

• Aluminum dissolve in dil. Mineral acids producing H₂ gas

$$2AI + 6HCI = 2AI^{3+} + 6CI^{-} + 3H_{2}$$


- Conc. HNO3 renders metal passive (produce protective layer of oxides on the surface)
- Al also dissolves in NaOH

$$2AI + 2NaOH + 6H_2O \longrightarrow \underbrace{2NaAI(OH)_4}_{or} + 3H_2$$
$$2NaAIO_2.2H_2O$$

Important compounds of Boron:

Borax: Na₂B₄O₇.10H₂O or Na₂B₄O₅(OH)₄.8H₂O

Structure:

Property of Borax:

- $Na_2B_4O_7 + 7H_2O \longrightarrow 2NaOH + 4H_3BO_3$
- Borax is a white crystalline solid
- Q. Find incorrect statement-
- A. Two B-atoms are SP² hybridisation
- B. Two B-atoms are SP³ hybridisation
- C. Five B-O-B bond are present
- D. All B-atoms are SP³ hybridisation

Borax Bead Test:

$$Na_{2}B_{4}O_{7}.10H_{2}O \longrightarrow Na_{2}B_{4}O_{7} + 10H_{2}O$$

$$Na_{2}B_{4}O_{7} \xrightarrow{\Delta} 2NaBO_{2} + B_{2}O_{3}$$

$$Glassybead$$

$$CoO + B_{2}O_{3} \longrightarrow Co(BO_{2})_{2}$$

$$Blue$$

$$MnO + B_{2}O_{3} \longrightarrow Mn(BO_{2})_{2}$$

$$Violet$$

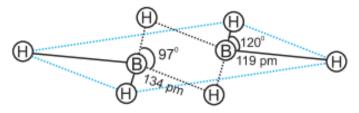
$$NiO + B_{2}O_{3} \longrightarrow Ni(BO_{2})_{2}$$

$$Violet$$

Use:

- 1. in making of hard borosilicate glass
- 2. to make sodium peroxoborate (used as used as brightner in washing powder)
- 3. used as antiseptic
- 4. used in softening of water

Boron Hydride:


Simplest boron hydride – diborane (B₂H₆)

Diborane (B₂H₆):

- Colorless toxic gas,
- Highly flammable, catches fire spontaneously in air

$$\mathsf{B}_{2}\mathsf{H}_{6} + 3\mathsf{O}_{2} \longrightarrow \mathsf{B}_{2}\mathsf{O}_{3} + 3\mathsf{H}_{2}\mathsf{O}$$

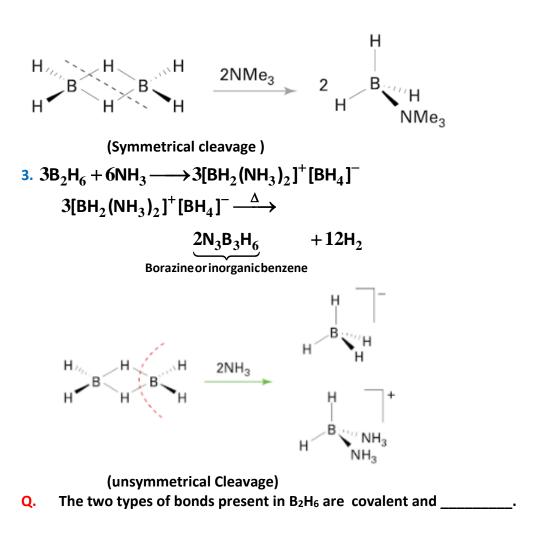
Structure of diborane:

Preparation:

Lab method:

 $4BF_3 + 3LiAIH_4 \longrightarrow 2B_2H_6 + 3LiF + 3AIF_3$

(Synthesis is carried out in vaccum because in air catches fire)


$$2NaBH_4 + I_2 \longrightarrow B_2H_6 + 3NaI + H_2$$

Large scale:

 $2BF_3 + 6NaH \xrightarrow{450K} B_2H_6 + 6NaF$

Reactions of diborane:

- 1. Hydrolysis by water: $B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2$
- 2. $B_2H_6 + 2NMe_3 \longrightarrow 2BH_3.NMe_3$

[IIT-JEE, 1994]

Q. Compound X on reduction with 21.72% gives a hydride Y containing 21.72% hydrogen along with other products. Compound Y reacts with air explosively resulting in boron trioxide. Identify X and Y. Give balanced reactions involved in the formation of Y and its reaction with air. Draw the structure of Y.

[IIT-JEE, 2001]